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Abstract

Background. The COVID-19 pandemic caused many governments to impose policies restricting social inter-

actions. These policies have slowed down the spread of the SARS-CoV-2 virus to the extent that restrictions

were gradually lifted. Critical assessment of potential deconfinement strategies with respect to business, edu-

cational and leisure activities requires extensive scenario analyses.

Methods. We adapted the individual-based model “STRIDE” to simulate interactions between the 11 million

inhabitants of Belgium at the levels of households, workplaces, schools and communities. We calibrated our

model to the observed hospital incidence data, initial doubling time and serial seroprevalence data. STRIDE

enables contact tracing and repetitive leisure contacts in extended household settings (so called “household

bubbles”) with varying levels of connectivity.

Results. Household bubbles have the potential to reduce the number of COVID-19 hospital admissions by

up to 90%. The effectiveness of contact tracing depends on its timing and the 4 days after the index case

developed symptoms are crucial. The susceptibility of children affects the impact of a (partial) reopening of

schools, though we found that social mixing patterns related to business and leisure activities are driving the

COVID-19 burden.

Conclusions. Next to the absolute number and intensity of physical contacts, also their repetitiveness impacts

the transmission dynamics and COVID-19 burden. The combination of closed networks and contact tracing

seems essential for a controlled and persistent release of lockdown measures, but requires timely compliance

to the bubble concept, testing, reporting and self-isolation.

Keywords: infectious diseases, transmission dynamics, individual-based model, agent-based model, social

distancing, behavioral changes, SARS-CoV-2, social contact patterns
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Introduction

As the COVID-19 pandemic rose, there was an urgent need to understand the transmission dynamics and

potential impact of COVID-19 on healthcare capacity and to translate these insights into policy. Mathemat-

ical modelling has been essential to inform decision-making by estimating the consequences of unmitigated

spread in the initial phase as well as the impact of non-pharmaceutical interventions. Gradually releasing

society’s lockdown while keeping the spread of the virus under control, requires detailed models to simulate

the (non-)propagation of SARS-Cov-2. To this end, it is important to capture the heterogeneity in social en-

counters by accounting for a low number of intense contacts (e.g., between household members) and a high(er)

number of more fleeting contacts (e.g., during leisure activities, commuting, or in shops) [1].

Transmission models at the level of the individual allow for flexibility to cope with chance, age and context,

which is especially of interest to study exit strategies involving school, workplace, leisure activities and micro-

scale policies [2, 3]. Individual-based models (IBMs) pose a high burden on data-requirements, implementation

and computation, however, the increasing availability of individual-level data facilitates thorough evaluation

of specific intervention measures.

Understanding the interplay between human behavior and infectious disease dynamics is key to improve

modelling and control efforts [4]. Social contact data has become available for numerous countries [5, 6]

and has proven to be an invaluable source of information on the transmission of close contact infectious

diseases [7, 8]. Social contact patterns can be used as a proxy for transmission dynamics when relying on

the “social contact hypothesis” [7]. Disease-related proportionality factors and timings enable matching age-

specific mixing patterns with observed incidence, prevalence, generation interval and reproduction number.

Social contact patterns in a transmission model can be adjusted to simulate behavioural change and assess

possible intervention strategies [4].

Given the rising number of confirmed COVID-19 cases and hospital admissions in Belgium during the begin-

ning of March 2020, all schools, universities, cultural activities, bars and restaurants were closed from March

14th onward. Additional measures were imposed on March18th, with only work-related transport of essential

workers allowed, and teleworking made the norm (termed “lockdown light” in comparison with more strict

lockdowns in other countries). Hospital admissions peaked at the beginning of April, and declined after-

wards [9]. Restrictive measures were gradually lifted from May 4th onward in terms of business-to-business

(B2B), school, business-to-costumers (B2C) and leisure activities. There remains substantial uncertainty on

the extent to which people complied with physical distancing guidelines during the deconfinement and how

public awareness and interventions modified social contact characteristics. More specifically, did people mix

in specific clusters and what was the effect of keeping distance, increased hygiene measures and wearing face

masks? The nature of social contacts before and after the lockdown undoubtedly changed, and this affects

the proportionality factors linking “contacts” with “transmission”. Prior to the SARS-CoV-2 pandemic, sim-

ulation models for infectious diseases could rely on documented social contact behavior as key input to model

transmission dynamics. For COVID-19 predictions, there is however structural uncertainty on future social

contact behavior, implying that additional runs or improved parameter estimation would not reduce it. For

example, the incremental effect when contact tracing is in place depends on the tendency of people to meet

others. If the population stays put, the effect of contact tracing is minimal because it would be dominated
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by the effect of having only within-household mixing, and the epidemic would fade out. This structural

uncertainty can be captured through different social mixing assumptions within each strategy assessment.

In what follows, we analyse the effect of repetitive leisure contacts in extended household settings (so called

“household bubbles”) on the transmission of COVID-19 and explore contact tracing strategies with respect

to coverage, sensitivity and timing. Our analyses are based on the open-source IBM “STRIDE”, fitted to

COVID-19 data from Belgium, with particular focus on transmission dynamics from adaptive social contact

patterns.

Methods

Model structure

This work builds on a stochastic individual-based model (IBM) we developed for influenza [10, 11] and

measles [12]. Our model is representative for the population of Belgium, covering 11 million unique indi-

viduals, runs in discrete time steps of 1 day while accounting for adjusted social contact patterns during

weekdays, weekends, holiday periods, illness and the influence of public awareness and imposed policy mea-

sures. More details on the model structure, population, social contact patterns and stochastic realisations are

provided in the Supplementary Material.

Disease natural history

The health states in the IBM follow the conventional stages of susceptible, exposed, infectious and recovered,

with the infectious health state divided in pre-symptomatic, symptomatic and asymptomatic. For every

infected individual, we sample the onset and duration of each stage based on the distributions in Table S2.

Social contact patterns

Social contact patterns for healthy, pre- and asymptomatic individuals are parameterized by a diary-based

study performed in Belgium in 2010-2011 [13, 14, 15]. Contact rates at school and at work are conditional on

school enrolment and employment, respectively. We account for behavioral changes of symptomatic cases using

observations made during the 2009 H1N1 influenza pandemic in the UK [16], by reducing presence at school

and work with 90%. Based on the same study, we reduce community engagement with 75% when experiencing

symptoms. Transmission-relevant contact behavior within the household is assumed not to change when a

household member develops symptoms.

Parameter estimation

We estimated transmission and lockdown characteristics based on reported hospital admissions [9], initial

doubling time (i.e., before the lockdown) [17] and serial sero-prevalence data [18] up to May 1st. Afterwards,

multiple restrictive measures in Belgium were relaxed, which is the focus of our scenario analysis. Details on

the model parameters and our multi-criteria iterative procedure are provided in the Supplementary Material.

Our iterative estimation procedure resulted in an ensemble of parameter sets that match our three reference

criteria. From this ensemble, we selected a single best parameter set based on the average log-likelihood
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function value to match the observed hospital admissions over time, since this is the model outcome of main

interest. The per-case average number of secondary cases in a susceptible population, which corresponds to

the basic reproduction number R0, was estimated to be 3.42, which is in line with estimates from a meta-

analysis [19] and other modelling studies for Belgium [20, 21]. Within our final model parameter ensemble, the

reproduction number ranged between (3.41–3.49). The transmission model starts with 263 (236–307) infected

cases on February 17th. The hospital probability for symptomatic cases over 80 years is 40% (35%–46%).

From March 14th onward, the social contacts related to B2B decreased linearly to 14% (7%–30%) over 7 (5–

7) days. Contacts in the community during lockdown decreased to 15% (13%–18%) of pre-lockdown contact

levels after 7 (5–7) days.

Household bubbles

We defined a “household bubble” as a unique combination of 2 households in which the oldest household

members cannot differ more than 3 years in age and are linked via their community contacts during weekends.

The age-specific component is included to reduce inter-generational mixing, which is subject of sensitivity

analyses with age-differences of 20 and 60 years. The assignment of household bubbles in STRIDE proceeds

in a random order and if nomatching household is available, the household is not assigned to any household

bubble. This procedure enables us to assign >95% of the population to a household bubble. These bubbles

are exclusive and remain fixed throughout the simulation from May 11th onward.

We assume households in a social bubble to be fully connected 4 days out of 7 (i.e., the contact probability

between any two bubble members per day is 4/7 = 0.57). We also test a higher and lower level of connectivity

in terms of 7/7 and 2/7 days per week, respectively. Social contacts in a household bubble are implemented as

a substitute of leisure contacts in the community and can be seen as repetitive leisure contacts with the same

individuals. Therefore, the community contacts are reduced in proportion to the household bubble mixing to

keep the overall contact rate unchanged. We also test household bubbles consisting of 3 and 4 households,

where the number of household bubble contacts exceeds the number of simulated community contacts in our

scenarios, so the total number of contacts increased. Symptomatic individuals have no social contacts with

members of other households within their household bubble.

Contact tracing strategy (CTS)

We implement contact tracing strategies (CTS) to assess their impact on hospital admissions if 70% of the

symptomatic cases are considered to be index cases. Each index case is placed in home-isolation one day after

symptom onset. One day later, unique contacts are traced and tested at a success rate of 90% for household

members, and 70% for non-household members. We assume a false negative predictive value of 10%, as a

combined outcome of sampling, lab-testing and clinical assessment of the treating physician. We performed

sensitivity analyses regarding the proportion of symptomatic cases included as an index case, the false negative

predictive value, the success rate to reach (non-)household contacts and contact tracing delays. The effect of

these CTS parameters is tested using one of the social mixing assumptions (as described in the next paragraph).

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.07.01.20144444doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.01.20144444
http://creativecommons.org/licenses/by-nc-nd/4.0/


Scenario analyses

We defined different strategies by location-specific deconfinement strategies with structural uncertainty about

social contact behavior after a lockdown. As such, we incorporated 4 mixing assumptions in our baseline

scenario to capture a low and moderate increase in social contacts related to B2B and community activities.

By modelling reductions in social mixing, we implicitly assume people either make fewer contacts compared

to the pre-pandemic situation or the contacts they make are less likely to lead to transmission. For example,

some transmission will be prevented by more frequent hand washing, distancing or the use of masks [22]. If we

assume that social mixing at workplaces increased from 25% to 50%, we estimate the impact of “what if the

risk of acquiring infection at work doubles compared to during lockdown, but remains still 50% less compared

to pre-pandemic times”. Table 1 presents the social mixing details for each scenario.

In our baseline scenario, we accounted for an increase of B2B mixing (i.e., contacts while at work) from May

4th up to 50% of the pre-pandemic observations. Business-to-consumer (B2C) and leisure transmission is

harder to single out using social contact data within our model structure. To model the relaunch of economic

activities and other (leisure) activities in the community, we incorporated a limited increase of community

mixing up to 30% in our scenario analyses starting from May 25th. Note that we do not claim that the increase

of community mixing is estimated to be 30% or restricted to this level, but we provide insights up to 30%.

For schools, we assumed a 50% reduction of transmission due to precautionary measures (smaller class groups,

class separation, increased hand hygiene, etc.) and performed sensitivity analyses to explore the effect of these

measures. We aligned the baseline scenario with the school regulations and timings for Belgium (see Table S7).

In addition, we also included more general scenarios for re-opening pre-, primary and secondary schools from

May 18th onward to make our analysis more explorative. We model that all schools close on July 1st, in line

with the start of the national summer holiday period (until August 31st).

The Belgian government further relaxed restrictions in May 2020 by allowing additional contacts within the

household context. We adopted a strict approach using household bubbles of two households of a similar

generation based on the age of the oldest household member. To align a combined approach of household

bubbles and contact tracing, both strategies start in our simulations on May 11th. We did not include

additional region-specific distancing measures.

Age-specific susceptibility

To fully explore age-specific effects, especially for school-related scenarios, we additionally calibrated our

transmission model assuming that children (0-17y) are only half as susceptible compared to adults (+18y) [23].

The methods are provided in Supplementary Material.
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Table 1: Scenario definitions. All reductions in social mixing are relative to observed social contact patterns before

the lockdown. B2B: business-to-business, CTS: contact tracing strategy, w/o: without, PM: precautionary measures.

Scenario Description

Baseline During the lockdown, the social contacts related to B2B and in the community reduced to

15% of observed behaviour prior the lockdown. Schools are closed and household mixing

did not change. For the deconfinement phase, we consider 4 social mixing assumptions

based on B2B and community related activities. The social contacts related to B2B

increase to 25% or 50% of the pre-pandemic mixing patterns from May 4th. Community

mixing is assumed to remain 15% or increase up to 30% from May 25th onward. All runs

contain an age-specific partial school reopening from May 18th according the Belgian

regulations at that time (see Table S7) and assuming a 50% reduction of transmission at

school due to precautionary measures.

Baseline w/o B2B. Baseline scenario without increase in B2B mixing (= fixed to 25%).

Baseline w/o community Baseline scenario without increase in community mixing (= fixed to 15%).

Baseline w/o school* Baseline scenario without partial school reopening.

Baseline w/o PM at school* Baseline scenario without precautionary measures at schools.

School 0-5y Baseline scenario with reopening of pre-schools with precautionary measures.

School 0-11y Baseline scenario with reopening of pre- and primary schools with precautionary measures.

School 0-17y Baseline scenario with reopening of pre-, primary and secondary schools with

precautionary. measures

School 0-11y w/o PM Baseline scenario with reopening of pre- and primary schools without precautionary

measures.

Household bubbles Community mixing is partially replaced by social contacts within household bubbles

consisting of 2 households of which the oldest two household members are part of the same

weekend community and their ages can differ by up to 3 years. The mixing intensity equals

the equivalent of being fully connected 4 days per week. Interaction within the household

bubbles is possible from May 11th onward.

Household bubbles: 7/7d Household bubble scenario in which all members are in contact every day (connected 7 days

per week), hence almost no community contacts remain.

Household bubbles: 2/7d Household bubble scenario in which the members are less connected, the equivalent of a

visit 2 days per week, hence more community contacts remain.

Household bubbles: size 3 Household bubble scenario with 3 households per bubble. The equivalent of being fully

connected 4/7 days a week equals the assumed number of community contacts in our

baseline scenario. As such, most leisure contacts are within the household bubble.

Household bubbles: size 4 Household bubble scenario with 4 households per bubble and all leisure contacts are within

the household bubble. The size of the household bubble surpasses the number of leisure

contacts in the baseline scenario, hence the absolute number of contacts increases in this

scenario.

Household bubbles bubbles: age gap

20y

Household bubble scenario in which the ages of the two oldest household members can

differ by up to 20 years.

Household bubbles: age gap 60y Household bubble scenario in which the ages of the two oldest household members can

differ by up to 60 years.

Baseline with CTS Baseline scenario with contact tracing strategy starting on May 11th in which 70% of the

symptomatic cases are included, 90% of the household contacts and 70% of the

non-household contacts are successfully traced, tested and isolated if infected. The false

negative predictive value is 10%.

Household bubbles and CTS Household bubble scenario with contact tracing as specified above.

(child) or (c) Scenarios including age-specific susceptibility in which children (0-17y) are only half as

susceptible compared to adults (+18y). During the lockdown, the social contacts related to

B2B and in the community reduced to 24% and 14%, respectively, of observed behaviour

prior the lockdown.
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Sensitivity and robustness analyses

During the parameter estimation, we identified an ensemble of parameter sets at the intersection of the best

scoring model runs according to the observed hospital admissions, doubling time before the lockdown and

serial sero-prevalence. The results presented in the main text are based on the single best parameter set,

but we repeated the main scenarios (baseline, household bubbles, CTS and the combination of both) with

the final ensemble of model parameters. To validate our choice for presenting results based on 10 stochastic

realisations, we also ran our main scenarios with 20, 40 and 80 stochastic realisations.

Results

We calibrated the transmission model up to April 30th, 2020, and continued all simulations up to August 31st

to assess the impact of different deconfinement strategies. We start from a baseline scenario with step wise

re-opening of B2B, schools and community activities including 4 assumptions capturing low and moderate

increases in social mixing. Figure 1 presents the simulated hospital admissions over time from our baseline

scenario with the timing of context-specific re-openings. Each gray line represents one stochastic trajectory

of the simulator based on one social mixing assumption. The trajectories marked with A and B include an

increase in community related social mixing, which has a clear impact on the projected hospital admissions.

The trajectories marked with A and C include an increase in B2B related mixing. Without an increase in

community mixing, the effect of B2B seems minimal. We estimated the reproduction number before the

lockdown to be 3.42 [3.41-3.49], which dropped below 1 during the lockdown. The reproduction number in

our baseline scenario increases above 1 after the deconfinement for community contacts, which includes B2C

and leisure activities.
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Figure 1: Hospital admissions and effective reproduction number (R) from the baseline scenario

including 4 mixing assumptions. All simulations include social restrictions from March 14th and the partial

school reopening in May. For the B2B, the social mixing after the lockdown is assumed to double from the

indicated point in time (indicated on the right hand side with A and C) or to remain constant (B,D). Social

mixing in the community is assumed to double (A,B) or to remain constant (C,D).
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Scenario analysis shows that social mixing in household bubbles, contact tracing and a combined strategy

has a clear impact on the hospital admissions over time (Figure 2). All scenarios are based on the same

assumptions in terms of the absolute number of social contacts in line with the baseline scenario (Figure 1). If

people have fewer unique contacts, as in the scenario that considers household bubbles, the number of hospital

admissions decreases. This is also the case with a strict follow-up of symptomatic cases and their contacts

when applying the contact tracing strategy. For both the household bubble and CTS scenario, the reduction

is not sufficient if both B2B and community mixing doubles (trajectories marked with “A”), since the number

of hospital admissions still increases over time. The combination of both strategies show a stabilising effect

for all social mixing assumptions under study.
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Figure 2: Hospital admissions over time when community mixing occurs in household bubbles

(left), a contact tracing strategy (CTS) is in place (center), or both (right). All scenarios are based

on the same natural disease history and quantitative mixing assumptions but differ from the baseline in terms of

the network structure and application of contact tracing from the given point in time. The mixing assumptions

A,B,C,D are explained in the caption of Figure 1.

Household bubbles are defined by connectivity, intergenerational mixing and size, which all have impact on

our simulated hospital admissions, as presented by the projections for June and August in Figure 3. Note

that the reported distribution and summary statistics strongly depend on our mixing assumptions so they can

only be used to show relative differences across scenarios. Our default scenario with household bubbles shows

an average reduction in the average number of hospital admissions by 53% in June and by 75% in August as

compared to the baseline scenario.

By not having leisure contacts outside the household bubble (i.e. if the household bubbles are fully connected

7 days a week), the average number of hospital admissions can be reduced by 93% by August. If household

bubbles are less strict (i.e. fully connected 2 days a week), the effect is less pronounced but the average number

of hospitalizations in August can still be 41% less compared to our baseline. If household bubbles consist of

households of which the ages of the oldest household members can differ up to 20 or 60 years and multiple

generations are allowed within one household bubble, the effectiveness of this strategy decreases. The reduction

in daily hospital admission by June is only 43% if 60-year differences are allowed. If household bubbles consist

of 3 households, they almost replace all community contacts in our simulations, which results in fewer hospital

admissions in the long run due to the closed network topology. If people mix within household bubbles of size 4,
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the average number of leisure contacts increases compared to our baseline mixing assumptions, which explains

the reduced effectiveness of the household bubble approach for June. However, due to the closed nature of

these extended bubbles and restricted number of unique contacts, the average number of hospital admissions

by August is comparable to situation with household bubbles of size 2, despite the increased contact rates.
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Figure 3: Distribution of the daily hospital admissions by June and August per scenario. The

results are presented as the median (line), quartiles (box), 2.5 and 97.5 percentiles (whiskers) and average (cross)

of the scenario results including social mixing uncertainty and stochastic effects. The percentage on top of the

whiskers indicates relative reduction of the scenario average with respect to the baseline. CTS: contact tracing

strategy.

Contact tracing

The follow up of symptomatic cases by strict isolation and contact tracing, i.e. testing of their contacts with

isolation if infected, shows a substantial effect on the average number of hospital admissions (Figure 2 and 3).

We project an average reduction in hospital admissions of 22% in June and 57% in August with the CTS

in place, assuming that 70% of the symptomatic cases are subjected to contact tracing and comply with

home isolation. The combination of contact tracing and repetitive social mixing in household bubbles has the

potential to reduce the average number of hospital admissions up to 87% by August. This approaches the

effect of strict household bubbles, but clearly allows more freedom in terms of social mixing.

Our CTS results are based on different assumptions with respect to timing and success rates of tracing,

testing, and compliance to home isolation if infected. We performed a sensitivity analysis to challenge our

CTS assumptions that 70% of the symptomatic cases are considered as index case, 10% false negative tests,

a 90% success rate for tracing household members and 70% for other contacts. The false negative predictive

value of testing, due to the sampling, lab-testing and assessment of the treating physician, is important but

we still observed an impact of the CTS with 30% false negative tests if the coverage is high enough (see

Figure 4). By varying the success rate of contact tracing per index case, the relative number of hospital

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.07.01.20144444doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.01.20144444
http://creativecommons.org/licenses/by-nc-nd/4.0/


admissions ranged from 35% to 60% of the base case scenario without CTS. Tracing non-household contacts

seems to have the most impact, since their absolute number can be higher compared to household contacts.

However, tracing and testing household contacts, which are easier to define and accessible via the index case,

also makes a difference. With a maximum delay between symptom onset of the index case and isolation of

infected contacts up to 4 days, we observed the best results in terms of averted hospital admissions. If this

delay increases, the efficiency of CTS drops. Note that if index cases are identified and isolated only 6 days

after symptom onset, the tracing should be very fast or there will not be much left to gain.
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Figure 4: Reduction of hospital admissions due to contact tracing according to the symptomatic

cases included as an index case, the false negative predictive value of testing, delays and the

success rate of tracing, testing and isolating household and (non-)household contacts. Timings

are expressed relative to symptom onset of index case (D0), and days after testing the index case (e.g., Di+2).

All simulations start from the baseline scenario and assume a 50% and 30% reduction of B2B and community

contacts, respectively, compared to pre-lockdown observations. The ‘x’ marks the default settings, which are

used if a parameter is not shown. CST: contact tracing strategy

Location-specific re-opening

We analysed the effect of location-specific deconfinement strategies on the total number of hospital admissions

between May and August with two assumptions on the susceptibility for children up to 17 years of age: equally

susceptible or only half as susceptible compared to adults (+18y) [23]. The results are presented in Figure 5.

Starting from the baseline and each time leaving one location-specific re-opening out, we observed most

impact of community mixing for both susceptibility-related assumptions. Without an increase in community

mixing, the simulated hospital admissions decrease by almost 70%. Without an increase in B2B related social

mixing, the total number of hospital admissions between May and August is still 50% less compared to our

baseline scenario. The effect of household bubbles and CTS on the cumulative hospital cases is similar for

both susceptibility assumptions. As expected, the impact of school re-opening is strongly associated with

the assumption on age-specific susceptibility. Assuming that children are equally susceptible compared to

adults, we observe an increase in hospital admissions up to 96% and 181% compared to our baseline scenario

if schools re-open up to primary or secondary education, respectively. Re-opening primary schools without

any precautionary measure such as smaller class groups, class separation, masks, and increased hand hygiene

seems worse than opening all schools with a 50% reduction of transmission. The re-opening of pre-schools

has limited effect on the simulated hospital admissions according to the mixing assumptions under study.
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Assuming an age-specific susceptibility, re-opening primary schools has less impact on the predicted number

of hospital admissions. If all children up to 17y of age go back to school with precautionary measures, we

observed an increase of hospital cases up to 50% relative to our baseline scenario. Note that these scenarios

do not take contact tracing or other physical distancing measures into account but express the transmission

potential at school. Combining different scenarios to define the required contact tracing efficiency or other

measures to enable schools to reopen is subject of future research.
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Figure 5: Total hospital admissions per scenario from May to August assuming that children

(0-17y) are equally susceptible as adults (left) or only half as susceptible compared to adults

(right). The results are presented as the median (line), quartiles (box), 2.5 and 97.5 percentiles (whiskers)

and average (cross) for all combinations of the contact reductions per scenario. The percentages on top of the

whiskers indicate the average reduction in hospital admissions with respect to the baseline. CTS: contact tracing

strategy; w/o: without; PM: precautionary measures at school.

Sensitivity and robustness analyses

Given the correlated nature of our model parameters, different combinations can give a similar fit for the first

wave but might lead to different outcomes for the deconfinement strategies in the scenario analyses. To assess

the robustness of our results, we simulated the main scenarios with an ensemble of model parameter sets.

The resulting projections in terms of hospital admissions over time (Figure S20) show more variation but the

average reduction in hospital admissions (Figure S21) does not change.

We performed a robustness analysis on the number of stochastic realisations for the main scenarios and

observe more spikes in the hospital admissions over time with an increasing number of stochastic realisations

(Figure S16 and S17) but no differences in the average hospital admissions for June and August (Figure S18).

Details are provided in the Supplementary Material S10 and S11.
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Discussion

Uncertainty on social mixing after a lockdown plays a crucial role in predicting the outcome of deconfinement

strategies. How will people behave socially if restrictions are relieved? A deconfinement strategy can allow for

economic or leisure activities, but people might still limit their contacts or they might fully exploit the renewed

freedom, beyond what is requested but hard to regulate or enforce. In addition to contact frequency, contact

intensity (duration, intimacy, indoor/outside location, etc.) also plays a role in the transmission dynamics.

To handle this structural uncertainty in our simulations, we included different social mixing assumptions as

part of assessing deconfinement strategies. Our baseline strategy including the 4 different mixing assumptions

is not chosen to capture the observed situation as much as possible, but to analyse the relative impact of

mutually exclusive scenarios as in comparative effectiveness research.

Parallel modelling work for the UK [24] showed that social bubbles reduced cases and fatalities by 17%

compared to an unclustered increase of contacts. Social bubbles may be very effective if targeted towards

small isolated households with the greatest need for additional social interactions and support. Their analyses

confirm that social bubble strategy is an effective way to expand contacts while limiting the risk of a resurgence

of cases.

We found a great potential for CTS to reduce transmission and hospital admissions, but it might not be

enough to control future waves. The simulations in Figure 2 with the least strict physical distancing still

show an increase in hospital admissions with CTS in place. Only if the number of contacts is limited and/or

contacts take place in closed networks such as the household bubbles, the CTS is sufficient to keep the hospital

admissions low. The relative proportion of symptomatic cases that is included in the CTS as index case is

driving the efficiency. Also, timing is of the essence and contact tracing should start at the latest 4 days after

symptom onset of the index case. The short serial interval makes it difficult to trace contacts due to the

rapid turnover of case generations [25]. Keeling et al. [1] concluded that rapid and effective contact tracing

can be highly effective in the early control of COVID-19, but places substantial demands on the local public-

health authorities. We did not include or analyse the enhancing/spiraling effect when infected contacts are

subsequently included as an index case. This could be one way to improve case finding to include as index

case, which we implicitly incorporated in our strategy. Another effect of this spiraling approach might be

a reduction of the workload given overlapping contacts with a previous index case. However, the timing of

physical contacts and testing might interfere with this optimization procedure. We did not look into this but

focus on the basic principles and stress the potential of CTS.

Kucharski et al. [26] also reported on the effectiveness of physical distancing, testing, and a CTS for COVID-19

in the UK. They concluded that the combination of a CTS with moderate physical distancing measures is

likely to achieve control. They also used an IBM with location-specific mixing and transmission parameters

and similar natural history of the disease. Their model is different in the number of contacts, which is fixed to

4, and social contact pools for school, work and other, are defined at a lower degree of granularity compared

to our model. We are able to identify the class members and direct colleagues of infected individuals, and can

confirm their conclusions on CTS and isolation strategies. We both stress the potential of CTS but warn that

additional physical distancing measures are required to be successful.
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Kretzschmar et al. [27] computed effective reproduction numbers with CTS and social distancing in place by

considering various scenarios for isolation of index cases and tracing and quarantine of their contacts. Without

a delay in testing and tracing and with full compliance, the effective reproduction number was reduced by 50%.

With a testing delay of 4 days, even the most efficient CTS could not reach effective reproduction numbers

below 1. We did not express the impact of CTS on the reproduction number, though also found a tipping

point in the CTS effectiveness if contact tracing starts 4-5 days after symptom onset of the index case. To

improve the early detection of cases, the use of universal testing in which the entire population is screened on

a regular basis is promising [28].

School closure is considered a key intervention for epidemics of respiratory infections due to children’s higher

contact rates [29, 30], but the impact of school closure depends on the role of children in transmission. Davies

et al [23] conclude that interventions aimed at children might have a relatively small impact on reducing

SARS-CoV-2 transmission, particularly if the transmissibility of subclinical infections is low. This is also the

conclusion from our scenario analyses where we assume children (<18y) to be half as susceptible as adults

(+18y).

Other IBM applications have been reported [31, 32, 3, 33] to simulate combinations of non-pharmaceutical in-

terventions by targeting transmission in different settings, such as school closures and work-from-home policies.

Modelling the isolation of cases in safe facilities away from susceptible family members or by quarantining

all family members to prevent transmission has shown substantial impact. Models that explicitly include

location-specific mixing are very relevant for studying the effectiveness of non-pharmaceutical interventions,

as these are more dependent on community structure than e.g. with vaccination [31]. However, implementing

the available evidence into a performant and tailor-made model that addresses a wide range of questions about

a variety of strategies is challenging [32, 2].

Although our analysis is applied to Belgium, our findings have wider applicability. We considered the effect of

universal adjustments in terms of social mixing (isolation, repetitive contacts, contact tracing). We modelled

11 million unique inhabitants with detailed social contact patterns by age and location. Hence, we can compare

model results with absolute incidence numbers in the absence of premature herd immunity effects due to a

reduced population size. The latter can be an issue for models that use a scaling factor to obtain final results.

Our individual-based model provides a high-resolution, mechanistic explanation of the reproduction number

and transmission dynamics that are relevant on a global scale.

Limitations

Any model is a simplification of reality and therefore depends on the assumptions made. In addition, our

spatially explicit IBM is calibrated on national hospitalization data so uncertainty is inevitably underesti-

mated. As such, we rely on scenario analyses and further sensitivity analyses are necessary. Model results

should therefore be interpreted with great caution. Our IBM is a mechanistic mathematical model that uses

conversational contacts as a proxy of events during which transmission can occur. By definition, SARS-CoV-2

infection events that occurred through the environment (e.g., contaminated surfaces) are covered by these

conversational contacts.

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.07.01.20144444doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.01.20144444
http://creativecommons.org/licenses/by-nc-nd/4.0/


The use of antiviral drugs in combination with CTS can reduce the effect of local outbreaks [34]. This kind

of pharmaceutical intervention is not incorporated in the current analysis. We focused on the transmission

dynamics in the general population and did not consider care homes separately in our analysis. They form

predominantly a sink for infections, with high morbidity and mortality, but are not likely to drive the transmis-

sion. To focus on the disease burden in the elderly, the social interactions within elderly homes and with their

environment become more important [35]. We did not include aspects related to travel or weather conditions

(UV light, humidity, temperature) which may impact both transmission and social contact behaviour in ways

that are still largely unknown.
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S1 Model population

This work builds upon a stochastic individual-based simulator, STRIDE, we developed for influenza [1, 2] and

measles [3]. Our individual-based model has a particular focus on social contact patterns by modelling each

individual as part of “contact pools”, representing a household, school-class, workplace, or community.

Household combinations, which specify the age of each member, are based on Belgian census data from 2011.

We had to process the census data to ensure anonymization by excluding households containing 7 or more

individuals (3.5% of population) and by using age groups for household combinations with a frequency of less

than five. As such, we aggregated ages into 2-year intervals for individuals aged 0-25 and 5-year intervals

for individuals over 26 years of age. If the frequency of an aggregated household composition still remained

less than five, the households were excluded (0.7% of population). Next, we re-sampled ages from the age

intervals to settle each household combination for our model population. We matched our resulting household

data with summary statistics for household size and noticed an under-representation of large households

containing children. Therefore, we duplicated 25,000 and 45,000 randomly chosen households of size 5 and 6,

respectively, in which the second youngest household member was of age 0-25. These numbers were chosen

to obtain matching distributions regarding household size, age in the population and age per household size.

Figures S1 and S2 present summary statistics from the model population and Belgian census data.
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Figure S1: Population count per household size and number of households per size: Belgian 2011

census and model population. Numbers are expressed in million (M).

We build our population by sampling households and assigning them to geographic locations based on the

population census of 2001. Our population of 11 million people is closed, meaning that no births or deaths

occur during the simulation, nor emigration or immigration. Children are assigned to a daycare center (0–2

years old), pre-school (3–5 years old), primary (6–11 years old), secondary (12–17 years old) or tertiary (18–23

years old) school based on Belgian enrolment statistics from Eurostat [4]. Daycare centers in Belgium comprise

on average 8 infants [5], with a skewed distribution up to 18 infants. School classes in pre-, primary and

secondary schools contain on average 19, 20 and 20 children, respectively, using a class size distribution based

on government statistics [6]. Students enrolled in tertiary schools are assigned to groups of 50 fellow students
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on average. Adults (18–64 years old) are assigned to a workplace or a daycare center/school class based on

age-specific employment data and aggregated workplace size data from Eurostat [4]. We included one adult

per 8 children in a daycare center and one adult per class in the pre- and primary school setting. Each

“workplace” represents professional contacts in line with “business-to-business” (B2B) activities. The size

of the workplaces is based on data from Eurostat and categorized into 1-9 (94%), 10-19 (3%), 20-49 (2%),

50-249 (0.8%) and +250 (0.2%) people. Geographic workplace assignment is based on commuting data from

the Belgian 2001 census.

To represent leisure activities, family visits, “business-to-consumer” (B2C) and other contacts, the model

contains “communities”. Each community is specified by a geographic center based on population density

and contains on average 500 individuals. This arbitrary number affects contact probabilities but it does not

influence contact rates. Each individual is assigned to one of three nearest community centers close to their

home to represent weekday interactions and activities. For weekends, individuals can be assigned to the same

community center or another one close to home. This community setup allows individuals to have similar

contacts during week and weekend days, but prevents a strict compartmentalisation of the population.
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Figure S2: Age profile per household size from the Belgian 2011 census and the model population.
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S2 Social contact patterns

Social mixing in STRIDE is based on a diary-based social contact study performed in Belgium in 2010-

2011 [7, 8, 9]. All participants were asked to record their contacts during one randomly assigned day. They

also reported their time-use by activity, location and distance from home. Table S1 provides an overview on

how the survey data is used to inform contact pools in the individual-based model. Note that contact rates

at school and at work are conditional upon school enrolment and employment, respectively. During each time

step, we match the age- and location-specific contact rate (= number of contacts per day) with the number of

individuals in a contact pool (e.g., workplace, school, etc) to calculate the contact probability. We limit contact

probabilities at 0.999, to prevent deterministic system behavior, and always use this maximum in a household

setting since random mixing between household members is an adequate approximation of social contact

behaviour for infections transmitted via close contacts [10]. Age-specific contact matrices are aggregated in

the model into a vector containing age-dependent contact rates before calculating the contact probability. If

people of different ages are part of the same contact pool, we use the lowest age-specific probability in their

Bernoulli trial to enable a contact event.

The model allows to track social contacts in the population on a daily basis for all or for a random selection

of individuals. The output is aligned with Socialmixr [11] and SOCRATES [12] to generate and visualise

aggregated social contact matrices. Figure S3 presents social contact patterns from STRIDE summarized in

2x2 matrices based on 5000 individuals during weekend days and Figure S4 for weekdays before the COVID-19

lockdown.

Table S1: Implementation of “contact pools” in STRIDE based on social contact survey data [7, 8, 9]

Participants with more than 20 professional contacts per day (with students, clients, patients, etc.) had to report only

the total number and age groups of their Supplementary Professional Contacts (SPC).

Reported location in the

social contact survey

Contact details in the

social contact survey

Survey participant selection Contact pool in

STRIDE

Home Household members All Household

Home Non-household members All Community

School All “Student” (or age <18y) and time-use data

contains “school”

School

Work (B2B) Adults (>17y), >15min and

non-SPC

“Employed” and time-use data contains “work” Workplace

Work (Teaching) Children (0-11y) “Employed” and time-use data contains “work” School

Work (B2C and teaching) non-B2B contacts “Employed” and time-use data contains “work” Community

Leisure, transport, family,

grandparents, other

All All Community
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Figure S3: Social contact matrices based on 5000 individuals within STRIDE during weekends.

These are aggregated 2x2 matrices based on one-year age group data from the model.
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Figure S4: Social contact matrices based on 5000 individuals within STRIDE during weekdays.

These are aggregated 2x2 matrices based on one-year age group data from the model.
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S3 Age-specific probability to be symptomatic

We assumed an overall proportion of symptomatic cases in the population before lockdown measures of 50%

based on Li et al. [13]. To obtain an age-specific probability of symptomatic cases, we combined this popula-

tion estimate with the age-specific relative susceptibility to symptomatic infection reported by Wu et al. [14].

Figure S5 presents the age-specific data from [14], which we amended with an assumption for individuals 0-19

years of age. These relative proportions had to be re-scaled and weighted by age to end up with a population

average of 50%. Therefore, we calculated the relative population size by age as:

Ña = Na/Ntotal ∗ T (1)

with Na the population size of age group a, Ntotal the total population size and T the number of age groups.

Secondly, we calculated the age-specific probability to be symptomatic as:

Pa =
Sa

1/T ∗
∑T

k=1 Sk ∗ Ñk

∗ Ppopulation (2)

with Sa the relative susceptibility to symptomatic infection for age a, Ña the relative population size for age

a, and Ppopulation the proportion symptomatic cases on the population level. Figure S5 presents the resulting

probabilities to be symptomatic by age. Note that we had to truncate the highest relative susceptibility to

symptomatic infection to maintain all age-specific probabilities between 0 and 1. This limitation is due to the

interaction between the age-specific susceptibility and population sizes with the overall proportion of 50%.

The proportion of symptomatic cases per age group is disease-related and fixed over time. The proportion of

symptomatic cases in the population depends on the age of the newly infected cases, which is driven by social

contact and transmission dynamics. Given the temporal aspects of social contact behavior and restrictions,

the overall proportion of symptomatic cases in the population can change over time.
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Figure S5: Relative susceptibility to symptomatic infection by age based on Wu et al. [14] (left)

and estimated probability of symptomatic infections (right).
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S4 Natural disease history

The individual-based model STRIDE for COVID-19 is based on susceptible, exposed, infectious and recovered

individuals, with the infectious health state divided in pre-symptomatic, symptomatic and asymptomatic.

Throughout this text, we use “asymptomatic” for all cases that do not experience any symptoms through-

out their infection. We assume that the latent and infectious period for asymptomatic cases is similar to

symptomatic cases, so the estimations for the start and duration of the infectious period are generalized for

asymptomatic cases. The level of infectiousness increases after symptom onset. Figure S6 presents the overall

disease dynamics. Hospitalization is not part of the transmission model and added with a dashed line in

combination with the age-specific rate based on a proportionality and delay factor.

Susceptible Exposed
𝜆(t) δ	

Infectedpre-symptomatic

Infectedasympomatic

Infectedsympomatic

𝜌 * 𝜽(𝑎𝑔𝑒)

Recovered

𝛾

Hospitalized
ɸ(𝑎𝑔𝑒)

𝜌 * (1
−𝜽

(𝑎𝑔
𝑒 ))

𝛾

Figure S6: Overall disease dynamics The infection process is driven by the force of infection λ(t), latent

period 1/δ, pre-symptomatic period 1/ρ, proportion symptomatic θ(age), recovery rate γ and hospitalization

rate φ(age).

From the individual perspective (see Figure S7), each infected case experiences an incubation period, an

infectious period and optionally a symptomatic period. The start of the infectious period is related to the

incubation period and this dependency is captured in our model with a “pre-symptomatic” infectious period

rather than characterising the latent period. This modelling choice is driven by the literature on the incubation

period and pre-symptomatic infectiousness [15, 13]. Hospital admissions are calculated post-hoc based on the

model output. For each symptomatic case, there is a likelihood to be hospitalised and a delay distribution to

specify the time between symptom onset and hospital admission. This likelihood and delay are age-specific

and are described in Section S6.

Exposure

Incubation period

“Pre-symptomatic”

Symptomatic period

Infectious period
Time

Asymptomatic = 1− 𝜽 𝑎𝑔𝑒

1/δ days 1/𝜌 days 1/𝛾 days

Infection
Latent period

Symptomatic = 𝜽 𝑎𝑔𝑒 	

Figure S7: Disease dynamics in the STRIDE model on the level of the individual. Exposed

individuals become infectious without symptoms after 1/δ days. Since not all cases develop symptoms 1/ρ days

later, we denote this second stage as “pre-symptomatic”. After 1/γ days, individuals are not infectious anymore.

Disease parameters are described in Table S2.
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In practice, we define for each infected case an incubation period and whether the case is symptomatic or

asymptomatic. Relative to the end of the incubation period, we specify the start of the infectious period and

the duration. The following paragraphs describe how we derive the probability functions for the incubation,

pre-symptomatic, infectious and symptomatic period.

The start of the infectious period, relative to symptom onset, is based on the results from He et al [15], who

concluded that viral shedding may begin 5 to 6 days before the appearance of the first symptoms. They

conclude that after symptom onset, viral loads decrease monotonically and decline significantly 8 days after

symptom onset, as live virus could no longer be cultured. The inferred infectiousness profile was captured in a

shifted gamma distribution with shape 20.52, rate 1.59 and shift 12.27 days. To estimate the pre-symptomatic

infectious period density for STRIDE. We truncated the shifted gamma distribution at -1 by dividing the

probability density function by the cumulative distribution function evaluated at -1 (left panel of Figure S8).
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Figure S8: Infectiousness profile relative to symptom onset from He et al [15] (left) and the

discrete pre-symptomatic infectious period distribution for STRIDE (right).

The incubation period in STRIDE is based on the reported mean of 5.2 days (95% confidence interval: 4.1 to

7.0) from Li et al. [13]. The distribution follows a log-normal distribution with logmean=1.43 and logsd=0.66.

The numerical parameters are derived from He et al. [15] and are represented by the density plot in Figure S9.

We calculated the discrete version of this log-normal distribution with the assumption that infectiousness has

to start at least one day prior symptom onset and at least one day after infection. As a result, the incubation

period is at least 2 days, which results in the probability distribution as presented in Figure S9;
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Figure S9: Incubation period distribution from Li et al. [13] (left) and the standardized discrete

distribution for STRIDE (right).
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He et al. [15] reports that infectiousness declines after symptom onset up to a maximum of 7 days, which

restricts the overall infectious period. The modelling study by Lourenco et al. [16] used a normal distribution

with a mean of 4.5 days and standard deviation of 1. Given their SIR model structure, this value can not be

used directly, but was used as prior for our parameter estimation. We evaluated normal distributions with

mean 5, 6 and 7 days and standard deviation 1 with the aim that the combination of the pre-symptomatic

period and the total infectious period resembles the infectious profile relative to symptom onset from He et

al.[15]. With a mean infectious period of 6 days, the number of individuals in STRIDE that are still infectious 7

and 8 days after symptom onset corresponds to 3% and <1%, respectively, which is in line with the results [15].

The infectious period distributions relative to infection and symptom onset are presented in Figure S10.

The focus of the transmission model lies on new infections over time and the behaviour of symptomatic

cases after their infectious period has no impact on transmission dynamics. Therefore, we choose to fix the

symptomatic period to the maximum infectious period after symptom onset to 7 days. The infectiousness of

asymptomatic cases in STRIDE is set to 50% compared to symptomatic cases, based on Li et al. [13].
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Figure S10: Infectious period distribution in STRIDE in total (left) and relative to symptom

onset (right)

Table S2: Summary table with disease characteristics. Transition parameters are discretized to the

modelling time step of 1 day

Parameter Model value Reference

Incubation period Lognormal(logmean=1.43, logsd=0.66) [15]

Symptomatic period 7 days, which is the maximum infectious period after

symptom onset

[15]

Infectious period Normal(mean=6, sd=1) [15, 16]

Pre-symptomatic infectious

period

Gamma(shape=20.52, rate=1.59, shift= 12.27)

truncated at -1 and divided by the cumulative

distribution function for standardisation

[15]

Probability to be symptomatic

(age-specific)

Section S3 [17, 14]

Infectiousness asymptomatic

cases

50% of symptomatic cases [13]
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S5 Transmission probability per contact

The basic reproduction number (R0) captures the combined effect of social contact patterns, demography,

disease dynamics and the probability of transmission given contact. By keeping everything constant except

the transmission probability, we can fit the relation with R0 by counting the number of secondary cases per

index case in a susceptible population. The goal is to easily translate a transmission probability given contact

to R0 and vice versa. Especially the latter is convenient to specify R0 as model parameter. As such, a given

R0 is converted into a transmission parameter to be used in the simulation model. To enable this conversion,

we need a continuous function for the number of secondary cases in terms of the transmission probability,

which we can invert.

For the entire range of transmission probabilities, this relation needs to go through zero and levels off by

the total number of unique contacts within the infectious period for the simulated population, social contact

dynamics and disease characteristics. Capturing the full relation between the transmission probability and

the secondary cases falls outside the scope of this research, since our goal is to simulate slight variations of the

transmission probability to obtain R0 values in range with published values. As such, we focus on a specific

range of the transmission probability and assume a linear relation between the transmission probability and

the average number of secondary cases in a susceptible population. Based on preliminary runs, we defined a

range for the transmission probability between 0.01 and 0.14, which corresponds with an average number of

secondary cases between 1 and 5.

Each simulation with a specified transmission probability started with 20 randomly infected cases between

1 and 99 years of age, and traced their secondary cases. Note that newborns are never selected as index cases.

The choice for 20 infected cases instead of 1 in a fully susceptible population according the definition of R0

is to reduce the number of model realisations with factor 20. On 11 million people, the difference between 1

and 20 infected seeds is inferior. To capture temporary effects for (pre-)symptomatic infectious periods during

week and weekend days, we ran different simulations for each transmission probability starting from Monday

the 1st up to Sunday the 7th of February 2020.

For each transmission probability (15x) and starting day (7x), we ran 10 stochastic realisations starting with

20 infected cases. As such, our fitting procedure to capture the relation between the transmission probability

and the (basic) reproduction number is based on the secondary cases of 21000 index cases. Figure S11 presents

the results of these simulations and the linear model we fitted through these data:

Secondary cases in a susceptible population = R0 = 39.65 ∗ Ptransmission + 0.12

To use R0 as model input, we use the inverse:

Ptransmission = R0/39.65 − 0.12
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Figure S11: The distribution of secondary cases by transmission probability of 21000 index cases

in a susceptible population. The boxplots present the median, quartiles (box), 2.5 and 97.5 percentiles

(whiskers) and outliers (circles).
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S6 Hospital admission probability

To estimate time-invariant relative hospital admission probabilities by age, we used the reported hospital

admissions up to week 13 (March 30th, 2020) from a Belgian hospital survey [18]. We assumed that hospitals

admissions up to week 13 are little affected by the lockdown at the end of week 11 given the mean incubation

period of 5.2 days [13], the mean time between symptom onset and hospital admission of 5.6 days [18].

Table S3 present the relative proportion of hospitalized cases by age, averaged for week 11-13. This selection

of hospital admission data enables to use a denominator for the number of cases that is not affected by the

lockdown, which is the topic of interest in this study. We used the age-specific proportion of symptomatic

cases from the simulations to estimate the relationship between the transmission probability and the secondary

cases. As such, the calculated relative hospital probabilities are independent from R0 and COVID-19 related

interventions. We stratified the number of symptomatic cases by 10-year age categories and present them

in Table S3. We calculated the relative fraction of symptomatic cases to be hospitalized and a standardized

version relative to the oldest age group. These relative proportions are subject to a scaling factor, which we

estimated during the parameter estimation procedure as reported in section S7.

Table S3: Age-specific proportionality of hospital admission in Belgium based on averaged hospital

survey data from week 11-13 and simulated symptomatic cases infected before physical distancing

measures occurred. The hospital delay represents the time between symptom onset and hospitalization [18].

Age

category

Reported hospital

admissions

Simulated proportion

symptomatic cases

Relative

fraction

Relative

fraction

(standardized)

Hospital

delay

0-9y 1.4% 2.0% 0.72 0.091 3 days

10-19y 0.2% 3.2% 0.07 0.009 3 days

20-29y 1.8% 5.2% 0.35 0.044 7 days

30-39y 3.9% 14.7% 0.26 0.033 7 days

40-49y 9.6% 21.5% 0.45 0.057 7 days

50-59 15.2% 25.9% 0.59 0.075 7 days

60-69y 18.5% 16.4% 1.13 0.143 6 days

70-79y 22.7% 7.7% 2.93 0.373 6 days

+80y 26.7% 3.4% 7.87 1.000 1 day
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S7 Parameter estimation

We estimated transmission and lockdown characteristics based on reported hospital admissions, initial doubling

time and serial sero-prevalence data up to May 1st. Afterwards, multiple restrictive measures in Belgium were

relaxed, which is the focus of our scenario analysis. From March 14th onward, people who could, were coerced

into telework and many businesses, unable to guarantee required hygiene en physical distancing measures had

to close. All business-to-consumer (B2C) outlets were interrupted except for ordered home deliveries and

shops selling essential goods. All schools were closed except for a low number of children that required day

care (e.g., if both parents were not able to telework), so we assumed neither social contacts nor transmission

at schools.

We estimated the reduction in social mixing associated with business-to-business (B2B) activities, and in the

community (including B2C). An instant reduction from March 14th did not provide a good fit with observed

data. Therefore, we included a linear increase in compliance to reduce social contacts. The level of reduction

and the duration for this compliance to reach the max is subject of our parameter estimation.

Disease and lockdown parameters:

• Transmission probability per contact, which we express as R0 using the linear model from Section S5.

• The number of introductions into the population and the timing. Since these two parameters are strongly

correlated, we choose to fix the introduction date to Monday February 17th, 2020, which is one month

prior the study period (lockdown) to allow the model to have some burn-in period without starting

within the spring break (February 24-28, 2020).

• Hospital probability scaling factor, to use in combination with the age-specific relative hospital proba-

bility values as presented in Table S3.

• Social contact reductions at workplaces and the delay to reach full compliance after March 14th, 2020.

We assumed that the compliance increased linearly over time.

• Social contact reductions in the community and the delay to reach full compliance after March 14th,

2020. We assumed that the compliance increased linearly over time.

Reference data

• Total hospital admissions per day as reported by the Belgian Health Institute Sciensano [19].

• Doubling time pre-lockdown of 3.1 (2.4-4.4), based on [20]. From each simulation we used the average

doubling time between February 24th up to March 8th, 2020.

• Serial sero-prevalence of 0.029 (0.023-0.036) on March 19th and 0.060 (0.051-0.071) on April 9th, 2020,

based on [21]. These seroprevalence rates are derived from samples collected during one week starting on

March 30th and April 20th. We used the midpoint of these sample weeks and assume that the infections

took place at least 14 days earlier in order to reflect the minimum time needed to build up IgG antibodies

against SARS-CoV-2 that can be detected by ELISA tests [21].
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We used the Poisson log-likelihood statistic to assess how well the model describes the reference data. This

method is appropriate when dealing with count data, such as the hospital admissions [22]. The log-likelihood

when ignoring a constant log(ki!) is calculated as

−logL =
N∑
i=1

(−ki ∗ log(λi) + λi)

with ki the observed incidence and λi the predicted incidence on time point i over the time horizon N .

Multi-criteria and iterative procedure. Given our interest in hospital admissions, incidence and trans-

mission dynamics, we used three reference outcomes or criteria for which we were able to calculate the log-

likelihood. To select optimal parameter combinations, we used the intersection of the 15% best scoring model

runs for each criteria. If this intersection contained less than 10 parameter sets, the cutoff was incremented

with 2% until at least 10 parameter sets were included in our model ensemble. We started from broad param-

eter ranges to performed the multi-criteria procedure and used the resulting parameter ensemble to guide the

parameter ranges for the subsequent iteration. This process was repeated up to 3 iterations using 1000 Latin

Hypercube samples with 5 stochastic realisations. The initial and selected parameter ranges for each iteration

are given in Table S4.

The first iteration had almost exclusively impact on the selection of R0. During subsequent iterations, the

importance of other parameters increased so they could weigh on the ensemble selection. The limited impact

of the 3rd iteration made clear we reached a plateau in the parameter estimation procedure. We increased

the number of stochastic realisations to 10 to select a final model parameter ensemble. From the latter, which

takes all criteria into account, we selected the on average best scoring parameter set according the hospital

admission data since this is the model outcome under study for the scenario analyses.

Simulations with more than 1500k cases up to May 1st were stopped and as such excluded from post-processing

because this is twice the reported serial sero-prevalence in April 2020.
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Figure S12: Stochastic simulation results in terms of daily hospital admissions (left) and cu-

mulative incidence of exposed, infectious and symptomatic cases over time (right) using the

parameters from the “Final set” in Table S4. The cumulative incidences are presented together with

confidence intervals from serial seroprevalence data on March 19th and April 9th based on [21].
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Table S4: Parameter ranges and observed initial doubling time (min-max) along the estimation

procedure and the final model parameter set. The hospital probability factor refers to the +80 age group.

For the other age groups, see table S3.

Parameter Start Iteration 1 Iteration 2 Iteration 3 Iteration 4 Final set

R0* 1-5 3.14 - 3.79 3.35 - 3.51 3.41 - 3.50 3.41 - 3.49 3.42

Infected

introductions

200 - 600 121 - 556 225 - 321 233 - 308 236 - 307 263

Hospital

probability factor

0.05 - 0.9 0.20 - 0.81 0.26 - 0.31 0.35 - 0.47 0.35 - 0.46 0.4

Contact reduction:

workplace

0.60 - 0.95 0.62 - 0.95 0.65 - 0.94 0.67 - 0.94 0.70 - 0.93 0.86

Compliance delay:

workplace (days)

5, 6, 7 5, 6, 7 5, 6, 7 5, 6, 7 5, 6, 7 7

Contact reduction:

other

0.60 - 0.95 0.68 - 0.95 0.78 - 0.89 0.81 - 0.88 0.82 - 0.87 0.85

Compliance delay:

other (days)

5, 6, 7 5, 6, 7 5, 6, 7 5, 6, 7 5, 6, 7 7

Latin Hypercube

samples

- 1000 1000 1000 500 -

Stochastic

realisations

- 5 5 5 10 -

Doubling time**

(days)

- 2.81 - 3.43 3.04 - 3.21 3.01 - 3.16 3.00 - 3.18 3.09 - 3.17

* R0 is used as input parameter by the reverse calculation to the transmission probability per contact; ** model output.
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S8 Age-specific susceptibility

In our default model configuration, the infectiousness of children in the population is limited due to their low

probability to be symptomatic and our assumption that asymamptomatic cases are only 50% as infectious

[13]. Hence, the probability to be symptomatic for children aged 0-19y is only 7% . To incorporate additional

age-specific effects, we re-calibrated our transmission model given that children (0-17y) are only halve as

susceptible compared to adults (+18y). This change in disease characteristics required an update of the

relationship between the transmission probability per contact and the number of secondary cases (i.e. the

reproduction number). The procedure as described in Section S5 has been applied with the altered disease

characteristics and resulted into:

R0 = 34.57 ∗ Ptransmission + 0.07

and the inverse:

Ptransmission = R0/34.57 − 0.07

We also re-estimated the relative hospital probability by age since the proportion of symptomatic cases before

the lockdown changed. The results are presented in Table S5. Finally, we repeated the iterative parameter

estimation procedure as described in Section S7, and present the results in Table S6. The resulting model fit

is presented in Figure S13.

Simulations for the baseline scenario with age-specific susceptibility in terms of hospital admissions and re-

production number (Figure S14) are similar to the results presented in the main text (Figure 1). Also the

simulations with household bubbles, contact tracing and a combined strategy scenario analyses are not much

affected by the susceptibility assumption (Figure S15). For strategies involving school re-opening, the effect

is substantial as discussed in the main text.

Table S5: Age-specific proportionally of hospital admission when children (0-17y) are only 50%

as susceptible compared to adults (+18y). The hospital delay represents the time between symptom onset

and hospitalization [18].

Age

category

Reported hospital

admissions

Simulated

symptomatic cases

Fraction Fraction

(standardized)

Hospital

delay

0-9y 1.4% 1% 1.71 0.127 3 days

10-19y 0.2% 2% 0.12 0.009 3 days

20-29y 1.8% 6% 0.33 0.024 7 days

30-39y 3.9% 15% 0.26 0.019 7 days

40-49y 9.6% 22% 0.44 0.033 7 days

50-59 15.2% 27% 0.56 0.041 7 days

60-69y 18.5% 17% 1.10 0.081 6 days

70-79y 17.0% 7.7% 2.20 0.163 6 days

+80y 45.8% 3.4% 13.51 1.000 1 day
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Table S6: Parameter ranges and observed initial doubling time (min-max) along the estimation

procedure with age-specific susceptibility and final model parameter set. The hospital probability

factor refers to the +80 age group. For the other age groups, see table S5.

Parameter Start Iteration 1 Iteration 2 Iteration 3 Iteration 4 Final set

R0* 1-5 3.00 - 3.48 3.35 - 3.45 3.36 - 3.43 3.37 - 3.45 3.37

Infected

introductions

200-600 206 - 593 210 - 322 230 - 389 217 - 279 225

Hospital

probability factor

0.05 - 0.9 0.14 - 0.75 0.24 - 0.44 0.36 - 0.47 0.31 - 0.38 0.35

Contact reduction:

workplace

0.60 - 0.95 0.61 - 0.94 0.64 - 0.90 0.69 - 0.92 0.68 - 0.89 0.76

Compliance delay:

workplace (days)

5, 6, 7 5, 6, 7 5, 6, 7 5, 6, 7 5, 6, 7 6

Contact reduction:

other

0.60 - 0.95 0.70 - 0.94 0.83 - 0.89 0.83 - 0.92 0.83 - 0.88 0.86

Compliance delay:

other (days-

5, 6, 7 5, 6, 7 5, 6, 7 5, 6, 7 5, 6, 7 7

Latin Hypercube

samples

- 1000 1000 1000 500

Stochastic

realisations per set

- 5 5 5 10

Doubling time**

(days)

- 3.03 - 3.54 3.04 - 3.19 3.09 - 3.11 3.00 - 3.20 3.09 - 3.19

* R0 is used as input parameter by the reverse calculation to a transmission probability per contact; ** model output.
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Figure S13: Stochastic simulation results with age-specific susceptibility in terms of daily hospital

admissions (left) and cumulative incidence of exposed, infectious and symptomatic cases over

time (right) based on the parameters from the “Final set” in Table S6. The cumulative incidences

are presented together with confidence intervals from serial seroprevalence data on March 19th and April 9th

based on [21].
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Figure S14: Hospital admissions and effective reproduction number (R) from the baseline sce-

nario including 4 mixing assumptions with age-specific susceptibility. All simulations include social

restrictions from March 14th and the partial school reopening in May. For the B2B, the social mixing after the

lockdown is assumed to double from the indicated point in time (indicated with A and C) or to remain constant

(B,D). Social mixing in the community is assumed to double (A,B) or to remain constant (C,D).
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Figure S15: Hospital admissions over time when community mixing occurs in household bubbles

(left), a contact tracing strategy (CTS) is in place (center), or both (right) with age-specific

susceptibility. All scenarios are based on the same natural disease history and quantitative mixing assumptions

but differ from the baseline in terms of the network structure and application of contact tracing from the given

point in time. The mixing assumptions A,B,C,D are explained in the caption of Figure S14.
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S9 Scenario definitions

We defined deconfinement scenarios by combinations of location-specific social mixing relative to pre-pandemic

observations. By varying percentages of contacts at different locations, we implicitly assumed people either

make fewer contacts compared to the pre-pandemic situation or the contacts they made were less likely to lead

to transmission. For example, if we increased social mixing at workplaces from 25% to 50%, we predict the

impact of “what if the risk to acquire infection at work doubled compared to during lockdown, though still 50%

less than in pre-pandemic times”. To account for structural uncertainty with respect to B2B-related social

mixing, we included 25% and 50% of the social contacts rates prior lockdown. For community-related mixing,

we used 15% and 30% of the social contact rates prior lockdown. By combining these B2B and community

mixing patterns, we ended up with four social mixing parameter sets and we ran 10 stochastic realisations per

parameter set. Table S7 contains temporal aspects of the scenarios and the age-specific “school*” program

based on the Belgian regulations.

Table S7: Overview of lockdown measures and gradual relief in the scenario analyses.

What? Timing?

Start restriction measures by closing schools, universities, cul-

tural activities, bars and restaurants. Four days later, additional

measures were taken to allow only work-related transport of es-

sential workers, and teleworking made the norm.

March 14th

Re-start business-to-business (B2B) May 4th

Social mixing in household bubbles May 11th

Start contact tracing strategies (CTS) May 11th

Re-open school* for 0-2year (daycare) & 6-7year (1st and 2nd

grade primary school)

May 18th, 4 days / week

Re-open school* for 11year olds (6th grade primary school) May 18th, 2 days / week

Re-open school* for 17year olds (6th grade secondary school) May 18th, 1 day / week

Re-open schools for 0-5year, 0-11year, 0-17year May 18th, 5 days / week

Increasing leisure, B2C and other social contacts (community) May 25th

* Age-specific school-reopening as stated by the Belgian government on April 24th.
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S10 Robustness analyses

There is no golden standard for the number of stochastic realisations for this type of stochastic simulator. The

results in the main text are based on 10 realisations, but we present here a robustness analysis for the main

scenarios (baseline, household bubbles, CTS and combined strategy) based on 20, 40 and 80 realisations. We

did observe stochastic changes for the projected hospital admissions over time (Figure S16 and S17) but no

differences on the averages and average differences in terms of total hospital admissions (Figure S18) with an

increasing number of stochastic realisations.
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(a) Simulation results based on 20 stochastic realisations.
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(b) Simulation results based on 40 stochastic realisations
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(c) Simulation results based on 80 stochastic realisations

Figure S16: Hospital admissions over time for the baseline scenario based on 20, 40 and 80

stochastic realisations per social contact assumption. All simulations include social restrictions from

March 14th and the partial school reopening in May. For the B2B, the social mixing after the lockdown is

assumed to double from the indicated point in time (indicated with A and C) or to remain constant (B,D).

Social mixing in the community is assumed to double (A,B) or to remain constant (C,D). The dots present the

reported hospital admissions for Belgium.
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(a) Simulation results based on 20 stochastic realisations.
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(b) Simulation results based on 40 stochastic realisations
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(c) Simulation results based on 80 stochastic realisations

Figure S17: Hospital admissions over time when community mixing occurs in household bubbles

(left), a contact tracing strategy (CTS) is in place (center), or both (right) based on 20, 40 and 80

stochastic realisations per social contact assumption. All scenarios are based on the same natural disease

history and quantitative mixing assumptions but differ from the baseline in terms of the network structure and

application of contact tracing from the given point in time. The mixing assumptions A,B,C,D are explained in

the caption of Figure S16..
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(a) Simulation results based on 20 stochastic realisations
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(b) Simulation results based on 40 stochastic realisations
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(c) Simulation results based on 80 stochastic realisations

Figure S18: Distribution of the daily hospital admissions by June and August per scenario based

on 20, 40 and 80 stochastic realisations per social contact assumption. The results are presented as

the median (line), quartiles (box), 2.5 and 97.5 percentiles (whiskers) and average (cross) of the scenario results

including social mixing uncertainty and stochastic effects. The percentage on top of the whiskers indicates

relative reduction of the scenario average with respect to the baseline. CTS: contact tracing strategy.
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S11 Ensemble analyses

The scenario analyses presented in the main text are based on single parameter estimations from the iterative

parameter estimation procedure (Section S7). Given the correlated nature of different model parameters,

different combinations can give a similar fit for the first wave, but lead to different outcomes in terms of

the scenario analyses. To endorse our results, we ran the main scenarios with all parameter sets from the

model ensemble from the 4th iteration with and without age-specific susceptibility. The resulting hospital

admissions over time in Figure S19 and S20 include more variation the hospital admissions over time. The

average reductions in hospital admissions up to August, as presented in Figure S21, are similar to the results

presented in our main analysis (Figure 2). We conclude that our results in terms of aggregated statistics based

on our most optimal parameter set remain valid when we include parameter uncertainty.
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(a) Baseline scenario without age-specific susceptibility.

H
os

pi
ta

l a
dm

is
si

on
s

0

200

400

600

800

1000

1200

R
es

tr
ic

tio
ns

B
2B

S
ch

oo
l

C
om

m
un

ity

H
ol

id
ay

H
ol

id
ay

C,D

B

A

● Reported
Simulations

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

● ●

● ●
●

●

●

●

●

● ● ●
●

● ●

● ●
●

R

 1 Mar  1 Apr  1 May  1 Jun  1 Jul  1 Aug  1 Sep

0
1
2
3
4

(b) Baseline [child] scenario with age-specific susceptibility.

Figure S19: Hospital admissions over time for the baseline scenario based on the model parameter

ensemble. All simulations include social restrictions from March 14th and the partial school reopening in May.

For the B2B, the social mixing after the lockdown is assumed to double from the indicated point in time

(indicated with A and C) or to remain constant (B,D). Social mixing in the community is assumed to double

(A,B) or to remain constant (C,D). The dots present the reported hospital admissions for Belgium.
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(a) Simulation results without age-specific susceptibility.
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(b) Simulation results with age-specific susceptibility

Figure S20: Hospital admissions over time when community mixing occurs in household bubbles

(left), a contact tracing strategy (CTS) is in place (center), or both (right) based on the model

parameter ensemble. All scenarios are based on the same natural disease history and quantitative mixing

assumptions but differ from the baseline in terms of the network structure and application of contact tracing

from the given point in time. The mixing assumptions A,B,C,D are explained in the caption of Figure S19.
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(a) Simulation results without age-specific susceptibility.
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(b) Simulation results with age-specific susceptibility

Figure S21: Distribution of the daily hospital admissions by June and August per scenario based

on the model parameter ensemble. The results are presented as the median (line), quartiles (box), 2.5 and

97.5 percentiles (whiskers) and average (cross) of the scenario results including social mixing uncertainty and

stochastic effects. The percentage on top of the whiskers indicates relative reduction of the scenario average

with respect to the baseline. CTS: contact tracing strategy.
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S12 Platform and technical details

STRIDE is open source software (https://github.com/lwillem/stride_covid19_v1) and implemented in

C++. The software can be compiled on Linux and Mac OSX platforms with a recent version of a C++

compiler. To build and install STRIDE, the following tools need to be available on the system: GNU g++

or LLVM clang++ compiler, make, CMake and Boost. To generate documentation, Doxygen and LaTeX

are required. The build system for STRIDE uses the CMake tool to compile and install the software almost

platform independent. More info is provided in the user manual on Github.

Our model is optimized with a switch to evaluate only the social contacts of the infectious individuals instead

of matching every individual with all others within one location. More details on our model optimisations are

provided in [1].

The modelling project contains regression tests in the Google Test suite embedded in a Travis continuous

integration environment. The test environment has been created and maintained during model development

for influenza and measles, and additional unit tests were added during this analysis. We implemented a baseline

COVID-19 test and also benchmark physical distancing, household bubbles and contact tracing scenarios.

We implemented an “rSTRIDE” framework in R to handle the design of experiments, to run all parameter

sets and analyse the output. Different serial STRIDE simulations are run in parallel using the “doParallel”

package and the aggregation of summary statistics, prevalence, incidence and social contacts is automated. The

synthetic population of 11 million individuals is computed once using R and loaded onto the C++ simulator

for every new simulation.

All results presented in this manuscript are generated on the VSC-cluster “Vaughan”, a NEC system con-

sisting of 104 nodes with two 32-core AMD Epyc 7452 Rome generation CPUs connected through a HDR100

InfiniBand network. All nodes have 256 GB RAM. One single run from the baseline scenario (196 days)

required ±20 minutes.
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