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Convolutional neural networks on eye tracking trajectories classify
patients with spatial neglect
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• We identify signs of visuo-spatial neglect through an automated analy-
sis of saccadic eye trajectories using deep convolutional neural networks
(CNNs).

• We provide a standardized pre-processing pipeline adaptable to other
task-based eye-tracker measurements.

• Patient-wise, we benchmark the algorithm prediction with standardized
paper-and-pencil test results.

• We evaluate white matter tracts by using Diffusion Tensor Imaging
(DTI) and find a clear correlation with the microstructure of the third
branch of the superior longitudinal fasciculus.

• Deep CNNs can efficiently and non-invasively characterize left spatial
neglect.
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Abstract

Background and Objective: Eye-movement trajectories are rich behavioral
data, providing a window on how the brain processes information. We ad-
dress the challenge of characterizing signs of visuo-spatial neglect from sac-
cadic eye trajectories recorded in brain-damaged patients with spatial neglect
as well as in healthy controls during a visual search task.
Methods : We establish a standardized preprocessing pipeline adaptable to
other task-based eye-tracker measurements. We use a deep convolutional
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network, a very successful type of neural network architecture in many com-
puter vision applications, including medical diagnosis systems, to automati-
cally analyze eye trajectories.
Results : Our algorithm can classify brain-damaged patients vs. healthy in-
dividuals with an accuracy of 86±5%. Moreover, the algorithm scores corre-
late with the degree of severity of neglect signs estimated with standardized
paper-and-pencil test and with white matter tracts impairment via Diffusion
Tensor Imaging (DTI). Interestingly, the latter showed a clear correlation
with the third branch of the superior longitudinal fasciculus (SLF), espe-
cially damaged in neglect.
Conclusions : The study introduces a new classification method to analyze
eyes trajectories in patients with neglect syndrome. The method can likely
be applied to other types of neurological diseases opening to the possibility
of new computer-aided, precise, sensitive and non-invasive diagnosing tools.

Keywords: neglect, bio-markers, eye-tracking, deep networks, structural
lesion, diffusion tensor imaging.
PACS: 0000, 1111
2000 MSC: 0000, 1111

1. Introduction

Eye-movements are non-invasive and readily accessible behavioral read-
outs, providing a window onto how the brain processes information. The be-
havioral performance of the eyes, in particular via saccadic eye-movements,
has been the focus of decades of research linking functional oculomotor be-
havior to dysfunction [2]. For instance, saccadic eye-movements can be a pre-
cursor of brain pathology and may also constitute an important bio-marker
for early diagnosis of brain impairments [34]. They may also be particularly
affected after a focal brain lesion, such as in patients suffering from neglect
[37, 11, 38].

Left visuo-spatial neglect (hereafter simply ’neglect’) is a frequent, but
still poorly understood neurological syndrome that is characterized by a lack
of awareness of contralesional stimuli following right hemispheric damage [6].
The diagnosis of neglect is important since this syndrome is associated with
poor functional outcomes [28]. A high degree of overlap between attentional
orienting deficits in neglect patients and their oculomotor performance has
been demonstrated. Neglect patients exhibit saccadic impairments including
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direction-specific deficits of saccadic production [12, 48], saccadic amplitude
or difficulty retaining locations across saccades [26]. Previous studies have
shown that saccadic eye-movements are a sensitive measurement to charac-
terise neglect [29]. This is an important observation since paper-and-pencil
tests administered to evaluate neglect have limited sensitivity[3]. Further-
more, the neural mechanisms underlying neglect also still remain debated.
Neglect has been linked with structural damage of key parietal regions such
as the temporo-parietal junction (TPJ) or the inferior parietal lobule [20].
Other studies indicated that damage of long-range white matter tracts, con-
necting frontal and parietal areas, may represent crucial antecedent of ne-
glect [8, 19]. Neglect has been reported following damage to the second and
third branches of the superior longitudinal fasciculus (SLF) or to the inferior
fronto-occipital fasciculus (IFOF), disrupting connectivity within attentional
network of the brain [44, 43].

Convolutional neural networks (CNNs) have proven to be extremely suc-
cessful algorithms, particularly in image classification [33], where they can
outperform human observers and experts on some tasks. CNNs are versatile
function approximators capable of detecting subtle patterns that are crucial
for the final task (e.g. classification). Thanks to the enormous amount of
data generated within the healthcare sector, recently CNNs have been suc-
cessfully employed in a variety of image-driven medical diagnosis domains
(e.g. radiology [18, 49], ophthalmology [39]). Current research on machine
learning techniques applied to eye-tracking data have hitherto focused on
different fields, such as classification of eye movements (fixation, saccades,
etc.) [50], or computer-assisted diagnosis tools [30]. Other machine learn-
ing techniques provide early diagnosis methods for classification and detec-
tion of neuro-developmental disorders [41], methods aiming at detecting the
presence of strabismus [17], or deep learning methods for the detection of
Alzheimer’s disease [14, 13], or Mild Cognitive Impairment [32] based on eye-
movement behavior identification. Among the latter, in [14], the authors use
deep neural networks to identify patients with Alzheimer disease (AD). The
study highlights how in principle CNNs can be used early diagnosis of AD.
As for neuro-developmental disorders [40] and strabismus [17], CNNs were
employed to capture subtle geometric features of eye trajectories, to which
common diagnostics could be blinded to, to inform about the patient’s sta-
tus. A support vector machine algorithm successfully classified patients with
memory impairments [32], or readers with dyslexia [41] to classify readers
with dyslexia.
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The contributions of the present work are threefold. First, the pre-
processing of eye-tracker trajectories is often not detailed in its steps, de-
spite data needing to undergo cleaning and re-organisation prior to analysis.
Eye-tracking data typically contain errors and noise that must be accounted
for [25]. We provide an overview and code of the pre-processing required,
and standardized it, to lay out a pipeline adaptable to other task-based
eye-tracker measurements. Second, this paper demonstrates how modern
machine learning algorithms, in particular CNNs, allow learning of represen-
tations of data features that are particularly effective in classifying patho-
logical versus non-pathological conditions from patterns of eye-movements.
Our method stands within the growing field of automatic diagnostic tools,
a branch of non-invasive techniques at the interface between neuroscience
and computer science, which can transform a simple task into an automatic
diagnostic procedure. Finally, we explored the anatomical correlates of eye-
tracking trajectories at a network level, by using diffusion tensor imaging
(DTI). To the best of our knowledge, this is the first time that CNNs are
used to determine and quantify the presence of neglect through eye-movement
analysis during a visual search task and that a link between the algorithm
outputs and anatomical markers is established.

2. Material and Methods

2.1. Behavioral and neuroimaging data collection

Participants. We analyzed eye movement data in a sample of 15 right-brain
damaged patients with left visuo-spatial neglect and in 9 healthy controls,
recruited from a previous study [15] Seven of the patients had varying degrees
of a left visual field defect, as assessed by confrontation testing or perimetry.
Demographic and clinical characteristics of the patients are presented in Ta-
ble 1 (1, A). Healthy individuals were age-matched with the patients (mean
age 58 years, range 45-69, t < 1) and had no neurological or psychiatric
history.

Apparatus, stimuli and procedure. Participants were asked to perform a vi-
sual search task (Fig. 1) [15]. Participants saw 8 circles around a central circle
and had to search for a peripheral circle missing its upper or lower part (tar-
get). Participants were required to maintain their gaze on the central circle
and to freely move their eyes as soon as the central circle disappeared. Eye-
movements were recorded at a sampling rate of 300Hz with a Tobii TX300
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Figure 1: (Top). A. Demographic and clinical characteristics of neglect patients, with their
performance on visuo-spatial tests. Asterisks denote pathological performance compared
to normative data. For line bisection, positive values indicate rightward deviations, neg-
ative values indicate leftward deviations. Scores for the landscape drawing [22] indicate
the number of omitted left-sided details. I, ischemic; H, hemorrhagic; NA, not available.
B. The preprocessing steps required to analyse the eye-tracker data and the correspond-
ing parts of the visual search behavioral paradigm task they refer to. (Bottom-right) An
example of pre-processed trial, as well as the mean trajectories over all trials of a subset
of subjects for each target. In the bottom row the left yellow box refers to the left-sided
targets used for the analysis.
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eye-tracker. The cue lasted for 3000ms. On each trial, one quadrant of the
central circle was highlighted in white, serving as a predictive attentional
cue, and indicating the most likely location of target appearance. The cue
correctly indicated the target location on 73% of the trials (valid location).
The target appeared in one of the three uncued quadrants (invalid location)
on 18% of the trials. The target was not present on the remaining 9% of the
trials (catch trials), which were included in the design to avoid guesses and
anticipations. The target was then presented after a random interval ranging
from 1000 to 2000ms. The target was created by deleting either the upper
or the lower part (0.4◦ of visual angle) of one of the eight peripheral circles.
The color of each target and distracters changed randomly in each trial, thus
requiring an attention-demanding serial search. Participants were asked to
move a joystick up when the upper part of the circle was missing, or down
when the lower part was missing, as fast and as accurately as possible with
their right hand. The target disappeared when a response occurred, or after
3000ms if no response was made. This experiment was composed of a total
of 176 trials.

Neuroimaging data collection. Diffusion Tensor Imaging (DTI) tractography
was used to study long-range of sub-cortical white matter pathways. For the
complete preprocessing pipeline, see [15]. The mean fractional anisotropy
values of the three branches of the superior longitudinal fasciculus (SLF), the
cingulum, and the inferior fronto-occipital fasciculus (IFOF) were extracted
in the right hemisphere. These tracts were chosen on the basis of their
implication in attention networks and in visual neglect [8]. The analysis was
conducted on n=13 patients, because the MRI scans were not available for
two patients.

2.2. Data processing and analysis

Preprocessing. Targets presented within the left visual field were considered
for the analysis, as neglect symptoms concern first and foremost attentional
orienting towards the left, contralesional hemispace. Recorded eye-tracking
trajectories underwent a pre-processing procedure to standardize the dataset
before analyzing it. The code was developed with Matlab R2019b [36]. First,
the duration of the trajectories was standardized across trials, i.e. all trials
were uniformed in order to be 9s long (9000 ms). Time series corresponding
to trials ending before 9s were filled with NaN (not a number, missed record-
ing). The analysis focused on those trials both valid, invalid and not missed
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by the subject, according to the definition given in section 2.1. Only time-
stamps recorded after the first 3000ms and before 9000ms were first taken into
account. A loop over the total number of targets seen by each subject was
iterated to analyze all trajectories recorded per each participant. For each
target i the set of trajectories’ coordinates (Eyex, Eyey)i was extracted and
coordinates corresponding to outliers (such as points outside the screen or
above 9000ms) were respectively filled with “NaN” if acquired between 3000
and 9000ms, otherwise removed. All missed recordings were then re-filled
according to the following criteria: if a NaN was present at the beginning
of the trial, the NaN value was replaced with the center of the screen coor-
dinates, at pixels (384, 512). If a NaN was in the middle of the time series,
this value was interpolated (nearest neighbor) using the available neighboring
sampled data, corresponding to actual recordings. If the target was reached
at a certain timestamp, all remaining points (to reach the 9000ms upper
limit) were filled with the target coordinates. The first 3000ms of Eyex and
Eyey was erased, as they corresponded to the fixation part, leaving us with
a shortened time series 6000ms long, now cleaned-up and interpolated. Also,
the latter 3000ms were eliminated to avoid piece-wise constant trajectories,
as participants tended to reach the target beforehand (see Figure 1). The
post-processed time-series corresponds to the 3000ms of the visual search
task. Every trial for every subject and every target i, (Eyex, Eyey)i, was
z-scored by subtracting its mean and dividing by its standard deviation. All
pre-processing steps are schematized in Figure 1. Only target presented to
the left visual field of the participant have been considered.

Classifying healthy vs. neglect patients from eyes tracking images. In this
section we discuss the methodology we applied to estimate healthy versus
neglect patients’ status from a subset of eye-tracking trajectories, i.e. those
corresponding to targets belonging to the left hemispace. Left hemispace
targets are more challenging for patients affected by this syndrome. To this
purpose, we formulated the estimation problem as a classification task, i.e.
learning the mapping between an appropriate representation of the eyes’
trajectories and the patient’s label. In particular, we separately analyzed
the x coordinates and y coordinates of the trajectories (x-projection and y-
projection), of target presented to the left visual field of the participant. The
resulting vectors have length d = 1001 and are used as input samples to our
network.

We designed a custom CNN with building blocks inspired by the VGG-
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16 model [45]. Specifically, our network is composed of a sequence of 3
blocks of convolutional layers, each one separated by a pooling layer that
halves the output vector dimension. A kernel size of 3 and zero padding
were used in all convolutional layers. To obtain the desired classification
output, the convolutional blocks are followed by three dense, fully connected
(FC) layers. We applied the ReLU activation function for all layers, except
for the last layer which is followed by a sigmoid function. We used Xavier
initialization [24] for all layers. Biases were initialized to 0 and a batch size of
16 was chosen. Batch normalization [27] and dropout (rate = 0.3) [46] were
used to avoid overfitting in the convolutional blocks and in the FC layers,
respectively. To fit the model, the Adam optimization algorithm [31] was
applied, with a learning rate of 0.0001. We trained the model for 25 epochs
and we adopted the binary cross-entropy loss function. The total number
of trainable parameters in our network is 264, 377. Training and inference
were implemented using Tensorflow (version 2.5) [1]. The detailed structure
of our network is illustrated in Figure 2. To compute unbiased test results,

Figure 2: (Left). The CNN architecture used in our experiments. Three convolutional
blocks with batch normalization and pooling are followed by two dense layers with dropout.
Dimensions of each layer are reported in the image. The final output is the probability
that each input trajectory has to either belonging to a healthy control or to a patient with
spatial neglect. To assign the final class (healthy vs. neglect) to one subject, we performed
a majority voting across all trajectories of that subject.

we applied a 5-fold cross-validation (CV) at the individual participant level.
This ensured that multiple trajectories of the same participant did not appear
both in the test and training set. Furthermore, to account for the variability
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introduced by the random choice of patients at each CV split, the whole CV
was repeated 10 times (10 runs), each time performing the splitting anew,
and results were averaged.

Finally, we computed the classification accuracy for each participant.
This corresponds to the ratio between the correctly classified trajectories
and the total number of trajectories. It can be interpreted as a measure of
confidence c with respect to the final prediction. For instance, c = .99 implies
an extremely confident correct classification; c = .65 implies a moderately
confident correct classification; c < .5 implies a wrong classification. To ob-
tain one single confidence score per participant, we averaged the confidence
scores of each participant across the 10 random runs.

The developed code can be adapted to the analysis of visual search tasks
and possibly integrated in existing algorithms, such as those identifying fix-
ation and regions of interest of eye-tracker trajectories [16] as well as those
assessing data quality [42].

3. Results

Behavioral results. In [15], oculomotor behaviour was studied together with
manual responses on a visual search task in neglect to determine the relation
between saccadic parameters and sub-clinical disorders of spatial attention.
The study showed the occurrence of inappropriate rightward saccades dur-
ing target selection: when left-sided targets were presented, saccades were
equally likely to be performed towards the left side or towards the right
hemispace. Right-sided distracters may erroneously capture patients’ atten-
tion, leading to an over-exploration of the right hemispace, consistent with
the magnetic attraction of gaze typically observed in neglect [21]. Thus,
pathological production of eye movements should be considered as a subtle
manifestation of visuo-spatial disorders.

Classification results. Table 1 illustrates the classification test results aver-
aged across the 10 random runs when using the x and the y projections.
Overall, the network performances are competitive regardless of the spatial
coordinate utilized with a slightly better performance for the x projection,
in agreement with the observations in [37]. We focused on a 1-dimensional
analysis to reduce the computational time of the pipeline and to simplify the
model, which is convenient for studying its integration in the clinical practise.

The results we obtained are in line with both a technical and clinical
perspective. On the one hand, as mentioned in section 1, patients’ healthy
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Table 1: Classification results across the 10 random runs using either the x or the y spatial
coordinates. Values are presented as mean ± standard deviation. Bold values indicate the
highest performances. Coord = spatial coordinate; Acc = accuracy; Sens = sensitivity;
Spec = specificity; PPV = positive predictive value; NPV = negative predictive value; F1
= F1-score; AUC = area under the ROC curve; AUPR = area under the PR curve.

Coord Acc (%) Sens (%) Spec (%) PPV (%) NPV (%) F1 (%) AUC AUPR
x 86 ± 5 80 ± 11 89 ± 3 82 ± 6 88 ± 6 81 ± 8 .85 ± 0.06 .85 ± 0.06
y 85 ± 3 79 ± 6 88 ± 4 80 ± 5 88 ± 3 79 ± 4 .83 ± 0.03 .83 ± 0.03

vs. unhealthy status can indeed be evaluated extracting salient features from
the geometry of eye-trajectories in visual tasks, using a deep convolutional
neural network. On the other hand, neglect features can be equally identified
either from x or y trajectories [37], although the performance is more efficient
on x-ones.

Figure 3: The correlation between the algorithm confidence scores and the Fractional
Anisotropy (FA) of the SLF3 is presented (left panel) (ρ = −0.77), as well as the correlation
between the algorithm confidence scores and the number of left omissions of the Bells
cancellation test (right panel) (ρ = 0.55, p = 0.033). The images of depicting the SLF and
the Bells test are reprinted from [10].
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CNN results and Neuroimaging. We performed Pearson correlations between
the algorithm confidence score on the x and y-spatial coordinate and the
Fractional Anisotropy (FA) of long-range of white matter tracts connect-
ing attentional networks. One patient was considered as an outlier and
was discarded from the analysis. Our results show a negative correlation
(ρ = −0.77) between the algorithm confidence score on the x-spatial coor-
dinate and damage of the SLF3 (p = 0.003 Bonferroni-corrected, see 3, left
panel). The correlations with the others tracts (SLF1, SLF2, IFOF, Cingu-
lum), as well as between the y-coordinate and all the other tracts did not
reach significance (all Bonferroni- corrected p > 0.011). Also, the algorithm
score on the x-spatial coordinate correlated with the number of left omis-
sions in Bells cancellation [23], a standardized paper-and-pencil test use to
diagnose neglect signs (ρ = 0.55, p = 0.033) 3, right panel).

4. Discussion and conclusions

Neglect is a multi-component syndrome; dissociations in performance on
different tests, are often observed, both between and within patients. Some of
these dissociations may depend on the activity of compensatory mechanisms,
such as top-down orienting of attention [9], perhaps driven in part by the
healthy left hemisphere [7]. Sensitive behavioral techniques, such as manual
response times or eye movements characterisation, [4, 5, 37, 11, 38] may thus
greatly help diagnosis of neglect.

Our work demonstrates how deep convolutional neural networks allow
learning of representations of saccadic eye-movements’ features that are par-
ticularly effective in classifying pathological neglect versus non-pathological
conditions with a reached accuracy of 86 ± 5%. To the best of our knowl-
edge, this is the first time that CNNs are used to determine the presence
of neglect through eye-movement analysis during a visual search task. The
correlation between the algorithm confidence score output and the anatom-
ical markers of the patients’ DTI benchmark the relevance of the technique
and its specificity in detecting neglect patients. Furthermore, the algorithm
confidence score on the x-coordinates of the saccades trajectories appears
to be related to the impairment of the third branch of the superior longi-
tudinal fasciculus (SLF3), ρ = −0.77, p = 0.003. The SLF3 links parietal
and frontal regions and has been shown to be specifically impaired in neglect
[35, 47]. We also observe a correlation between the algorithm confidence score
on the x-coordinates and the degree of severity of neglect signs (ρ = 0.55,
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p = 0.033). Although the algorithm confidence scores are similar for the x
and y-projections of the saccades, the correlations with the anatomical and
behavioral data show that predominant features seem to be contained in the
x-projections.

Despite several studies highlighted pathological eye-movement behavior
as a consequence of impaired shift of attention in neglect, the measurement
of eye-movement behavior as a tool to diagnose neurological pathology has
only begun to be studied. In this respect our work represents therefore a
contribution to understand and predict the trajectory of individual patients,
opening to the possibility of a new computer-aided diagnosis tool for ne-
glect syndrome. Also, the classification could allow us to assess the level
of impairment and assist follow-up treatment. Further investigations should
consolidate this link, allowing to differentiate and predict patterns in agree-
ment with the anatomical markers with unprecedented precision, especially
as the neural substrates of neglect are still debated, despite this syndrome
representing a unique opportunity to underpin the underlying mechanisms of
spatial processing and conscious awareness. Finally, this work represents a
first step towards the scalability of deep learning techniques to other neuro-
logical conditions characterised by impaired eye movements: a growing and
exciting field of investigation.
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B., Bartolomeo, P.: Direct evidence for a parietal-frontal pathway sub-
serving spatial awareness in humans. Science 309(5744), 2226–2228
(2005)

[45] Simonyan, K., Zisserman, A.: Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

[46] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov,
R.: Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research 15(1), 1929–1958 (2014)

[47] Urbanski, M., De Schotten, M.T., Rodrigo, S., Oppenheim, C., Touzé,
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