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HIGHLIGHTS: 

• Automated data extraction is rapidly evolving and can be harnessed to efficiently mine 

the electronic health record. 

• Natural language processing (NLP) of unstructured text improves data extraction 

accuracy when added to ICD coding and structured fields. 

• We review these techniques specific to epilepsy and highlight strengths as well as areas 

of further improvement. 

 

SUMMARY:  

As automated data extraction and natural language processing (NLP) are rapidly evolving, 

applicability to harness large data to improve healthcare delivery is garnering great interest. 

Assessing antiepileptic drug (AED) efficacy remains a barrier to improving epilepsy care. In this 

review, we examined automatic electronic health record (EHR) extraction methodologies 

pertinent to epilepsy examining AED efficacy. We also reviewed more generalizable NLP 

pipelines to extract other critical patient variables.   

 

Our review found varying reports of performance measures. Whereas automated data extraction 

pipelines are a crucial advancement, this review calls attention to standardizing NLP 

methodology and accuracy reporting for greater generalizability. Moreover, the use of 

crowdsourcing competitions to spur innovative NLP pipelines would further advance this field. 
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1. BACKGROUND 
 
1.1 Rationale: 
 
Epilepsy affects 60 million people worldwide.[1] Anti-epileptic drugs (AEDs) are first-line 

therapy for epilepsy and control seizures in two thirds of patients.[2] More than 25 AEDs are 

now available and rational “trial and error” often determines drug choice, as comparative data on 

efficacy between AEDs remains limited. Despite millions of people taking AEDs daily, 

retrospective and prospective chart review studies comparing AEDs head-to-head are only 

available for a limited number of medications. Moreover, small samples sizes limit interpretation 

of these studies. A wealth of information regarding AED efficacy lies within electronic health 

records (EHRs), yet efficient data extraction has been a critical barrier to closing this knowledge 

gap.  

 

1.2 Overview:  
 
The goal of this report is to explore how pertinent data can be automatically extracted from the 

EHR for studies of AED efficacy, including comparative AED efficacy. The exposure variable is 

AED prescription. The outcome variable of seizure frequency can be assessed by comparing pre- 

and post-drug seizure frequencies. To compare two or more AEDs, cohorts of patients taking the 

AEDs of interest can be matched on relevant covariables to minimize confounding and relative 

changes in seizure frequency over time can be measured.  

 

Patient characteristics that define the clinical context (Table 1) are important to include in the 

analysis as they have the potential to cause confounding effects in multiple ways. Demographic 

variables, such as socioeconomic status (SES), comorbidities (including psychiatric conditions 
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such as substance abuse), and medication allergies may play a role in how providers choose 

which AED to trial, exacerbating nonrandom assignment to treatment groups. Underlying 

epilepsy etiology, baseline epilepsy severity, and age of onset may also correlate with 

refractoriness to AED treatment. Furthermore, underlying cause of epilepsy may have interaction 

effects with particular medications, such as the indication for broad-spectrum agents in the 

treatment of generalized epilepsy.  

 

In this investigation, we performed a literature review of the currently available data extraction 

methods for the pertinent variables and examined techniques specific to epilepsy when 

appropriate to the variable (e.g., seizure frequency).[3] For more generalizable variables (e.g., 

medication), we also reviewed methods developed outside the epilepsy field.  

 

1.3 Search strategy: 
 
We performed a PubMed search for the variables of interest listed in Table 1. The specific 

PubMed search phrases are described in detail in the supplementary text. Abstracts were 

screened for relevance, i.e. employment of a method of automated EHR extraction for one of the 

pertinent variables. Some manuscripts focused on the details of a method of extraction and its 

accuracy, while other manuscripts employed automated extraction methods as a means to 

describe a clinical outcome; both types of manuscripts were deemed relevant. When a 

manuscript was deemed relevant, we reviewed and catalogued elements of the manuscript 

including the summary of the extraction method, summary of accuracy, and estimate of 
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generalizability to epilepsy as applicable (i.e. the method was not specifically created for 

epilepsy). Citations within relevant manuscripts were also reviewed in the same manner.  

 

1.4 Terminology: 
 
Data in the EHR comprises both structured and unstructured fields. Structured data fields use 

controlled vocabulary and limit the variability, which allows more inter-user consistency and 

more accurate data aggregation. As examples of structured fields, blood pressure must be 

populated by exactly two numerical values (systolic and diastolic pressure), a medication field 

must be populated by a recognized medication name as selected from a standardized list, or a 

medical problem list must be populated by selecting from a list of Intelligent Medical Objects 

(IMOs) or International Statistical Classification of Disease codes (ICD codes).  

 

Conversely, unstructured data components are composed of narrative text (prose) written by the 

provider, usually in the setting of a progress note in a clinic, emergency room, or inpatient 

encounter. Telephone calls are also often documented with free text. Natural Language 

Progressing (NLP) uses computer algorithms to extract information from unstructured free text 

language. Simple forms of NLP use dictionaries (lists of terms or synonyms) and rules (pre-set 

sentence structures) to extract information. More complex forms of NLP use machine learning to 

create a classifier which categorizes a note with the presence or absence of a particular variable. 

NLP algorithms and machine learning processes are often compiled into larger pipelines. 

 

Measures of accuracy are critical to assess the performance of each method. In the field of data 

retrieval, the most commonly reported measures of accuracy are precision, recall, and the F1 
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statistic. Precision is the proportion of retrieved data that is true (positive predictive value). 

Recall is the proportion of true data that is correctly retrieved (sensitivity). The F1 statistic is the 

geometric mean between precision and recall; this statistic ranges from zero to one, where the 

value of one indicates perfect accuracy. Another summary measure that combines sensitivity and 

specificity is the area under the receiver operator curve (AUC); this statistic ranges from zero to 

one, where a value of one indicates perfect accuracy. For any extraction algorithm measuring a 

given variable, precision and recall can be reported on a training set (the same set of data that 

was used to create the extraction algorithm) or on a test set (an independent set of data that was 

not used to develop the extraction algorithm).  

 

This report will reference specific EHR extraction algorithms and pipelines, including complex 

NLP machine learning methods (please see table 2), and report their measures of accuracy. In 

this review, all statistics were assumed to be reported on independent test sets unless specifically 

stated otherwise. Further elaboration of specific methodology of the pipelines is beyond the 

scope of this review. 

 

2. RESULTS 
 
Over 2000 articles were returned by the PubMed search criteria and screened for relevance. A 

total of 128 articles were deemed sufficiently relevant for detailed review.  

 

2.1 EXPOSURE VARIABLE 
 
2.1.1 Medication:  
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There are a variety of emerging techniques to extract medications from the EHR, in part due to 

publicly issued crowdsource challenges which have generated a large number of highly accurate 

pipelines.[4] Extraction can be challenging as medications recorded within the EHR have 

variable interpretations depending on the context, as records may include current medications, 

past medications, recommended future medications, or medication allergies.[5] Many analysts 

suggest methods to account for this, such splitting a clinical note into various sections (i.e., the 

“current medications”, “allergies”, and “recommendations” sections).[6,7] The best approaches 

include analyzing a combination of structured fields and unstructured notes (e.g. as demonstrated 

by Cimino et al, though it must be noted that methods for unstructured notes have improved 

since this paper was published in 2007); this approach should account for potential differences in 

prescribing patterns among institutions and/or medication documentation in the EHR.[6,8]   

 

The best pipeline for extraction of active medication ingredients and dosing achieves greater than 

97% F1s.[9,10] However, extracting the indication for each medication is more difficult, with the 

best group achieving F1 of 66%.[11] Extracting the indication is particularly important in the 

field of epilepsy, since many of our medications may be prescribed for alternative indications 

(e.g. topiramate for migraine, oxcarbazepine for mood stabilization, etc.).  

 

2.2 COVARIABLES 
 
2.2.1 Age and Sex:  
 
Age and binary sex are extracted reliably from structured fields.[12] Better methods are needed 

to account for nonbinary gender designations. 
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2.2.2 Race and ethnicity:  
 
Race and ethnicity are often extracted from structured fields.[12–16] However, this method can 

be incompletely sensitive, and missing data tend to be biased, with underreporting of 

underrepresented socioeconomic demographics.[17–20] When ethnicity is present in structured 

fields, Denny et al report over 90% concordance with genetic ethnicity, which can be used as a 

gold standard for ethnicity extraction when available.[17,21] Sholle et al augmented structured 

fields with simple NLP to achieve an F1 of 91%.[19]  

 

2.2.3 Socioeconomic status (SES):  
 
Some authors were able to extract values from structured fields while others used relatively 

simple forms of NLP to improve data or population statistics to extrapolate based on geography, 

such as the use of postal codes to impute SES.[22] Bejan et al captured "homelessness" with an 

AUC of 0.83.[23]  Hatef et al showed that a simple NLP algorithm can supplement structured 

codes for “financial strain” and “housing issues” and increase recall by 10-15-fold over the use 

of ICD codes alone.[18] Biro et al leveraged Canadian census tract data by zip code using a 

combined deprivation index, which combines several ‘material’ and ‘social’ variables (such as 

income, education, living alone or with a spouse, etc.) to derive a single measure of SES.[24] 

Hollister et al used simple search terms to extract “low education” (PPV 80%), occupation ( 

85%), unemployment ( 88%), retirement ( 64%), uninsured status (23%), Medicaid status (82%), 

and homelessness (33%).[25]  

 

2.2.4 Epilepsy type and seizure type:  
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Focal epilepsy (FE), generalized epilepsy (GE), and unknown epilepsy (UE) can be 

discriminated by n-gram and an SVM classifier, as done by Connolly et al. These authors trained 

the model on data from one institution and tested on data from two others (F1 = 72%), which 

suggests reasonable generalizability; performance improved when trained on data from two 

institutions and tested on data from a third (F1 = 80%).[26] Cui et al defined a method PEEP 

(phenotype extraction in epilepsy) to extract epileptogenic zone, etiology, and EEG pattern from 

Epilepsy Monitoring Unit (EMU) discharge summaries. F1s ranged between 75% to 85% for 

exact matches for semiology, lateralizing signs, and EEG pattern, and up to 95% for 

epileptogenic zone. This method is the best method reviewed for specific semiology and 

etiologies but works on only EMU discharge summary note types.[27]  

 

The most comprehensive pipeline specific to the field of epilepsy is ExECT (extraction of 

epilepsy clinical text).[28]  This extracts a diagnosis of epilepsy as a binary field (88% precision, 

89% recall), focal seizures as a binary field (96% precision, 70% recall), generalized seizures as 

a binary field (89% precision, 52% recall), and epilepsy type as a trinary field defined as either 

focal, generalized, or absence (90% precision, 80% recall).  

 

2.2.5 Underlying cause of epilepsy:   
 
A combination of approaches has been used which include extracting text from unstructured 

neuroradiology reports, structured comorbid disease fields, and the unstructured impression 

section of clinician notes. For certain specific etiologies for which no known automated EHR 

extraction exists (e.g. cortical dysplasia), raw image processing algorithms may be used.   
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The ExECT pipeline identified abnormal or epileptogenic imaging findings on CT (56% 

precision, 59% recall) and MRI (82% precision, 69% recall) from clinical encounters, though 

these were limited to binary yes/no variables.[28] For brain tumors, Senders et al identified 

metastatic brain tumors from radiology notes, achieving AUC of 0.92 and best accuracy of 

83%.[29] 

 

For cortical dysplasia, Kassubek extracted information from raw imaging data, successfully 

identifying dysplasia locations in seven out of seven patients, using 30 controls as a 

reference.[30] For mesial temporal sclerosis, Chupin et al identified hippocampus and amygdala 

atrophy from raw imaging data to within approximately 10% of the "gold standard" based on 

structural volume.[31,32] For cerebral aneurysm, Castro et al improved on an initial screen of 

ICD codes with a simple dictionary and classifier NLP to achieve 86% PPV.[12] For venous 

thromboembolism, Heit et al combined ICD codes and NLP to achieve 100% PPV and 94% 

NPV.[21] Existing pipelines for flexible information extraction from free-text radiology reports 

have not been validated in epilepsy but may be repurposed for use in epilepsy.[33–35] 

2.2.6 Prior EEG abnormalities:  
 
In addition to direct analysis of the raw EEG signal, EEG abnormalities can be captured by 

means of structured fields and unstructured reports. Biswal et al achieved an AUC of 0.99 for 

detecting reports with seizures and AUC of 0.96 for epileptiform discharges, but a limitation of 

their study is that they did not differentiate focal from generalized findings.[36]  

 

Bao reported 94% accuracy in interictal EEG diagnosis from raw EEG signal. However, this 

does not improve on the accuracy obtained from structured fields and unstructured reports, and 
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increases the computational resources required for analysis as well as the administrative cost to 

obtain the raw EEG signal data.[37]  

 

2.2.7 Epilepsy severity:  
 
Epilepsy severity can be estimated by several characteristics which may be included in a model 

such as the number of current AEDs and historically prescribed AEDs (see the medications 

section above) or baseline seizure frequency (see seizure frequency section). Wissel et al used n-

grams (up to n=3) and SVM to achieve sensitivity 80%, specificity 77%, PPV 25%, and NPV 

98% for determining medically refractory epilepsy.[38]  

 

2.2.8 Age of onset:  

Extracting the age of onset in epilepsy remains an unmet challenge. Methods exist to extract the 

age of onset for other diseases in family history sections (i.e. age of cancer onset in family 

member).[39,40] However, these methods are not readily convertible to extract age of onset of a 

patient with epilepsy.  

2.2.9 Medication allergies and adverse drug effects:  
 
As noted in the medication section, prior studies reported that typical toolkits for NLP on clinical 

notes did not work well to abstract medications unless the note was split into sections.[41] The 

best available pipeline to identify medication allergies among those reviewed was that of 

Munkhdalai et who showed that an SVM model achieved the best average F1 of 89% on test 

data.[42]  

 

2.2.10 Comorbidities and past medical history:  
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Comorbidities are often found in structured problem and diagnosis lists, but these are notoriously 

underpopulated by physicians, and thus need to be supplemented with free text extraction.[43,44]  

 

Ning et al described SEDFE (SEmantics-Driven Feature Extraction) to collect medical concepts 

from online knowledge sources as candidate features and derived methods to achieve AUCs 

ranging from 0.90-0.95.[45] Other pipelines reviewed achieved slightly lower AUCs with widely 

differing methodologies,[46,47] including the repurposing of a crowdsourcing marketplace.[48]  

 

Capturing common psychiatric comorbidities associated epilepsy remain challenging. 

Commonly, comorbidities such as anxiety and depression can be captured as a diagnosis or 

solely as patient-reported symptoms. Furthermore, these comorbidities are likely underdiagnosed 

and undertreated within the epilepsy population. Validated depression instruments, such as the 

Patient Health Questionnarie-9 (PHQ-9) to assess depressive symptoms, can be easily extracted 

from structured fields. However, Adekkanattu et al implemented an NLP platform to extract 

PHQ-9 scoring from unstructured clinical text for patients prescribed an antidepressant with high 

accuracy (F-score 97%) and found that nearly one-third of patients’ charts had a score that 

clinically indicated major depressive disorder without a structured ICD diagnosis code 

associated.[49] In a study to predict advanced care of depression via statewide EHR data, free 

text extraction from decision tree models yielded AUC scores of approximately 90% for patients 

deemed high-risk patients versus approximately 80% for the overall patient population, 

respectively.[50] 

 

2.2.11 Epilepsy risk factors – history of drug abuse:   
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The main work in this area has been developed for the detection of opioid dependence and 

smoking.[51] Notably, many authors have reported that ICD codes are insufficient for the 

accurate diagnosis of opioid dependence or overdose.[52–54] NLP can help improve recall of 

drug abuse from unstructured fields in clinician’s notes.[55–57] Including nursing notes further 

improves performance.[58] Hazlehurst et al demonstrated that NLP can be generalizable by 

publishing the difference in accuracy between their training and test sets.[54]  

 

Variables more applicable to seizure risk include alcohol abuse and stimulant abuse. [58–61] 

These variables have not been studied in as much detail as opiates and nicotine. The most 

accurate study we reviewed is that of Wang et al which attained F1s of 90% for alcohol abuse 

and 85% for drug abuse detection.[60]  

 

2.2.12 Epilepsy risk factors – family history of epilepsy:   
 
Family history statements have been extracted from a variety of note types for a variety of 

diseases, [62–66] and it is likely that these can be repurposed to epilepsy. Zhou et al were able to 

achieve precision of 100% and recall of 97% using NLP, but their method is limited to looking at 

discharge summaries and admission notes.[65,66] Mowery et al achieved precision 96% and 

recall 94% using NLP on clinicians’ notes.[40] 

 

2.3 OUTCOME VARIABLES 
 
2.3.1 Primary Outcome - Seizure frequency:  
 
The ExECT pipeline (methods discussed in Epilepsy Type section above) identified the phrase or 

sentence within a clinical document that contained the seizure frequency but does not return a 
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numeric value, with precision 86% and recall 54%.[28] To our knowledge, this is the only study 

of seizure frequency in the literature. 

 

2.3.2 Secondary Outcomes- Use of rescue medications and the total number of AEDs 
required:  
 
Recurrent seizures may be identified by the use of rescue medications or the need to add 

additional AEDs. See the medication section above for details on how medications can be 

extracted. 

 

2.4 OTHER GENERAL USE PIPELINES: 
 
Our PubMed search results also found a series of general use pipelines, documented in detail in 

the supplementary text. One effort worth noting is that Kannan et al propose a strategy for 

incorporating prospective research-quality data collection into the practitioners’ workflow 

without burdening practitioners with excessive documentation, which is the primary barrier to 

this type of collection.[67,68] They were able to implement prospective cohort building pipelines 

in 43 chronic diseases.[67] The implementation of such a framework within the field of epilepsy 

would allow for prospective data collection which is known to be superior to retrospective 

studies. 

 

2.5 PIPELINES IN OTHER DIALECTS AND LANGUAGES: 
 
For greater applicability and sample size, a multi-center international study would require the use 

of pipelines in many languages. As of now, there appears to be minimal ability to convert 

pipelines from one language to another. There is one notable study where NLP developed in 

Europe and the United States was applied to medical notes written in Indian-English to extract 
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medical diagnoses, labs, procedures, demographic information, and outcomes.[69] Details about 

pipelines in other languages can be found in the supplementary material.  

 

 
3. SUMMARY AND CONCLUSION 
 
Automated extraction of EHR data has advanced impressively in the last several years, with a 

plethora of methods published to date. However, there is great variability in algorithm 

performance across variables.  We have seen that some variables can be easily and accurately 

extracted from the EHR by way of structured and unstructured fields, such as age, sex, and 

family history. Other variables can be extracted with reasonably high sensitivity but with lower 

specificity, for example, SES, ethnicity, epilepsy risk factors, and EEG and MRI results.  

 

Medications can be extracted with high accuracy (precision and recall > 95%) using a number of 

approaches, thanks in part due to public challenges that awarded prize money to competing 

teams to crowdsource the best method. Furthermore, techniques that are developed in fields 

outside of epilepsy can easily be applied to epilepsy. 

 

Several variables cannot be reliably extracted with current published methods, including seizure 

etiology and epilepsy severity. The problem of seizure etiology may potentially be solved by a 

multi-modal approach incorporating EEG findings, MRI findings, structured and unstructured 

fields, and setting up decision trees based on ILAE diagnostic criteria. This approach would be 

relatively easy to implement if the underlying variables could be extracted reliably (EEG 

findings, MRI findings, and comorbidities). Epilepsy severity is not a single variable, but rather a 

concept which requires the incorporation of several variables including the number of 
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medications used, the seizure frequency, presence of convulsive seizures, and potentially 

electroencephalographic markers. 

 

The greatest limitation to assessing AED efficacy using EHR data is that the outcome of primary 

interest, seizure frequency, cannot be extracted reliably from the record using currently available 

techniques. The best techniques can identify only the seizure frequency text with poor sensitivity 

(~50%) and only marginal specificity (~80%). Future approaches to increase sensitivity will 

undoubtedly come at a cost of specificity. However, one could envision an approach to create 

semi-automated algorithms, wherein an automated method screens notes comprehensively for 

key sentences with subsequent manual review to extract seizure frequency quantitatively and 

with greater accuracy. The limitation of a semi-automated method would be the time required for 

human review of each data-reduced chart. Within the NLP field, the continued use of 

crowdsourcing will be vital to creating new pipelines and increasing accuracy to optimize data 

extraction from EHRs. Notably, medication extraction, medication allergy extraction, and opioid 

use and dependence can all be readily and accurately extracted with one of several available 

pipelines produced through crowdsourcing competitions. 

 

As automated extraction methods continue to evolve, standards on reporting the accuracy of 

these pipelines should be followed. This will allow for comparisons to be drawn between 

methods. We call for, at minimum, the reporting of precision, recall, and F1 statistics for training 

and test sets (when a test set is available). We also recommend for all studies to use an 

independent test set when possible, and ideally another independent validation dataset from a 

different institution. This reporting is crucial because the decrease in accuracy between the 
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training set and the test set is informative of the algorithm’s generalizability. We also appreciate 

that most of the studies that we reviewed have provided public access to the extraction 

algorithms, and we encourage all authors to do the same. 

 

In summary, we evaluated the feasibility, availability, and performance of automated data 

extraction methods to facilitate prospective and retrospective investigation of AED efficacy.  The 

most significant roadblock is the derth of algorithms to extract seizure frequency. Other smaller 

but important roadblocks are the extraction of seizure etiology and epilepsy severity.  
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TABLE 1: KEY VARIABLES: If these variables could be extracted from the electronic health 
record automatically, an antiepileptic drug efficacy study could be performed.  
 
(S) = structured fields; (U) = Unstructured data; (S+U) = structured fields and unstructured data. 
1)      Exposure:  

a)      Prescribed medication extraction (S+U) 
2)      Covariables: 

a)      Age, gender, & ethnicity (S) 
b)      Socioeconomic status by zip code, type of insurance (S) 
c)      Epilepsy type (U) 
d)      Seizure type (U) 
e)      Underlying cause of the epilepsy (S+U): 

i)        genetic syndrome 
ii)      structural lesions 

(1)   strokes 
(2)   tumors 
(3)   surgery 
(4)   bleeding 

iii)    autoimmune disease 
iv)    neurodegenerative disease 
v)      traumatic brain injury 

f)       Age of onset (S) 
g)      Medication allergies (S) 
h)      Co-morbid diseases, aka past medical history (S+U) 
i)        Refractory epilepsy: as defined by number of other medications tried, or surgery tried 
j)        Epilepsy risk factors (S+U) 

i)        Abnormal birth and development (e.g. prematurity, developmental delay, autism) 
ii)      History of brain infection 
iii)    Substance abuse 
iv)    Family history of epilepsy 
v)      History of physical/sexual abuse 
vi)    History of febrile seizure 

k)      Prior EEG abnormalities (U) 
3)      Outcome: seizure frequency and surrogates thereof 

a)      Seizure frequency (U) 
b)      Use of rescue medications (S+U) 
c)      Need for increase in therapy: e.g. doses increased? new meds added? (S+U) 
d)      Use of the nursing telephone help-line (S+U) 
e)      Use of the emergency room (S+U) 
f)       Hospital admissions (S+U) 
g)      Total health-care cost (calculated based on the above) 
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TABLE 2: Acronyms and abbreviations for data standards and methods of machine learning 

ACE score: Adverse Childhood Events scoring system 
AUC: area under the curve (receiver operator) 
Bi-LSTM: bidirectional LSTM 
CNN: convolutional neural network 
CRF: Conditional Random Field 
cTakes: Clinical Text Analysis, Knowledge Extraction System 
CUI: Concept unique identifier 
EpSO: Epilepsy-Specific Language 
GATE: General Architecture for Text Engineering 
GUI: Graphical User Interface 
HPO: Human Phenotype Ontology 
ICD codes: International statistical Classification of Diseases 
HEDEA: Healthcare Data Extraction and Analysis 
HL7: Health Level Seven International 
LOINC: Logical Observation Identifiers Names and Codes 
LSTM: long short-term memory 
MTL: multi-task Learning 
N-gram: a phrase of n words (e.g. a trigram is a 3-word phrase) 
NER: Named entity recognition 
NLP: Natural Language Processing 
NLTK: a python NLP toolkit 
RxNorm: normalized names for clinical drugs 
SNOMED-CT: a systematically organized computer processable collection of clinical terms 
providing codes, terms, synonyms and definitions 
SVM: Support Vector Machines 
UIMA: Unstructured Information Management Application 
UMLS: United Medical Language System 
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