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Abstract 

Seasonal variation in environmental meteorological conditions affect the incidence of infectious diseases. 
Ultraviolet A (UVA) radiation induces release of cutaneous photolabile nitric oxide (NO) impacting the 
cardiovascular system and metabolic syndrome, COVID-19 risk factors. NO also inhibits the replication of 
SARS-CoV. We therefore model the relationship between UVA radiation, derived from remote sensed data, 
and COVID-19 deaths for counties across the USA during their ‘UV vitamin D winter’ (Jan-April) adjusting for 
confounding including by temperature and humidity.  The Mortality Risk Ratio (MRR) falls by 29% (40% -15% 
(95% CI)) per 100 (KJ/m2) increase in mean daily UVA. We replicate this in independent studies in Italy and 
England and estimate a pooled decline in MRR of 32% (48%-12%) per 100 KJ/m2 across the three studies.  

 
Introduction 

Seasonality(1) and variation in temperature(2), humidity(3) and UV radiation(4) are related to the incidence 
of several infectious diseases. COVID-19 arose less than 6 months ago, and it is thus not possible to describe 
seasonal variation. Nonetheless, spatial variation in levels of environmental UV in the early pandemic allows 
its relationship with COVID-19 mortality to be modelled. We have previously described a novel NO driven, 
vitamin D independent, mechanism(5), by which sunlight can lower blood pressure, and at the population 
level we have shown that UV is associated with lower blood pressure(6) and a reduced incidence of 
myocardial infarctions(7). The same UV driven mechanism may also cause seasonal variation in development 
of diabetes and metabolic syndrome(8).  Given the apparent greater severity of illness and risk of death 
amongst those with these conditions(9, 10) and the importance of season, we investigate if ambient UVA 
exposure is associated with COVID-19 deaths across the USA and is the finding replicated in studies of 
England and Italy.  
 
Results 

Daily mean UVA (January-April 2020) varied between 450-1,000 KJ/m2 across the three countries, with lower 
average levels experienced across England (Figure 1 a,b,c). Our fully adjusted model shows reductions in 
Mortality Risk Ratios (MRR) of 0.71 in the USA per 100 increase in UVA (KJ/m2) (Table 1). We found a similar 
size of effect in our two replication studies; an MRR in Italy of 0.81 and in England 0.49 with a pooled 
estimate of 0.68 (Figure 2d). This represents a halving of the average risk of death across the lower and 
narrower range of UVA experienced across England and across the higher and wider range across Italy and 
the USA (Figure 2 a,b,c). 

Discussion 

Our analysis suggests that higher ambient UVA exposure is associated with lower COVID-19 specific 
mortality. This effect is independent of temperature, humidity and UV within the vitamin D action spectrum.  

Seasonal variations in disease incidence can be caused by environmental, behavioural, and immunological 
factors with the relative importance of these varying by location and disease.  UV may have a direct effect on 
the viability of SARS-COV-2 virus in airborne droplets and on fomites, thus reducing both infection rates, and 
also the size of inoculum in those becoming infected, with correspondingly reduced disease severity (11, 12). 
UVA radiation photo-releases nitric oxide (NO) from stores in the skin whence it is mobilised to the systemic 
circulation, causing vasodilation and reduction in blood pressure(5), offering cardiovascular and metabolic 
benefits from UV exposure(5, 8). As cardio-metabolic disease and possibly hypertension(13) increase the risk 
of death from COVID-19, any UV driven improvements in these risk factors would be expected to reduce 
mortality(14).  Nitric oxide may also have a specific effect on COVID-19.  It inhibits replication of SARS 
CoV(15), probably by S-nitrosating the spike protein, thus preventing the post translational palmitoylation of 
the spike protein, required for fusion with its cognate angiotensin converting enzyme 2 receptor (ACE2R) 
(16). The spike protein of SARS CoV is highly homologous to that of SARS CoV2(17, 18) suggesting that NO 
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may similarly limit binding to ACE2R by SARS CoV2 with reduction in disease transmission and severity.  
Endothelial damage, with reduced homeostatic endothelial NO synthase activity may underlie widespread 
organ involvement(19).  This would be mitigated by photochemical NO production. Tolerance to UVA could 
be explained by increasing melanin in the skin, which blocks UV penetration; approximately half of the 
annual variation in forehead pigmentation for Caucasian individuals living in Copenhagen (55.68°N) occurred 
between January and April (20). 

We believe we have adjusted our models for the clinically significant factors that might be spatially and 
temporally associated with UVA in our studies but if any others exists, they might plausibly explain the 
relationships identified. UVA and covariates are measured at the small area level, there could be 
misclassification of deaths and rates of infection are estimated within the model and with indirect measures. 
However, any resulting measurement errors seem unlikely to be correlated with spatial variation in UVA and 
therefore biasing. The random effect in our models will incorporate differences between socially and 
politically distinct regions (States, Local Authorities and Municipalities) that might induce a spurious 
relationship between UVA and mortality.  The replication of the findings across three countries with very 
different health systems, economic and political structures, pandemic situations and climates suggest a 
robust finding. 

This study is observational and therefore any causal interpretation needs to be taken with caution. However, 
if the relationship identified proves to be causal, it suggests that optimising sun exposure may be a possible 
public health intervention. Given that the effect appears independent of a vitamin D pathway, it suggests 
possible new COVID-19 therapies and the importance of exploring the role of circulating NO. 

 

Materials and methods 

We model COVID-19 classified deaths in the USA across 2,474 Counties, for January-April 2020. We only 
include counties that were experiencing levels of UV too low (equivalent to a monthly mean UVvitd of under 
165 KJ/m2) to be inducing significant levels of cutaneous vitamin D3 synthesis during the study period (‘UV 
vitamin D winter’). We derive UVA measures from remote sensing data for the same period for each county 
and estimate, in a multilevel zero-inflated negative binomial (ZINB) model, their relationship with COVID-19 
mortality with a random effect for States. The ‘at-risk’ population is the total county population, with [1] the 
higher level random effect, [2] a measure of the proportion of population tested positive for COVID-19 at the 
state level and [3] measures of infection susceptibility (in both the ZI and NB parts of model), used to 
incorporate viral spread. We then attempted to replicate this model for excess deaths (deaths over 2015-19 
period average) in 6,775 Municipalities in Italy and for COVID-19 related deaths in 6,724 small areas across 
England. The models in each country are adjusted for potentially confounding factors at the small area level 
(table 1) and were independently specified by sub-groups in the research team. All analyses were rerun using 
a negative binomial formulation and no difference in broad findings were identified. We use meta-analysis to 
produce a pooled overall estimate using a random effects model. 
 
The UVA dataset was produced by JAXA (Japan Aerospace Exploration Agency) using the MODerate 
resolution Imaging Spectroradiometer (MODIS) instrument. Atmospheric absorption due to the ozone and 
water vapour were accounted for. Downward irradiance values (i.e. combined direct and diffuse radiation on 
a horizontal plane) for UVA (315nm-400nm) were converted to daily values by using the diurnal cycle of solar 
zenith angle with instantaneous atmospheric conditions. 

All data software code, and other detailed methods available here: 
https://github.com/markocherrie/COVID19_UVA 
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Figure 1: Average daily mean UVA (KJ/m2) Jan-April [a] USA [b] England [c] Italy  
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Figure 2 Predicted COVID-19 rates of deaths at selected levels of UVA in the [a] USA [b] England [c] Italy, 
given the model random effect, at the mean level of all other covariates. [d] MRR per 100 KJ/m2 increase in 
mean daily UVA – pooled estimate from random effects model.  
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Table 1: Model estimates for the relationship between UVA and COVID-19 death 

Sample Negative Binomial Model 
(adjusted for) 

Zero-Inflated Model 
 

Estimated 
MRR  
(95% CI) 

USA Counties 
(N=2,474)  
 
 

Average UVA Jan-Apr 30th per 100 KJ/m2 

x� = 696 KJ/m2, SD = 83  
 
(Long term: PM2.5; UVvitd, winter temperature; 
winter humidity, Percentage of residents: 65+; 
Black, Hispanic; deprivation score; urban/rural; 
state proportion of positive COVID-19 cases) 

Percentage of residents: 
65+; Black, Hispanic; 
deprivation score; 
urban/rural; state 
proportion of positive 
COVID-19 cases 

0.71  
(0.60-0.85) 
 
 

England 
MSOAs 
(N=6,724) 

Average UVA Jan-Apr 17th per 100 KJ/m2 

x� = 412 KJ/m2, SD = 18  
 
(Long term: PM2.5, long term winter 
temperature; Percentage of residents: aged 
80+, aged 65-79, Black, Indian, 
Pakistani/Bangladeshi, Chinese, in care homes, 
in higher education;  income deprivation score; 
Upper Tier Local Authority (UTLA) number of 
days since a local authority had 10 confirmed 
cases.) 

Percentage of residents: 
aged 80+, aged 65-79, Black, 
Indian, 
Pakistani/Bangladeshi, 
Chinese, in care homes, in 
higher education, using 
public transport (bus, train, 
tube); income deprivation 
score; population density; 
UTLA number of days since 
a local authority had 10 
confirmed cases 

0.49  
(0.38-0.64) 
 
 

Italy 
Municipalities  
(N=6,775) 
 
 

Average UVA Jan-Apr 30thper 100 KJ/m2 

x� = 717 KJ/m2, SD = 52;  
 

(Long term: PM2.5, long term winter 
temperature; Number of foreign born; 
Percentage of residents: aged 65+, aged 85+; 
population density; municipality area, 
deprivation score; total cases in province) 

Number of foreign born; 
Percentage of residents: 
aged 65+, aged 85+; 
population density; 
municipality area, 
deprivation score; total 
cases in province  

0.81  
(0.71-0.93) 
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Extended methods  

 

Study Setting and Participants 

We used an ecological regression approach to model COVID-19 deaths in small areas (counties) 

across the contiguousWUSA during the early part of the COVID-19 pandemic (January to April 2020). 

Our main analysis was for USA counties (N=2,474). We then carried out replication studies for 

COVID-19 deaths across English Middle Layer Super Output Areas (MSOAs) (N=6,724) and excess 

deaths across Italian municipalities (N=6,775). We only included ‘small areas’ that were 

experiencing levels of UV too low to be inducing significant cutaneous vitamin D3 synthesis at any 

time during the study period (‘UV vitamin D winter’), to reduce potential confounding through a 

UVB vitamin D pathway. Too low was defined as a monthly mean UV on the 252-330nm spectrum 

(the Vitamin D active spectrum - UVvitd) of under 165 KJ/m2
i
.   This meant that 2474 counties (out 

of 3088) in the USA were within the analysis (Figure S1).  

 

All analyses were undertaken in R 3.6.1. 

 

Figure S1: Counties that were excluded from the study because they had monthly mean UVvitd of 

over 165 KJ/m2 are shown in yellow. 

 
 
 

Outcome measure 

USA COVID-19 deaths were drawn from data compiled by the Center for Systems Science and 

Engineering at Johns Hopkins University. We included deaths occurring between January 22nd and 

April 30
th

 2020. These data were derived from death certificates, with information on cause and 

circumstances of death recorded, collected by the Center for Disease Control and Prevention (CDC). 

A COVID-19 death represents a case where the practitioner suspected that COVID-19 played a role 

in the death, even if it was not directly attributable to the death. English COVID-19 deaths were 

drawn from data compiled by the UK Office for National Statistics
ii
. Data were extracted for March 

1
st

 to April 17
th

 2020. Deaths were included in this dataset if COVID-19 was mentioned on the death 
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certificate, with a delay of usually five days between occurrence and registration. In Italy there is no 

COVID-19 classified mortality data available for municipalities. Instead, we had to estimate this from 

excess deaths. Italian excess deaths are drawn from ISTAT (Italian Institute of Statistics)
iii
. These 

data are only available for 92% of municipalities (7,270/7,904). Data were for the period of March 

1
st

 to April 30
th

 for 2015-2019 and 2020. We classified excess deaths as the positive difference in 

deaths between 2020 and 2015-19, for the same period, with negative values recoded to zero.   

 

Ambient UV data  

We derived mean daily UVA for the small-areas in each study – USA (Jan 1
st

 – April 30
th

); England 

(Jan 1
st

 – April 17
th

) and Italy (Jan1
st

 – April 30
th

). We start our observation of UVA before the period 

in which we were recording deaths because we believed the protective effect of UVA, if it existed, 

might occur sometime before an observed deaths possibly during the initial infection period or even 

before this. The UVA dataset was produced by JAXA (Japan Aerospace Exploration Agency) using the 

MODerate resolution Imaging Spectroradiometer (MODIS) instrument on board NASA’s Aqua and 

Terra satellites
iv
.  Atmospheric absorption due to the ozone and water vapour (cloudiness) were 

accounted for by using a simplified planetary atmosphere (clear atmosphere positioned above a 

cloud layer). Downward irradiance values (i.e. combined direct and diffuse radiation on a horizontal 

plane) for UVA (315nm-400nm) were converted to daily values by using the diurnal cycle of solar 

zenith angle with instantaneous atmospheric conditions. These data are available to download at a 

5km by 5km spatial resolution. UVA data were aggregated for USA counties, English MSOAs and 

Italian municipalities and expressed as mean daily KJ/m
2
. The R 'velox' package was used to extract 

raster values for each polygon. The function extracts all the UVA values from the UV raster cell 

centroids that intersect with the county polygon. The mean of the extracted UVA values was then 

assigned to each county polygon. This procedure is used for most of the small areas (given that the 

county boundary included at least one UV raster cell centroid). However, in a few cases, when the 

county polygon was small (or oddly shaped) and did not intersect with any cell centroid, we 

extracted values based on the small county polygon intersecting with the entire UV raster cell. 

 

A long term UVvitd dataset (30-year monthly average) developed by the National Center for 

Atmospheric Research (NCAR) using the Tropospheric Ultraviolet and visible (TUV) radiation model 

was used
v
.  This model uses the Total Ozone Mapping Spectrometer (TOMS) on board several 

satellites (Nimbus-7, Meteor-3 and Earth Probe) to account for atmospheric ozone and 

climatological cloudiness (defined by TOMS reflectivity at 380 nm). Mean monthly values at a 1° 

(latitude) by 1.25° (longitude) spatial resolution are available for the period 1979-2000. UVvitd data 

were aggregated for US counties and expressed in mean monthly KJ/m
2
. We used the highest 

quintile as the cut off for year-round vitamin D synthesis, which corresponds to a monthly mean of 

over 165 KJ/m
2
. It also corresponds approximately to the 37°N parallel; Holick suggests that people 

living North of this latitude will not receive sufficient UV for vitamin D synthesis in the winter
3
.   

Covariates 

A number of demographic, socioeconomic, long term environment exposures and variables to 

measure infection susceptibility were measured and used in our models. This was to appropriately 

adjust for spatial associations, with both UVA and COVID-19 mortality, which might otherwise lead 

to a spurious relationship between UVA and COVID-19 mortality. These are all measured at the 
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small area level. The selection of the covariates was made independently by different members of 

the research team from different sets of available data, to maintain a level of independence 

between the main study and the replications, but with the same goal of appropriate adjustment. 

 

Demographic  

Older age and ethnicity were associated with higher risk of COVID-19 death, possibly due to higher 

prevalence of comorbidities, including hypertension, heart disease and respiratory diseases
vi
. We 

used data on county percentage of older residents (≥ age 65), percentage of Hispanic residents and 

percentage of Black residents for the USA to measure risk factors associated with age and ethnicity 

in the USA.  We used data from ONS mid-year population estimates of 2018 on percentage of 

residents who are: aged 80 or over, aged 65-79, the 2011 census on living in care homes, Black, 

Indian, Pakistani/Bangladeshi and Chinese in England. We used data from ISTAT on number of 

foreign-born residents and the percentage of residents: aged 65 and above and aged 85 and above, 

for Italy.  

 

Socioeconomic Deprivation 

Poorer citizens are at higher risk of infection due to essential working and death due to pre-existing 

health conditions
vii

. Socioeconomic deprivation is defined in the USA by the first principal 

component score from a Principle Component Analysis of the following county variables: 

percentage in poverty, median house value, median house income, percentage owner occupied and 

percent of population with less than a high school education. We reversed the direction of 

percentage in poverty and percent of population with less than a high school education so that 

higher score represented higher affluence. To capture socioeconomic deprivation in England we 

used percentage of residents under 21 who did not enter higher education and an income 

deprivation score indicating the percentage of people who received low income benefits
viii 

. For our 

Italian study, we used the Italian Deprivation Index, calculated by ISFOL (an Italian research 

institute), which considers income, education, living conditions, unemployment and household 

composition.  

 
Long term environment 

Higher PM2.5 is linked with a range of respiratory and cardiovascular disease and shown to increase 

COVID mortality rate in other analyses
ix
. Long term PM2.5 (2000-2016) data at a 0.01° by 0.01° 

resolution were modelled using satellite and monitored PM2.5 station data
x
. We used these data for 

both the USA and Italy. In England, long term 2014-2018 PM2.5 at a 1km by 1km resolution was 

modelled using monitored PM2.5 station data
xi
. Variation in temperature is associated with COVID-

19 mortality
xii

. Long term mean monthly winter temperature (Dec-Feb) at a 4km by 4km resolution 

for 2000-2016, was modelled using satellite data
xiii

 for the USA. Long term mean monthly winter 

temperature (Dec-Feb) at a 1km by 1km resolution for 1981-2010 was modelled using interpolation 

of Meteorology Office weather stations for England
xiv

. Long term median land surface temperature 

(Dec-Feb) daytime monthly median value at a 1km by 1km resolution for 2000-2017, was modelled 

using satellite data for Italy
xv

.  

Viral exposure 
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Exposure to SARS-CoV-2 virus is the principle risk factor for a COVID-19 related death. The 

population ‘at-risk’ therefore needs to be adjusted for exposure in case difference in factors 

increasing or decreasing risk of exposure are associated with spatial variance in UVA levels. In 

densely populated, urban or peri-urban areas, with high use of public transport COVID-19 

transmission is faster and the prevalence of cases higher. Probable exposure is therefore estimated 

through county population density, urban/rural status and state percentage of positive COVID-19 

tests in the USA. We used population density from the 2018 mid-year population estimates of ONS, 

percentage of residents using different forms of transport (bus, train, tube) from the 2011 census 

and Upper Tier Local Authority (UTLA) number of days since a local authority had 10 confirmed 

cases in England. We used ISTAT population density from 2019, the municipality area, and total 

cases in province in Italy up to the 30
th

 of April
xvi

. Our adjustment for measures or estimates of 

cases of COVID-19 at the higher geographical level (i.e. State, UTLA, and Province) may represent a 

situation of ‘over control’ because it is possible that UVA will reduce the levels of the virus in 

environmental circulation. However, one would still expect the model to appropriately measure a 

true effect for the small areas within the higher-level geography after this adjustment. 

 

Statistical Analysis 

Overview 

The dependent variable in our analysis is counts of deaths due to COVID-19 in small geographical 

areas in the USA and England and counts of excess death in Italy. Because the counts of deaths will 

be driven, in the early stages of a contagious disease pandemic, by a risk that is likely to vary 

spatially, the mean counts of deaths across small areas are likely to be much smaller than the 

variance of the counts between the small areas (i.e. where there are outbreaks and high 

transmission in a few places and many places with no or very little exposure to the virus) and there 

will be more zeroes than you would expect given a Poisson process. This means that the 

assumptions for a Poisson model, the usual approach for counts of death, will not be met. In this 

analysis we therefore use a zero inflated negative binomial (ZINB) model. This not only handles 

appropriately the mean and variance not being equal but also the preponderance of zero counts, in 

this instance due to the fact that a large number of areas will have had no or little exposure to the 

virus and therefore no risk of death due to it. The ZINB approach models zero counts of death as 

two different processes: [1] no exposure to the virus, [2] protection from death when exposed. The 

zero inflated part (ZI) models the likelihood of exposure (a logit model) and the negative binomial 

(NB) part models the hypothesised protective effect of UVA exposure and adjustment for potential 

confounders. The variables we used in the zero inflated part are proposed risk factors for exposure 

to the virus and are listed in table 1 in the manuscript and are discussed above in this supplement.  

 

We included a random effect in the model. This was a random intercept for a higher and 

administratively important geographical unit in each country. In the USA this was the State, in 

England the Local Authority and in Italy the Province. This random effect had two purposes. First, it 

captures the systematic way the risk of death from COVID19 might be related to this higher 

geography. This might for example be due to differences in political administration, health services, 

funding, public health effects or levels of infection. Without adjusting for this, any association 

between the higher-level geography and UVA might be confounding. Second, this random effect 
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meant that the standard errors associated with the model estimates are robustly calculated, taking 

into account spatial clustering within the datasets associated with the higher geographical level. 

 

As a sensitivity test, all models were re-estimated using an NB model with a random effect as above 

(i.e. without a zero-inflation part) and a comparison made with the two sets of results. Each of the 

country models were specified independently by separate team members. 

 

All models were fitted using the glmmTMB package for Rxvii which fits random effect generalised linear 
models described in Bolker et. al.

xviii 

 

 

Main Model (USA) 

We therefore estimated for the USA, in a multilevel ZINB model (using the glmmTMB package), the 

relationship between ambient UVA and COVID-19 deaths (21
st

 January-April 30
th

), with a state level 

(N=46) random effect. The ‘at-risk’ population was the total county population, with the [1] state 

level random effect, [2] a measure of the proportion of population tested positive for COVID-19 at 

the state level and [3] measures of infection susceptibility (county population density, urban-rural 

status), used to incorporate viral exposure into the model (in effect ‘correcting’ the at-risk 

population to be the exposed population not the entire population). The  NB model was adjusted at 

the county level for: percentage of older residents (≥ age 65), Hispanic and Black residents; 

socioeconomic deprivation and long term modelled 2000-2016 PM2.5, long term mean winter 

temperature (Dec-Feb) and long term mean winter humidity (Dec-Feb) to remove any potential 

confounding by spatially associated risk factors.  The ZI model included: Percentage of residents: 

65+; Black, Hispanic; deprivation score; urban/rural; state proportion of positive COVID-19 cases. 

The ZI part of the model incorporated: percentage of residents: 65+; Black, Hispanic; deprivation 

score; urban/rural; state proportion of positive COVID-19 cases.  

 

Replication Model 1 (England) 

Our first replication of the USA model was a model of the relationship between ambient UVA and 

COVID-19 deaths in England (1
st

 of March to 17
th

 of April), with random effects for Upper Tier Local 

Authorities (UTLA) (the main level of local government in the UK) (N=150). The ‘at risk’ population 

was the total Middle Super output Area (MSOA – a statistical area unit of population average size 

7,200) population, with the [1] UTLA level random effect, [2] number of days since a UTLA had 10 

confirmed cases, and [3] measures of infection susceptibility (MSOA population density, population 

using public transport – bus, train and tube). The NB model was adjusted at the MSOA level for: 

Long term PM2.5, long term winter temperature, percentage of residents: aged 80+, aged 65-79, 

Black, Indian, Pakistani/Bangladeshi, Chinese, in care homes, in higher education and income 

deprivation score. The ZI model included:  Percentage of residents: aged 80+, aged 65-79, Black, 

Indian, Pakistani/Bangladeshi, Chinese, in care homes, in higher education, using public transport 

(bus, train, tube); income deprivation score; population density; UTLA number of days since a local 

authority had 10 confirmed cases. 

Replication Model 2 (Italy) 
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Our second replication of the USA model was a model of the relationship between ambient UVA 

and excess deaths in Italy (1
st

 of March to 30
th

 of April), with Province (N=104) level random effects. 

The ‘at risk’ population was the total municipality population, with the [1] province level random 

effect, [2] number of tests for COVID-19 cases at the Province level and [3] measures of infection 

susceptibility (municipality population density and area). The NB model was adjusted at the 

municipality level for: Long term PM2.5, long term winter temperature, Number of foreign-born, 

Percentage of residents: aged 65+, aged 85+ and deprivation. The ZI model included: Number of 

foreign-born; Percentage of residents: aged 65+, aged85+; population density; municipality area, 

deprivation score; total cases in province. 

Meta-analysis 

Finally, we carried out a meta-analysis to estimate the pooled effect across the three studies. Using 

a random-effects model, the UVA coefficient from the three ZINB model (with random effects) 

studies were assumed to be a random sample from a hypothetical large collection of all such 

possible studies. Because we were interested in estimating the ‘true’ effect of UVA on COVID-19 

survival, as it might occur anywhere, this was felt to be the appropriate specification. In the UK and 

USA, we counted a reasonably ‘direct’ measure of COVID-19 deaths. In Italy, because of an absence 

COVID-19 specific mortality figures, we had to use excess deaths. This would naturally include other 

deaths that may have been due to the effect of COVID-19 but not directly attributable to the virus. 

For example, deaths that may have occurred due to say septic shock in patients who would have 

been admitted to ITU (and may have survived under ‘normal conditions’) but didn’t because the 

system was overwhelmed. However, we do not feel this would have biased the estimate of the UVA 

estimate because these ‘extra’ non-COVID-19 seemed unlikely to be strongly associated with spatial 

variation in UVA exposure and would be mostly related to the dominating impact of COVID-19 

prevalence in the community which was likely to driven by other factors.  We used a restricted 

maximum-likelihood estimator with no adjustments. 

Software 

Effect estimates are presented as mortality rate ratios with 95% confidence intervals. We predicted 

the number of deaths per million population at suitable levels of UVA by calculating the marginal 

means in the ‘emmeans’ package in R
xix

. To calculate the average ‘true’ effect of UVA on COVID-19 

related death in all similar countries to those included, we used a random effects model as part of 

the ‘metafor’ package in R
xx

 to calculate a cross-county pooled estimate of the MRR. 

Data and code availability 

The data and code to reproduce the current study can be found here: 

https://github.com/markocherrie/COVID19_UVA.  
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