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ABSTRACT 27 

Biallelic PARK2 (Parkin) mutations cause autosomal recessive Parkinson’s (PD); however, the role of 28 

monoallelic PARK2 mutations as a risk factor for PD remains unclear.  We investigated the role of 29 

single heterozygous PARK2 mutations in three large independent case-control cohorts totalling 30 

10,858 PD cases and 8,328 controls. Overall, after exclusion of biallelic carriers, single PARK2 31 

mutations were more common in PD than controls conferring a >1.5-fold increase in risk of PD 32 

(P=0.035), with meta-analysis (19,574 PD cases and 468,488 controls) confirming increased risk 33 

(OR=1.65, P=3.69E-07). Carriers were shown to have significantly younger ages at onset compared to 34 

non-carriers (NeuroX: 56.4 vs. 61.4 years; Exome: 38.5 vs. 43.1 years). Stratifying by mutation type, 35 

we provide preliminary evidence for a more pathogenic risk profile for single PARK2 copy number 36 

variant (CNV) carriers compared to single nucleotide variant carriers. Studies that did not assess 37 

biallelic PARK2 mutations or consist of predominantly early-onset cases may be biasing these 38 

estimates, and removal of these resulted in a loss of association (OR=1.23, P=0.614; n=4). 39 

Importantly, when we looked for additional CNVs in 30% of PD cases with apparent monoallellic 40 

PARK2 mutations we found that 44% had biallelic mutations suggesting that previous estimates may 41 

be influenced by cryptic biallelic mutation status. While this study supports the association of single 42 

PARK2 mutations with PD, it highlights confounding effects therefore caution is needed when 43 

interpreting current risk estimates. Together, we demonstrate that comprehensive assessment of 44 

biallelic mutation status is essential when elucidating PD risk associated with monoallelic PARK2 45 

mutations.  46 
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INTRODUCTION 47 

Parkinson’s (PD) is a multifactorial neurodegenerative disease. Common variation within 78 48 

independent loci increase PD risk (1). Pathogenic mutations in autosomal dominant genes (LRRK2, 49 

SNCA and VPS35) as well as biallelic mutations in autosomal recessive (AR) genes (PARK2, DJ-1, 50 

PINK1 and FBXO7) cause Mendelian PD (2). It has been suggested that single heterozygous 51 

pathogenic AR mutations can increase the risk of PD, and several lines of evidence have been 52 

provided for and against mutations (reviewed in Klein et al., 2007) (3). Previous studies may have 53 

been confounded by differences in methods for mutation detection in cases and controls. Biallelic 54 

AR mutations in PD genes are rare in PD cases, but single heterozygous mutations in specific AR PD 55 

genes are more common and are estimated, depending on the population, to occur in between 0.6% 56 

and 3% of unaffected control individuals (4–7). Accurate estimation of any risk associated with single 57 

heterozygous AR mutations is therefore essential for the counselling of biallelic carriers, monoallelic 58 

carriers and their family members. Furthermore, understanding the risk associated with single AR 59 

mutations may provide important insights into disease biology. Here, we investigate whether single 60 

carriers of disease-causing PARK2 mutations are at an increased risk for PD using three large 61 

independent case-control cohorts using exome-focused genotype data, whole exome sequencing 62 

and resequencing data from the International Parkinson’s Disease Genomics Consortium (IPDGC). 63 

 64 

RESULTS 65 

We identified a total of 109 monoallelic PARK2 mutation carriers in 12,251 PD cases and controls (72 66 

PD, 37 controls), carrying 19 different PARK2 variants known to cause AR PD in the biallelic state, 67 

using the NeuroX genotyping platform  (8). It is possible that the identified PD cases represent 68 

misclassified true biallelic PARK2 PD cases. To confirm whether PD cases carry a single pathogenic 69 

allele or whether a second variant was missed, we (i) reviewed diagnostic reports if available (n=4), 70 

or (ii) assessed available samples using multiplex ligation-dependent probe amplification (MLPA, 71 

n=29). Of the 33 available NeuroX samples, representing ~30% of our putative monoallelic 72 

individuals (5 controls, 13.5%; 28 PD-Monoallelic, 38.9%), six cases (18% of the available samples, 73 

21% of available PD cases) were found to harbour a second mutation and therefore were removed, 74 

leaving a total of 66 PD cases for all subsequent analyses (no controls were found to harbour a 75 

second mutation). 76 

After removal of cases with established Mendelian biallelic mutations across all known PD genes, 77 

1.0% (66/6,552) of PD cases were found to harbour single heterozygous PARK2 PD-causing 78 

mutations (either heterozygous copy number variants [CNVs] or single nucleotide variants [SNVs], 79 

Table 1), compared to 0.6% (37/5,693) of controls. Single heterozygote mutations might increase PD 80 
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risk (OR=1.55; 95% CI:1.03, 2.33; P=0.035), although ~70% of putative monogenic cases were not 81 

assessed for a second mutation. If the remaining apparent monoallelic cases had a similar rate of 82 

occult biallelic mutations, then the true underlying monoallelic carrier rate could be estimated to be 83 

lower at 0.9%, and there would be no difference between cases and controls (OR=1.39; 95% CI:0.90, 84 

2.16; P=0.117). Using age at onset (AAO) data from 5,710 (87.1%) cases, we found that NeuroX PD 85 

cases with single PARK2 mutations have significantly lower AAOs (Average=56.4 years) than cases 86 

without known mutations (Average=61.4 years; Coeff=-5.04; 95% CI:-8.32, -1.71; P=0.003).  87 

We next sought to explore the potential increased risk in two independent IPDGC case-control 88 

cohorts, using exome sequencing (cases=1,235; controls=473) (8) and resequencing data 89 

(cases=3,071; controls=2,162). We identified 28 (23 cases, 5 controls) and 52 (36 cases, 16 controls) 90 

carriers of single PARK2 mutations in the exome (as previously described (8)) and resequencing data 91 

respectively. CNVs were not determined in the primary exome or resequencing dataset. In the 92 

exome cohort, 1.9% (23/1,231) of cases and 1.1% (5/473) of controls, and in the resequencing 93 

cohort, 1.2% (36/3,071) of cases and 0.7% (16/2,162) of controls harboured single PARK2 SNVs. 94 

Before searching for occult second mutations, a meta-analysis of the three IPDGC (NeuroX, exome 95 

sequencing and resequencing) cohorts revealed a significant ~1.5-fold increased risk (OR=1.57; 95% 96 

CI:1.15, 2.16; P=0.005; I2=0.0%, Phet=0.960) associated with PARK2 mutations (Figure 1). AAO data 97 

was available on 1,130 PD exome cases (91.8%) and 2,599 resequencing cases (84.6%). Albeit non-98 

significant, exome PD cases carrying single PARK2 SNVs had lower AAO compared non-carriers 99 

(Average=38.5 years vs. 43.1 years; Coeff=-4.34; 95% CI:-8.95, 0.28; P=0.066), with carriers having 100 

significantly lower AAO in resequencing cases (Average=52.6 years vs. 60.5 years; Coeff=--7.84; 95% 101 

CI:-12.59, -3.09; P=0.001). We then used MLPA to search for potentially missed PARK2 CNVs in 102 

mutation carriers. Four of the nine available exome DNA samples (44%, all PD cases) were found to 103 

harbour a missed second mutation and were removed from subsequent analyses. Assuming a similar 104 

rate of occult biallelic carriage across both datasets, the true rate of monoallelic cases could be 105 

estimated to be 1.2% and 0.7% in the exome and resequencing cases as compared with 1.1% and 106 

0.7% of controls, respectively. 107 

We next performed a meta-analysis of available cohorts and studies that reported heterozygous PD-108 

causing mutation rates in cases and controls, from European ancestry cohorts only. Three cohorts 109 

(Parkinson's Progression Markers Initiative, PPMI, https://www.ppmi-info.org/; UK Biobank 110 

Genotyping and Exome cohorts, https://www.ukbiobank.ac.uk/) and 21 published studies were 111 

included in our analyses (5,6,9–27). Including our cohorts, the meta-analysis revealed a significant 112 

1.65-fold increased PD risk in single PARK2 mutation carriers (95% CI: 1.36, 2.00; P=3.69E-07; 113 

I2=0.0%, Phet=0.594) (Figure 2).  114 
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As in our study, occult second mutations are likely biasing these estimates, so we therefore 115 

restricted our meta-analysis to 9 studies (9/21, 43%) that searched for a second PARK2 mutation 116 

(Supplementary Table 1). Based on these studies, single PARK2 mutations confer a 2-fold increase in 117 

PD risk in carriers (OR=2.00, 95% CI:1.10, 3.62, P=0.023; I2=1.3%, Phet=0.423) (Supplementary Figure 118 

1).  119 

Inclusion of studies that used predominantly early-onset PD (EOPD) cases may additionally be 120 

inflating these estimates, we therefore repeated the meta-analysis excluding these EOPD studies 121 

(15/21, 71%), which demonstrated a 1.5-fold significant increased risk in carriers (OR=1.50, 95% 122 

CI:1.22, 1.84; P=1.05E-04; I2=0%, Phet=0.927) (Supplementary Figure 2).  123 

Restricting our analysis to the four non-EOPD studies that searched for biallelic carriers 124 

demonstrated that single PARK2 mutations were not associated with an increased PD risk in these 125 

cohorts (OR=1.23, 95% CI:0.55, 2.75, P=0.614; I2=0.0%, Phet=0.657; Supplementary Figure 3). 126 

The pathogenicity of the common PARK2 p.R275W variant in AR PD is not as clear cut as other 127 

PARK2 mutations. To test whether the observed SNV association is driven by p.R275W, we repeated 128 

the meta-analysis after excluding this variant. Removal of p.R275W resulted in a marginally 129 

increased estimate (OR=1.76, 95% CI:1.37, 2.28, P=1.42E-05; I2=0.0%, Phet=0.673; Supplementary 130 

Table 2; Supplementary Figure 4). Limiting our analysis to the 8 cohorts which assessed biallelic 131 

mutations indicated a >2-fold increased risk (OR=2.41, 95% CI:1.17, 4.96, P=0.017; I2=0.0%, Phet=0.791) 132 

(Supplementary Figure 5). 133 

The contribution of biallelic PARK2 CNVs to AR PD is well established; however, that of heterozygous 134 

CNV carriers remains unclear. We identified monoallelic PARK2 CNVs in 0.17% (11/6,552) of non-135 

Mendelian PD cases compared to 0.07% (4/5,693) controls (Table 1) using the NeuroX data only. 136 

None of these CNV carriers overlapped with NeuroX SNV carriers. There was a >2.5-fold increase in 137 

PD risk for PARK2 CNV heterozygote carriers compared to controls (OR=2.53; 95% CI:0.80, 7.99; 138 

P=0.113) but this was not statistically significant. 139 

It has been suggested that monoallelic PARK2 CNVs might confer a higher risk that is associated with 140 

a more pathogenic profile compared to other AR mutations (28). To assess this, we compared 141 

differences in risk between CNV and SNVs carriers in the NeuroX cohort. A total of 55 PARK2 SNV 142 

carriers were seen in non-Mendelian PD cases (55/6,552; 0.8%) compared to 33 controls (33/5,693; 143 

0.6%) (OR=1.43; 95% CI:0.92, 2.21; P=0.108) (Table 1). To test whether PARK2 CNVs confer a more 144 

“pathogenic” risk profile compared to SNVs we performed AAO analysis in the NeuroX data only. 145 

Carriers of heterozygous PARK2 CNVs had a mean AAO of 58.4 years, compared to non-carriers (61.4 146 

years) (Coeff=-3.11; 95% CI:-11.15, 4.93; P=0.449).   147 
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To further investigate the potential different risk profiles, we performed separate meta-analyses of 148 

published PARK2 mutation data for SNVs and CNVs. Meta-analyses, including the current data, 149 

revealed significant independent increased PD risks for SNVs (OR=1.56, 95% CI:1.22, 2.00, P=4.46E-150 

04; I2=0%, Phet=0.968) and CNVs (OR=1.85, 95% CI:1.38, 2.50, P=4.55E-05; I2=0.0%, Phet=0.640) (Figure 3; 151 

Supplementary Table 3). Restricting our meta-analysis to studies that searched for second hits 152 

suggested that PD risk was larger in carriers of single PARK2 CNVs (OR=3.11, 95% CI:1.23, 7.89, 153 

P=0.016; I2=0.0%, Phet=0.879) compared to those harbouring heterozygous SNVs (OR=1.59, 95% 154 

CI:0.79, 3.20, P=0.191; I2=0.0%, Phet=0.785). 155 

 156 

DISCUSSION 157 

The role of rare biallelic mutations in PARK2 in AR PD (MIM#600116) is well established. Here, using 158 

data from a large PD case-control cohort, we identified a total of 109 carriers of single heterozygous 159 

PARK2 mutations. After exclusion of PD cases with known mutations, we demonstrated that carriers 160 

of single mutations were at a small but significantly increased risk of PD (OR=1.55; 95% CI:1.03, 2.33; 161 

P=0.035). This was confirmed by a meta-analysis with two additional IPDGC cohorts (cases=10,954; 162 

controls=8,328) which demonstrated a significant >1.5-fold increased risk (P=0.005). Carriers also 163 

had significantly lower AAOs than non-carriers (56.4 years vs. 61.4 years; P=0.003). Similar findings 164 

were seen in the exome and resequencing data for increased risk (Exome, OR=2.20; Resequencing, 165 

OR=1.59) and younger AAOs compared to non-carriers (Exome, 38.5 years vs. 43.1 years; 166 

Resequencing, 52.6 years vs. 60.5 years). A meta-analysis of 19,574 PD cases and 468,488 controls 167 

from 27 cohorts further confirmed that heterozygous PARK2 mutations confer an increased PD risk 168 

(OR=1.65; P=3.69E-07). However, several confounding factors are likely biasing these estimates in 169 

favour of increased risk and are explored below. Large-scale studies in systematically recruited 170 

cohorts that have comprehensively interrogated biallelic PARK2 mutations are therefore needed to 171 

accurately determine the risk associated with single mutations. 172 

The relatively common p.R275W (c.823C>T, rs34424986) variant, the most frequent PD-associated 173 

variant in PARK2, has not been reported in the homozygous state and has only been reported in 174 

compound heterozygotes with another mutation in multiple AR PD families (MIM#602544), and has 175 

been classified as likely pathogenic. p.R275W reduces protein stability by disrupting binding to 176 

phosphorylated ubiquitin and results in reduced Parkin levels (29) supporting the pathogenicity of 177 

p.R275W. We examined whether the increased PD risk associated with single PARK2 variants was 178 

driven by this variant. The observation that the OR increases after removal suggests that p.R275W 179 

may have reduced effect on enzyme activity compared to other mutations, and that, due to its more 180 
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common frequency, its presence may be diluting the true effect of heterozygous PARK2 mutations in 181 

PD biology.  182 

Our analysis provides some support for a more “pathogenic” risk profile associated with PARK2 CNVs 183 

as compared with SNVs (CNVs, OR=2.53; SNVs, OR=1.43) in the NeuroX data. Both mutation types 184 

appear to be associated with lower AAOs; however, the small number of observed CNVs prevents 185 

any definitive conclusions from being drawn. While the meta-analysis results here support the 186 

increased risk for PARK2 CNV carriers (OR=1.85), albeit marginally higher than PARK2 SNVs 187 

(OR=1.56), the increased risk associated with PARK2 CNVs should be interpreted with care. Small 188 

sample sizes, low CNV frequency and failure to investigate/report CNVs may have resulted in an 189 

underestimated effect size seen in the meta-analysis. Failure to conclusively look for second PARK2 190 

hits may also be a potential confounder when trying to estimate the risk associated with single 191 

PARK2 mutations. Additional work in larger cohorts where both PARK2 SNVs and CNVs are routinely 192 

assessed is therefore needed to gain more accurate insight into the different risk profiles associated 193 

with different mutation types.  194 

This large study builds on previous work looking at single PARK2 mutations in PD aetiology. While 195 

several failed to identify single known pathogenic PARK2 mutations in controls thereby supporting 196 

increased disease risk, others have found equal frequencies in both cases and controls providing 197 

evidence against increased risk (4,7,9,10,24,30–32). These estimates have, however, been based on 198 

relatively small sample sets which have made it difficult to conclusively determine if single mutations 199 

confer any risk. The inclusion of non-ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) variants 200 

represents a potential confounder in that we may be overestimating the frequency of disease 201 

relevant single PARK2 mutations. Limiting our analyses to ClinVar variants only did not result in 202 

considerably different risk estimates across all comparisons (All studies, OR=1.70, P=2.65E-07; 203 

Biallelic studies, OR=1.99, P=0.036; non-EOPD studies, OR=1.55, P=5.6E-05). Another confounder 204 

relates to the fact that we observed a significant rate of occult second pathogenic mutations in 205 

putative monoallelic cases in our NeuroX cohort. The detected rate of occult biallelic carrier status 206 

was high in our two datasets (6/28, 21% and 4/9, 44%), approaching one half of PD cases with 207 

apparent monoallelic status. Additionally, several studies included in the analyses here have not 208 

searched for potentially hidden biallelic mutations in all cases and controls or have only interrogated 209 

a subset of PARK2 mutations. Inclusion of these PD cases in our analysis is likely to appreciably 210 

influence our estimate. However, restricting the meta-analyses to 9 cohorts that searched for 211 

biallelic PARK2 mutations in all cases and controls demonstrated that single mutations confer a 2-212 

fold increase in risk in carriers. A further confounding factor is the use of EOPD cases (<50 years) in 213 

such studies which may be additionally inflating risk estimates as PARK2 mutations are more likely to 214 
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occur in PD cases of younger onset. This was observed in the IPDGC cohorts, with a higher estimate 215 

in the exome cohort compared to the NeuroX and resequencing cohorts. The additional removal of 216 

predominantly EOPD studies resulted in the loss of the original association (OR=1.23; P=0.614) but 217 

this was based on a few small studies (n=4). This suggests that current estimates of the effect of 218 

single mutations in modulating PD risk may not be accurate, but also stresses the importance of 219 

comprehensively searching for biallelic mutations in systematically recruited cohorts. It remains 220 

possible that there are further “occult” non-coding mutations affecting the promotor or splicing that 221 

have not yet been identified.  222 

There are some limitations to our study. NeuroX biallelic cases will have been missed as not all 223 

possible PD-causing variants are represented on the chip (33). The same applies to the detection of 224 

biallelic carriers in the UK Biobank genotyping cohort. Identifying PARK2 CNVs from NeuroX SNP 225 

genotype data using PennCNV may have missed smaller deletions/duplications. The false positive 226 

rate of PennCNV as a method for CNV detection was estimated to be 9.0-17.7%, with false positive 227 

CNVs predominantly small in size and occurring regardless of genotyping chip used (34). Our CNV 228 

detection false-positive rate in the NeuroX cohort is 6.9%. However, the fact that (i) the NeuroX 229 

variants are not evenly distributed across the PARK2 locus (accounts for four misclassified samples), 230 

and (ii) we were looking for CNVs as small as a single exon, may have resulted in our approach 231 

missing or inaccurately calling CNVs in our large cohort comprising predominantly late-onset PD 232 

cases. There are limitations in defining CNVs from IPDGC and UK Biobank exome data, so CNVs were 233 

only investigated using MLPA in identified PD-Monoallelic exome cases. As the exome cohort 234 

predominantly consists of EOPD cases, it is likely that additional PARK2 CNVs carriers were 235 

undetected. We therefore sought to validate the monoallelic status of available carriers by accessing 236 

diagnostic reports or directly assessing CNVs using MLPA and discovered a high rate of undetected 237 

second hits in both our datasets. Previous studies which have not systematically searched for second 238 

hits may have therefore erroneously determined the monoallelic carrier rate meaning that the 239 

estimates derived from our in-house cohorts and other published meta-analyses may not be 240 

accurate. It is therefore very important that any proposed increased risk associated with single 241 

PARK2 mutations be considered with caution as, based on findings presented here, a substantial part 242 

of the reported excess on monoallelic carriers may relate to occult biallelic status.  243 

In conclusion, while much of the data demonstrates that harbouring a single heterozygous PARK2 244 

mutation increases PD risk and that single PARK2 CNVs may be more pathogenic than PARK2 SNVs, 245 

there may be confounding factors. This is supported by our finding of no increased risk associated 246 

with single PARK2 mutations upon restricting our analysis to studies that assessed biallelic mutations 247 

in cases and controls, and studies that did not include predominantly EOPD cases. Before the risk 248 
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associated with single heterozygous mutations can be accurately defined, we highlight the 249 

importance of assessing ‘second hits’ in all cases and controls where both SNVs and CNVs are 250 

systematically interrogated in large-scale cohorts that have been systematically recruited. 251 

 252 

METHODS AND MATERIALS 253 

High-quality genotype data from the NeuroX chip on 6,558 PD cases and 5,693 controls was assessed 254 

as part of the IPDGC (dbGaP Study Accession number: phs000918.v1.p1). Sample collection and 255 

variant genotyping have been described elsewhere (33). IPDGC exome sequencing data from 1,235 256 

PD cases and 473 controls were used as a replication cohort (EGA Study Accession numbers: 257 

EGAS00001002103, EGAS00001002110, EGAS00001002113, EGAS00001002156; dbGaP Study 258 

Accession number: phs001103.v1.p1), and is described elsewhere (8). Additional replication cohorts 259 

used include: IPDGC resequencing cohort (cases=3,071, controls=2,162), UK Biobank Genotyping 260 

(cases=1,428, controls=312,098; downloaded April 2018, under application number 33601) and UK 261 

Biobank exome sequencing (cases=114, controls=38,263; downloaded May 2019) cohorts and the 262 

PPMI Exome sequencing de novo cohort (cases=385, controls=179). Duplicate samples were 263 

removed, where possible, from all analyses. Samples with missing call rates >5% were excluded 264 

during quality control. Variants (excluding synonymous) from known Mendelian PD-causing genes 265 

were extracted. Pathogenic mutations were identified as previously described (8). Rare PARK2 266 

(NM_013988 and NM_004562) CNVs were identified in the NeuroX cohort using PennCNV (34). 267 

CNVs spanning a minimum of ten variants were selected and visually confirmed. Monoallelic PD 268 

cases were defined as those carrying a single heterozygous pathogenic PARK2 allele as defined 269 

according to OMIM (http://omim.org/), the Movement Disorder Society Genetic mutation database 270 

(https://www.mdsgene.org/) or the Parkinson Disease Mutation Database (http://www.molgen.vib-271 

ua.be/PDMutDB/) (Supplementary Table 4). Where available, samples were investigated by (i) 272 

accessing sample diagnostic records, or (ii) using MLPA (SALSA P051 v.D1 probe mix [MRC-Holland, 273 

The Netherlands]) to confirm their monoallelic status. Without phasing information, any two PD-274 

causing hits identified in an individual are assumed to be in trans. 275 

To assess whether PD risk might be associated with (i) all monoallelic variants, (ii) CNVs alone or (iii) 276 

SNVs alone, as indicated by case-control differences, we used logistic regression correcting for 277 

gender and principal components (C1-4). Linear regression was used to investigate the impact of 278 

single AR mutations on AAO.  279 

A literature review was undertaken (on 01/10/2019) to identify published data on heterozygous 280 

PARK2 mutations, using search terms including combinations of the following terms: Parkinson’s 281 

disease, PD, Parkin, PARK2 and heterozygous. Additional studies were identified by manual search of 282 
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references cited in published articles. Should any of the studies include previously published data, 283 

the most recent data was selected where possible. Meta-analysis was conducted using standard 284 

methods modelling fixed effects, using Cochran’s Q-statistic to test for heterogeneity (Phet) (35) and 285 

the I2 statistic (36) to quantify the proportion of the total variation caused by heterogeneity relating 286 

to possible differences in sample recruitment and assessment between studies. Meta-analyses were 287 

performed for CNVs and SNVs separately to investigate potential different risk profiles for each 288 

mutation type. 289 
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LEGENDS TO TABLES 470 

Table 1: Parkinson’s risk profiles associated with single heterozygous PARK2 mutations. 471 

LEGENDS TO FIGURES 472 

Figure 1: Forest plot of the odds ratio (OR) of the Parkinson’s risk associated with heterozygous 473 

PARK2 mutations in three independent International Parkinson’s disease Genomics Consortium 474 

(IPDGC) cohorts.  475 
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Figure 2: Forest plot of the odds ratio (OR) of the Parkinson’s risk associated with heterozygous 476 

PARK2 mutations.  477 

Figure 3: Forest plot of the odds ratio (OR) of the Parkinson’s risk associated with heterozygous 478 

PARK2 single nucleotide variant (SNV) and copy number variant (CNV) carriers.   479 
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TABLES 

Table 1: NeuroX Parkinson’s risk profiles associated with single heterozygous PARK2 mutations. 

Type 
N (Freq) 

OR (95% CI) Plog AAO Coeff (95% CI) Preg 
Controls PD 

All 

With 37 (0.6%) 66 (1.0%) 
1.55 (1.03, 2.32) 0.035 

56.4 
-5.04 (-8.34, -1.75) 0.003 

Without 5,656 6,486 61.4 

CNV 

With 4 (0.1%) 11 (0.2%) 
2.53 (0.80, 7.99) 0.113 

58.4 
-3.11 (-11.15, 4.93) 0.449 

Without 5,689 6,541 61.4 

SNV 

With 33 (0.6%) 55 (0.8%) 
1.43 (0.92, 2.21) 0.108 

56.0 
-5.41 (-9.02, -1.81) 0.003 

Without 5,660 6,497 61.4 

 

Key: AAO, age at onset; CI, confidence interval; CNV, copy number variant; Coeff, linear regression 

coefficient correcting for gender and principal components 1-4; Freq, frequency; N, number of 

samples; OR, odds ratio correcting for gender and principal components 1-4; PARK2, Parkin 

(NM_013988 and NM_004562); PD, Parkinson’s cases; SNV, single nucleotide variant. 

 

 

FIGURES 
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Figure 1: Forest plot of the odds ratio (OR) of the Parkinson’s risk associated with heterozygous 

PARK2 mutations in three independent International Parkinson’s disease Genomics Consortium 

(IPDGC) cohorts.  

Boxes denote OR point estimates, their areas proportional to the inverse variance weight of the estimate. 

Horizontal lines represent 95% CIs. Vertical dashed line represents pooled OR point estimates. Key: CI, 

confidence intervals; PARK2, Parkin (NM_013988 and NM_004562); %, percentage; Reseq, resequencing. 
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Figure 2: Forest plot of the odds ratio (OR) of the Parkinson’s risk associated with heterozygous 

PARK2 mutations.  

Boxes denote OR point estimates, their areas proportional to the inverse variance weight of the estimate. 

Horizontal lines represent 95% CIs. Vertical dashed line represents pooled OR point estimates. Key: CI, 

confidence intervals; PARK2, Parkin (NM_013988 and NM_004562); %, percentage; 
*

German samples only. 
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Figure 3: Forest plot of the odds ratio (OR) of the Parkinson’s risk associated with heterozygous PARK2 single nucleot

(SNV) and copy number variant (CNV) carriers.  

Boxes denote OR point estimates, their areas proportional to the inverse variance weight of the estimate. Horizontal lines rep

CIs. Vertical dashed line represents pooled OR point estimates. Key: CI, confidence intervals; IPDGC, International Parkinso

Genomics Consortium; PARK2, Parkin (NM_013988 and NM_004562); %, percentage; PPMI, Parkinson’s Progression Marker

Reseq, Resequencing; 
*

German samples only. 
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ABBREVIATIONS 

% Percent 

AAO Age at onset 

AR Autosomal recessive 

c. coding DNA reference sequence 

C1-4 Principal component 1 to 4 

CI Confidence interval 

CNV Copy number variant 

Coeff β-Coefficient 

dbGaP Database of Genotypes and Phenotypes 

DNA Deoxyribonucleic acid 

EGA European Genome-phenome Archive 

EOPD Early-onset Parkinson's 

FBXO7 F-box protein 7 

Freq Frequency 

I
2
 Proportion of total variation caused by heterogeneity  

IPDGC International Parkinson's Disease Genomics Consortium 

LRRK2 Leucine-rich repeat kinase 2 

MLPA Multiplex ligation-dependent probe amplification 

MRC-Holland Microbiology Research Centre Holland 

N Number 

NM_* Messenger RNA sequence identifier 

OMIM Online Mendelian Inheritance in Man 

OR Odds ratio 

P P-value 

p. protein reference sequence 

PARK2 Parkin 

PARK7 Parkinsonism associated deglycase or DJ-1 

PD Parkinson's 

PD-Monoallelic Parkinson’s cases harbouring a single heterozygous PARK2 mutation 

Phet Cochran’s Q-statistic test for heterogeneity P-value 

PINK1 PTEN-Induced putative kinase 1 
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Plog Logistic regression P-value 

PPMI Parkinson’s Progression Markers Initiative 

Preg Linear regression P-value 

Reseq Resequencing 

SNCA α-Synuclein 

SNV Single nucleotide variant 

VPS35 Vacuolar protein sorting 35, yeast, homolog of 

vs. Versus 
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