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Abstract 1 

Background 2 

Air pollutants, particularly fine particulate matters (PM2.5) have been associated with mental 3 

disorder such as depression. Clean air policy (CAP, i.e., a series of emission-control actions) 4 

has been shown to reduce the public health burden of air pollutions. There were few studies 5 

on the health effects of CAP on mental health, particularly, in low-income and middle-6 

income countries (LMICs). We investigated the association between a stringent CAP and 7 

depressive symptoms among general adults in China. 8 

Methods 9 

We used three waves (2011, 2013 and 2015) of the China Health and Retirement 10 

Longitudinal Study (CHARLS), a prospective nationwide cohort of the middle-aged and 11 

older population in China. We assessed exposure to PM2.5 through a satellite-retrieved 12 

dataset.  We implemented a difference-in-differences (DID) approach, under the quasi-13 

experimental framework of the temporal contrast between 2011 (before the CAP) and 2015 14 

(after the CAP), to evaluate the effect of CAP on depressive symptoms. The association was 15 

further explored using a mixed-effects model of the three waves. To increase the 16 

interpretability, the estimated impact of PM2.5 was compared to that of aging, an established 17 

risk factor for depression. 18 

Findings 19 

Our analysis included 15,954 participants. In the DID model, we found a 10-μg/m3 reduction 20 

of PM2.5 concentration was associated with a 4.14% (95% CI: 0.41–8.00%) decrement in the 21 

depressive score. The estimate was similar to that from the mixed-effects model (3.63% [95% 22 

CI, 2.00–5.27%]). We also found improved air quality during 2011-2015 offset the negative 23 

impact from 5-years’ aging.  24 

Interpretation 25 

The findings suggest that implementing CAP may improve mental wellbeing of adults in 26 

China and other LMICs. 27 

Funding 28 

National Natural Science Foundation and Ministry of Science and Technology of China, and 29 

Energy Foundation. 30 
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Introduction 32 

Mental disorders have contributed to a large proportion of the global burden of diseases by 33 

causing either non-fatal (e.g., disability) or fatal outcomes (e.g., suicide). Mental illness is the 34 

leading cause of years lived with disability (YLD), and the related disease burden increased 35 

by 37.6% from 1990 to 2010.1 The increased burden of mental illness may be caused by both 36 

demographic dynamics, and changes in relevant risk factors, such as inactive lifestyles and 37 

environmental pollutants. For instance, 37.5% of the increase in depression-associated YLDs 38 

during 1990-2010 were attributable to population growth and ageing2. Recent 39 

epidemiological evidence suggests that air pollution may adversely affect mental health,3-10 40 

and thus increase the disability burden.11 Due to the ubiquitous and prolonged exposure to 41 

ambient pollutants, particularly in low-income and middle-income countries (LMICs), air 42 

quality can be a major contributor to mental illness, such as depression.12 In addition, some 43 

LMICs, such as China, started to implement a series of emission-control policies, which are 44 

usually known as the clean air policy (CAP). However, few studies examined the effects of 45 

CAP on mental health, particularly in LMICs. 46 

To address severe air pollution issues and protect public health, the State Council of China 47 

promulgated the toughest-ever air pollution control on September 10, 2013,13-16 including 48 

optimization of the industrial structure, improvements in end-of-pipe control, and 49 

reductions in residential usage of unclean fuels. The policy is officially named as Air 50 

Pollution Prevention and Control Action Plan. It is comparable with similar policies in 51 

developed countries (e.g., United States), and is thus referred as CAP for short, hereafter. 52 

The long-term concentrations of fine particulate matter less than 2.5 µm in diameter (PM2.5), 53 

the major air pollutant in China, decreased rapidly nationwide from 67.4 μg/m3 in 2013 to 54 

45.5 μg/m3 in 2017.15 This dramatic change in air quality provides an opportunity to study 55 

the mental effect of PM2.5 under a quasi-experimental scenario. A quasi-experiment can 56 

result in a shape contrast of air pollution levels during a relatively short period, which is 57 

advantageous to indicate causal by controlling unmeasured and omitted confounders.17,18  58 

In this study, we evaluated the association between long-term PM2.5 exposure and depressive 59 

symptoms, under the quasi-experimental framework of the temporal contrast between 2011 60 

(before the actions) and 2015 (after the actions). We made use of the China Health and 61 

Retirement Longitudinal Study (CHARLS), which repeatedly measured the depressive score 62 

(CES-D-10, 10-item of Center for Epidemiologic Studies Depression Scale) of a 63 

representative sample of middle-aged and older Chinese adults in 2011, 2013, and 2015.19 64 

Due to the overlap between the CHARLS study period and the duration of China’s clean air 65 

actions, we were able to associate the reduction of concentrations of PM2.5 to depressive 66 

score changes at the individual level, and to quantify the impact of improved air quality on 67 
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adult metal health. Because the CES-D-10 is not clinically indicative, interpreting the impact 68 

of air quality is difficult. To increase interpretability, we further compared the effect of PM2.5 69 

concentrations to that of human aging, an established risk factor for poor mental health.1,2,20 70 

Methods 71 

Study population 72 

The studied adults were obtained from the China Health and Retirement Longitudinal Study 73 

(CHARLS).19,21 CHARLS is an ongoing nationwide longitudinal survey on the health and 74 

socioeconomic status of middle-aged and older Chinese adults. Using a four-stage and well-75 

established sample design, CHARLS researchers recruited a representative sample of 76 

~20,000 Chinese adults from ~150 county-level units in 2011 (Figure 1). Subsequently, well-77 

trained fieldworkers regularly visited the respondents every 2 years (Figure S1), and thus 78 

surveyed a national-scale cohort of Chinese adults. In each survey wave, all subjects were 79 

visited by well-trained interviewers in a face-to-face computer-assisted personal interview, 80 

which gathered data on demographic characteristics, behavioral risk factors, the residential 81 

city, and housing conditions. Details of the study design and the purpose of the CHALRS are 82 

provided elsewhere.19 All procedures involving human subjects/patients were approved by 83 

the Ethics Review Committee of Peking University (IRB00001052–11015). CHARLS has 84 

supported studies on mental health risk factors22 and the effects of air pollution on other 85 

outcomes.23 This study utilized the open-accessed CHARLS data, which is publicly available 86 

from the website: http://opendata.pku.edu.cn/. All analyses in this study adhered to the data 87 

usage guidelines. 88 

This study was based on currently available data from CHARLS surveys in 2011, 2013, and 89 

2015, which involved a sample of 24,805 individual adults. To conduct a longitudinal 90 

analysis, we focused on the valid records of older adults (≥ 40 years old), who were visited at 91 

least twice. A total of 16,151 adults remained after excluding subjects who were only observed 92 

once. We further excluded the adults without age data (which was derived from the time of 93 

the survey and the birthdate) and adults <40 years old at survey time. Finally, this study 94 

involved 41,031 observations of 15,954 individual adults distributed across 447 communities 95 

in 126 cities and counties (Figure 1). The data cleaning diagram is displayed in Figure S1. 96 

Environmental exposure 97 

The ambient exposure assessment was based on the PM2.5 Hindcast Database for China 98 

(2000–2016) introduced in our previous work.24 The database can be accessed from the 99 

website: http://www.meicmodel.org/dataset-phd.html. Due to the lack of nationwide 100 
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monitoring data on PM2.5 concentrations in China before 2013, historical PM2.5 101 

concentrations were estimated from satellite remote-sensing measurements and outputs 102 

from a chemical transport model (CTM) of air pollution emission inventories. Satellite 103 

sensors, such as the Moderate Resolution Imaging Spectroradiometer, retrieve the column 104 

concentrations of aerosols from the earth’s surface to the top of the atmosphere by 105 

measuring electromagnetic signals. Satellite-based annual estimates of PM2.5 have been 106 

applied in many health-related studies at the national and global scales.13,25 The CTM 107 

simulations were based on the multi-resolution emission inventory for China 108 

(http://www.meicmodel.org/index.html). The results provide a complete characterization of 109 

the spatiotemporal variations in PM2.5 concentrations and have been applied to support 110 

studies on health risk assessments and relevant policy analyses in China.16,26 In a previous 111 

study,24 we developed a machine-learning model to bring the satellite measurements and 112 

CTM simulations together by relating them to the nationwide monitoring concentrations of 113 

PM2.5 from 2013 to 2016, and then applied the model to hindcast the PM2.5 values before 114 

2013. The estimator was in good agreement with the in-situ observations on monthly (R2 = 115 

0.71) and yearly scales (R2 = 0.77) and has been utilized in other epidemiological studies. 116 

Please refer to our previous study for more details on the PM2.5 estimator.24  117 

The original PM2.5 data have a spatial resolution of 0.1° × 0.1° and daily concentrations 118 

across the mainland of China, during 2000–2016. For consistency, exposure assessments 119 

before and after 2013 were based on the estimated PM2.5 concentrations. The subjects in the 120 

CHARLS could only be geo-coded to each participant’s regionalization code due to 121 

confidential reason. Therefore, we first pooled the PM2.5 data into city-level averages by 122 

matching the pixels of a regular grid with a map of China’s prefectures (Figure 1), and further 123 

calculated the monthly averages. We utilized the PM2.5 concentration averages during the 12 124 

months preceding the surveyed months as the exposure values (Figure S1). 125 

We also obtained gridded estimates of temperature with an original resolution of 0.1° × 0.1° 126 

by fusing the satellite measurements of land surface temperatures, in-situ observations, and 127 

simulations from a weather-forecast research model.3 The three types of temperature values 128 

were assembled by day using a universal kriging approach. Random cross-validations 129 

indicated that the fused estimates were in good agreement with the monitored values (R2 = 130 

0.96). Details of the temperature data assembly are documented in our previous study.3 City-131 

level monthly averages for temperature data were also calculated for each record before the 132 

regression analyses. 133 

Measurement of depressive symptoms 134 
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The mental health status of the subjects was measured using the 10-item Center for 135 

Epidemiologic Studies Depression scale (CES-D-10). The validity of the CES-D-10 has been 136 

examined among Chinese adults.27 Each question measures the frequency of a specific type 137 

of negative mood (e.g., fearful or depressed) using a score of 0 (rarely or none), 1 (some 138 

days), 2 (occasionally), or 3 (most of the time). The CES-D-10 questions were included into 139 

the standard CHARLS questionnaires, which were collected during a computer-assisted 140 

interview by fieldworkers. We calculated the sum of all question-specific scores as the 141 

depressive score (CES-D-10) to indicate the general status of depressive symptoms for each 142 

subject. The depressive score ranges from 0 to 30, with a higher score indicating a higher 143 

severity of depressive symptoms. 144 

Statistical analyses 145 

We applied multiple methods to evaluate the effect of CAP and to derive the association 146 

between PM2.5 and CES-D-10. Relationships of the methods and their different properties are 147 

presented in Figure S1.  148 

First, we utilized the difference-in-difference (DID) approach, the typical model in quasi-149 

experiments. The conventional DID model was designed for binary exposure (as illustrated 150 

in the preliminary analysis, Figure S2). Because PM2.5 is a continuous variable, a regression 151 

analysis of the association between changes in PM2.5 and CES-D-10 score was performed in 152 

our DID analysis. More details on the DID model are documented in Supplemental text (S1). 153 

Next, to make full use of the data, we conducted a longitudinal analysis of the repeated 154 

measurements on CES-D-10 score and PM2.5 exposure using a mixed-effects model. 155 

Therefore, the modelling results were referred as longitudinal associations hereafter. The 156 

aim of the longitudinal analysis was to clarify the impact of PM2.5 exposure by comparing it 157 

with the impact of other risk factors.  158 

Additionally, the fixed-effects model is a generalized version of the DID method that can 159 

incorporate more than two repeated measurements.28 It is also identical to the random-160 

effects model, except for modelling subject-specific effects with a batch of dummy variables 161 

instead of random terms (Figure S1). A longitudinal regression with fixed effects is 162 

considered less biased, but also less efficient, than a comparable regression with random 163 

effects.29 The fixed-effects model was utilized to examine the robustness of the longitudinal 164 

associations. 165 

Finally, the hypothesis test on whether CAP affected depression was relied on the DID 166 

model, because it directly mimics the scenarios with and without CAP (Figure S2), and thus 167 
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is the canonical method to evaluate the effect of the policy. For the quantitative association 168 

between PM2.5 and CES-D-10 score, we relied on the mixed-effects model due to its efficacity 169 

and reliability. The overall conclusion was relied on the consistency between estimates from 170 

different models, by examining whether (1) the direction of association or its significance 171 

level was changed between models and (2) the estimated confidential intervals were 172 

overlapped with each other. 173 

Longitudinal association analyses 174 

The mixed-effects model was specified as follows: 175 

Log(scorei,j) = β0 + β1PM2.5,i,j + β2age,i,j + β3(PM2.5,i,j × agei,j) + zi,jγ + cityi + η(communityi) + 176 

λ(i), …… (1) 177 

where i denotes the subject index; j denotes the visit index; β0 denotes the intercept; β1-3 178 

denote the regression coefficients for PM2.5, age, and their interaction term, respectively; zi,j 179 

denotes a set of adjusted covariates and γ denotes the corresponding coefficients; cityi 180 

denotes a fixed effect to control the unmeasured city-specific risk factors of depression, such 181 

as traditional culture 30; and λ and η denote two random slopes to model the correlations 182 

between records from the same subject or the same community, respectively. The adjusted 183 

covariates (zi,j) included (1) annual temperature; (2) demographic characteristics 184 

(urban/rural residency, sex, education level, and marriage status); (3) lifestyle risk factors 185 

(smoking and drinking); (4) housing conditions (cooking energy type, building type, 186 

residential rent payment, presence of an in-house telephone, and indoor temperature 187 

maintenance). The regression incorporating all the above covariates was termed the fully 188 

adjusted model. The model might be too complex to produce a stable estimator, and a large 189 

fraction of the regressed samples involved the imputed missing values, which increased the 190 

uncertainty of the model. To examine whether the estimated associations were sensitive to 191 

these limitations, besides the full adjustment, we also applied a standard adjustment, which 192 

involved only the first three sets of covariates, demographic characteristics, and lifestyle risk 193 

factors. The association was also evaluated by ER, similar to the DID model. 194 

Sensitivity analyses  195 

In sensitivity analyses of the longitudinal model, we explored how the estimated association 196 

between PM2.5 concentration and the CES-D-10 score varied with (1) sub-regions of the study 197 

domain (Figure 1), (2) demographic sub-groups, and (3) exposure levels. Considering the 198 

balanced sample sizes (Figure 1), we divided the study domain into three sub-regions: 199 

Midwest (n = 13,886), North (n = 11,488) and Southeast (n = 15,657) China. We utilized 200 
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interaction analyses to explore the modifications on the effect of PM2.5 concentrations by a 201 

sub-region indicator or demographic characteristic (e.g., sex), and replaced the linear term of 202 

PM2.5 concentration in the regression model with a penalized spline term to examine the 203 

linearity of the effect. We also conducted parallel analyses for the association between age 204 

and the CES-D-10 score to compare the effect of PM2.5 concentration to that of population 205 

aging. Finally, we also utilized a bootstrap method to evaluate how the lack of geographic 206 

addresses impacted the estimated association. To protect confidentiality, CHARLS only 207 

released the city-level geographic information, which could introduce exposure 208 

measurement errors into the association estimation. We applied a bootstrap method to 209 

incorporate uncertainty embedded in the data-generation procedure into the model 210 

estimation. Details of the bootstrap method were documented in supplemental text (S2). 211 

Assessment of impact of PM2.5 212 

To illustrate the impact of the changes in air quality on depression, we conducted a post-hoc 213 

analysis based on the 9,123 adults who participated in all three CHARLS waves. We first 214 

calculated the change in one risk factor (Δxi = xi, 2011 − xi, 2015; x = PM2.5, age, or z) from 2011 to 215 

2015, and quantified its impact on CES-D-10 score as [exp(Δxiβx) − 1] × 100%. We compared 216 

the impact of the risk factors in the association model with standard adjustment, and focused 217 

on the combined impact of PM2.5 reduction and population aging in a group of adults. 218 

All statistical analyses were performed using R (version 3.3.2; R Foundation for Statistical 219 

Computing, Vienna, Austria). The linear mixed-effects and fixed-effects models were 220 

inferred using the lme4 package 31 and the plm package 32, respectively. Imputation was 221 

performed using the mice package 33. Inverse probability weights were calculated using the 222 

ipw package. Penalized spline functions were parameterized using the mgcv package 34, and 223 

inference of the nonlinear mixed-effects models was done using the gamm4 package 35. The 224 

relevant R codes are documented in the Supplementary materials. 225 

Role of the funding source 226 

The funding source of the study had no role in the study design, data collection, data analysis, 227 

data interpretation, or drafting of the manuscript. The corresponding authors had full access 228 

to all study data and are responsible for the decision to submit for publication. 229 

Results 230 

Descriptive summary 231 
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This study involved 15,954 adults, and each was visited an average of 2.6 times. In 2011, the 232 

mean age of the adults was 58.4 years (standard deviation: 9.4 years). In the 2011, 2013, or 233 

2015 CHARLS wave, the mean CES-D-10 score was 8.3, 7.8 or 8.1, and the corresponding 234 

concentration of PM2.5 was 61.6, 60.3 or 53.1 μg/m3, respectively. A summary of the 235 

demographic information of the adults in our study is presented in Table 1. The longitudinal 236 

variables, including environmental exposures, are summarized in Table 2. More detailed 237 

descriptions on the studied adults are documented in supplemental text (S3). 238 

Effect of clean air policy on depression 239 

A DID model of the 10,725 adults who participated in CHARLS 2011 and 2015 showed that 240 

the PM2.5 reduction after CAP was associated with decreased risk of depression. Figure 2 241 

presents the estimated effect of PM2.5 on the CES-D-10 score, with the adjusted covariates of 242 

the DID models. The results of the different models were statistically comparable, 243 

considering uncertainties. The estimates consistently suggested that long-term exposure to 244 

PM2.5 was significantly related to the CES-D-10 score. Based on the estimated ER from the 245 

standard model (Figure 2), a 10 μg/m3 reduction in PM2.5 concentration was associated with 246 

a 4.14% (95% confidence interval [CI]: 0.41–8.00%) decrease in the CES-D-10 score. In 247 

sensitivity analyses of DID model, the results were not significantly changed if we changed 248 

the settings to control for the effect of clustering of the samples, or did not weigh the samples 249 

according to the probability of the reduction in PM2.5 (Figure S3). However, the estimated 250 

effects in the unweighted models were slightly weaker than the weighted results. For 251 

instance, after removing the inverse probability weights, the standard DID model yielded an 252 

ER of 2.89% (95% [CI]: -0.59%, 6.48%). Because the samples were not optimally 253 

randomized (Figure S4), the unweighted estimates (Figure S3) could be slightly biased. To 254 

improve the interpretation of the DID model, we also conducted a preliminary analysis based 255 

on a binary PM2.5 variable, which is documented in supplemental text (S4). 256 

Longitudinal association between PM2.5 and depression score 257 

Based on the 41,031 samples from the three CHARLS waves, we quantified the association 258 

between PM2.5 and CES-D-10 score using a longitudinal model (Figure 2). Although the 259 

point-estimates from the longitudinal models were slightly lower than those from the DID 260 

models, the two types of models reported comparable effects of PM2.5 on the CES-D-10 score. 261 

Additionally, because the longitudinal models incorporated more samples, they had 262 

narrower CIs than the DID models. Adjusting for confounders, except age, did not 263 

significantly change the longitudinal results. As the studied population ages, a model that 264 

does not control for the effect of aging could yield a biased result. According to the model 265 

with standard adjustments, a 10 μg/m3 change in PM2.5 concentration was positive 266 
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associated with a 3.63% (95% CI: 2.00–5.27%) change in the CES-D-10 score (Figure 2 and 267 

Table S2). The results of the longitudinal models are listed in Table S2. 268 

In sensitivity analyses, we showed that the association between PM2.5 concentration and the 269 

CES-D-10 score did not vary significantly between sub-populations (Figure S5). The sub-270 

region analysis, which displayed a weak association in the north but strong associations in 271 

the Midwest and southeast (P = 0.04; likelihood ratio test). The weak association may have 272 

been caused by the small sample size in the north (Table 1) or a higher fraction of natural 273 

particles (e.g., dust in the northwest), which are known to be less toxic than anthropogenic 274 

particles. The nonlinear analysis showed an approximately linear exposure-response 275 

function of PM2.5 concentration without a no-effect threshold (Figure 3a), which was 276 

consistent with estimates from the other models (Table S2). Additionally, we examined the 277 

interaction between PM2.5 concentration and age, and found that the effect of PM2.5 278 

concentration was weaker in older adults (Table S2). Furthermore, the estimated effect of 279 

PM2.5 was not affected by use of random- or fixed-effects models (Table S3). However, the 280 

mixed-effects model, which could be more efficient, but also more biased, than the fixed-281 

effects model 29 was used only to enhance the interpretability of the estimates. Finally, the 282 

bootstrap analysis (Figure S6) indicated the measurement error caused by using city-level 283 

PM2.5 didn’t significantly change the estimated association. Within a city, where air quality 284 

was affected by the same emission-control polices, the temporal trends in PM2.5 could be 285 

similar at different locations. We only ignored 11.75% of total variance in PM2.5 reductions by 286 

using the city-level values (Table S5). Therefore, the measurement error might not 287 

undermine our main findings. However, according to the bootstrap analysis, the estimated 288 

association became slightly weaker (i.e., a smaller point-estimate with a larger variance) after 289 

correcting for the measurement error, which suggested the effect of PM2.5 might be 290 

underestimated. 291 

Evaluating the impact of PM2.5 292 

A comparison between the effect of PM2.5 concentration and that of age showed that they 293 

were statistically comparable (Figure 3b). Based on the standard model, the effect of 1 year 294 

was of equivalent magnitude to the effect of a PM2.5 concentration increase of 2.1 μg/m3 (95% 295 

CI: 1.1–4.2 μg/m3). More details on the association between aging and the CES-D-10 score 296 

are documented in supplemental text (S5). 297 

The impact of a risk factor on the CES-D-10 score is determined by its effect magnitude and 298 

temporal changes. Based on the 9,123 adults who participated in all three waves of the 299 

CHARLS, we quantified the impacts of air quality improvement and aging on their mental 300 
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health status from 2011 to 2015 (Figure 4). According to the results, aging and PM2.5 301 

reduction were the major drivers of changes in CES-D-10 score. Using the CES-D-10 score 302 

obtained before implementation of the CAP (by CHARLS 2011) as the reference, we found 303 

that a decreased concentration of PM2.5 resulted in a relative reduction in the score of 0.27% 304 

(95% CI: 0.15–0.40%) and 2.87% (95% CI: 1.61–4.21%) in 2013 and 2015, respectively; in 305 

contrast, aging resulted in a relative increase of 1.53% (95% CI: 0.87–2.13%) and 3.08% 306 

(95% CI: 1.74–4.31%), respectively (Figure 4). Analysis of the combined impact of age and 307 

PM2.5 (including their interactions), which together resulted in a small reduction in the CES-308 

D-10 score of 0.25% (95% CI: -0.78–1.30%) from 2011 to 2015, showed that the benefit of 309 

reducing the PM2.5 concentration offset the negative effect of aging. Because the impact 310 

evaluation was based on a fixed population, we quantified the impact of individual-level 311 

aging, which was faster than the aging of the population (Figure S1). 312 

Discussion 313 

Based on the CHARLS surveys, we found a robust exposure-response function between air 314 

pollution and depression, during a quasi-experimental scenario under CAP. Our results also 315 

indicate that the effect of PM2.5 concentration reduction was comparable with that of aging. 316 

Although aging partially offset the benefits from reducing PM2.5 concentrations, the rapidly 317 

improved air quality since 2013 could still bring a net positive impact. 318 

An increasing number of studies have reported on the association between air pollution and 319 

mental disorders, including depression,8-10,36-42 cognitive functions,6,7,43 and other indicators 320 

of mental health.5,44-49 For instance, Fan et al. (2020) conducted a meta-analysis of 637,297 321 

subjects and reported that a 10 µg/m3 increase in PM2.5 concentration is potentially 322 

associated with a 12% (95% CI: -3–29%) ER of depression50. They also reported that the 323 

pooled estimate was sensitive to a cross-sectional study51 (which reported an extremely large 324 

ER as 1,818%, 95%CI: 189-12,669%), and was changed to 12% (95% CI: 2–23%) after 325 

exclusion. Many of these studies examined the association between air pollution and mental 326 

illness among residents in China.3,6,7,39-41,45,47,49 However, most of them were cross-sectional 327 

studies39-41,45,49, which contributed to the low confidence level in the meta-analysis and led to 328 

an inclusive association between PM2.5 exposure and depression. Comparing to them, our 329 

quasi-experiment is advantageous in controlling for potential confounders, and thus 330 

enriches the high-quality evidences. Detailed discussions on the comparison are documented 331 

in a supplemental text (S6). 332 

The central government carried out an action plan of air pollution control and prevention 333 

from 2013 to 2017 to tackle severe air pollution in China.15 Based on a chemical-transport 334 
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model analysis,16 the CAP respectively led to PM2.5 concentration reductions from 89.5 335 

μg/m3 in 2013 to 58.0 μg/m3 in 2017, and thus has been show to protect the public health by 336 

reducing cardiorespiratory mortalities associated with PM2.5.15 The present study showed 337 

that the CAP can also bring benefits to adult mental health.  338 

The present study also examined the effect of aging on depression and compared it to the 339 

effect of PM2.5 concentration. Such an analysis improved the interpretability of the 340 

association between PM2.5 concentration and the depression and has policy implications. The 341 

Chinese population is expected to age rapidly because of a low fertility rate. According to the 342 

world population projection for the total population of China (Figure S7) 343 

(http://dataexplorer.wittgensteincentre.org/wcde-v2/), the mean age of all Chinese adults 344 

≥ 40 years old will increase from 55 years in 2010 to 62–65 years in 2050. Based on our 345 

model (Table S2), population aging could offset the benefits from a 14.9–21.3 μg/m3 346 

reduction in PM2.5 concentration. Assuming that air quality meets the current national 347 

standard (annual mean PM2.5 < 35 μg/m3) in 2050, the population-weighted concentration 348 

of PM2.5 would decrease by 26 μg/m3 (from 61 μg/m3 in 2010 to 35 μg/m3 in 2017). 349 

Therefore, the positive impact of PM2.5 concentration reduction on depression is comparable 350 

to the negative impact of population aging. This rough analysis suggests that the older 351 

population requires more stringent air quality standards to protect their mental health. 352 

However, notably, the estimated association between age and depression not only reflects 353 

the underlying physiological effects (e.g., increased oxidative stress) but also the 354 

socioeconomic effects (e.g., decreased income) attributable to aging, and thus it may not be 355 

representative of the future population. Therefore, exactly quantifying the combined impacts 356 

of a change in air quality and population aging is beyond the capacity of this study. Further 357 

prospective studies of the effects of changes in societal and cultural factors on the mental 358 

health of an aging population, and air quality, are warranted. 359 

This study was subjected to the following limitations. First, exposure to ambient PM2.5 was 360 

assessed at the city-level due to the lack of specific addresses, which resulted in 361 

misclassification of exposure by ignoring the within-city variation in PM2.5 concentrations. 362 

Although such an ignorance might not change the direction of the association between PM2.5 363 

and depression, it still introduced bias into point-estimate of the association and amplified 364 

its uncertainty range (Figure S6). The misclassification might be also caused by falsely 365 

specifying the exposure time-window, as well. Because detailed survey dates were 366 

unavailable in the open-access CHARLS data, the long-term exposure to PM2.5 was evaluated 367 

using annual means based on monthly scale time-series. Additionally, uncertainties in the 368 

PM2.5 concentration hindcast estimator are another source of exposure misclassification, 369 

which usually leads to an underestimated association. To derive an unbiased association 370 
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between PM2.5 and depression, advanced assessment techniques, such as personal monitors, 371 

should utilized in future studies to reduce exposure misclassifications. Second, the 372 

modifiable area unit problem (e.g., ecological fallacy) due to the city-level aggregation, might 373 

also cause bias. Although the subjects screened by the community-based fieldworkers were 374 

less likely to change their residential city during the study period, exposure levels of some 375 

individuals (e.g., the residents near city boundaries) might be different from the mean level. 376 

Urban and rural residents might have different degrees of modifiable-area-unit problem, but 377 

their effect estimates were similar (Figure S5), which suggests a weak impact on our results 378 

from the issue. Third, although this study controlled for temporally invariant confounders 379 

(e.g., bullying victimization and childhood sexual abuse) and a few longitudinal covariates 380 

(including marriage, aging, and alcohol drinking), it may have missed some risk factors for 381 

depression. Although the estimates are unlikely to be confounded by some of them (e.g., 382 

drug abuse), failure to adjust for all potential confounders could have biased our results. 383 

Fourth, this study utilized PM2.5 mass concentration as a general indicator of ambient air 384 

quality, which may have underestimated the complexities of air pollution toxicity. For 385 

instance, PM2.5 is a mixture of particles of different chemical species and sizes, and between-386 

component variations in toxicity have been shown for PM2.5 (Han and Zhu, 2015, Han et al., 387 

2016). Additionally, the estimated association between PM2.5 and depression might not be 388 

attributable to only itself, but also to other air pollutants, such as ozone,52 that co-vary with 389 

PM2.5. Therefore, further studies on the effects on mental health of other air pollutants are 390 

warranted. Finally, some CHARLS subjects dropped out of the study for various reasons, 391 

which may have biased the results.53 Also, the limited information on missing data from the 392 

publicly available CHARLS datasets hampered the derivation of sampling weights for the 393 

statistical models, reducing the national representativeness of the findings. Although the 394 

analysed samples were comparable to the baseline representative population recruited in 395 

CHARLS 2011, there were still slightly differences in some aspects, such as the geographic 396 

distribution (Figure S9). Given the potential heterogeneity in the association between PM2.5 397 

and depression (Figure S5), the estimates from a less representative sample might be biased 398 

away from the average effect of target population. Given the above limitations, the causality 399 

of our findings should be interpreted cautiously. 400 

In conclusion, we found a robust association between an increase in PM2.5 concentration and 401 

depression risk in a nationwide sample of adults in China. Due to CAP, the exposure 402 

concentrations of PM2.5 were decreased rapidly, which subsequently improved mental health. 403 

This study not only enriched the epidemiological evidence on the adverse effects of air 404 

pollution on mental health, but also indicated implementing CAP could improve mental 405 

wellbeing of adults.  406 
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Figure Legends 

 

Figure 1. Map of study region with long-term averages of PM2.5 concentrations 

(2010–2015). 
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Figure 2. Estimated associations between the depression score and PM2.5 

concentration. In the difference-in-difference (DID) analysis, the model adjusted for age 

incorporated age at 2011 as a covariate; the standard adjustment also involved the fixed 

variables of urban/rural residence, sex, and education, as well as the longitudinal variables of 

ambient temperature, marriage status, smoking, and drinking. The full adjustment also 

considered longitudinal changes in cooking energy type, building type, residential rent 

payment, presence of an in-house telephone, and indoor temperature maintenance. The 

longitudinal models adjusted for the constant variables in a similar manner as in the DID 

models; however, adjustment of the longitudinal variables was based on the values recorded 

in each survey wave, rather than their between-wave changes therein. 
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(a) 

 

(b) 

 

Figure 3. Nonlinear effects of (a) PM2.5 concentration and (b) age on the CES-D-

10 score. Dashed lines, pointwise 95% confidence intervals. The histograms show the 

distribution of PM2.5 exposure and age. 
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Figure 4. Impacts of reducing PM2.5 concentration, aging, and changes in other 

factors on the CES-D-10 score. The changes in risk factors (Δx) were evaluated using a 

fixed group of subjects who participated in all three China Health and Retirement 

Longitudinal Study (CHARLS) waves; the corresponding coefficients were estimated from 

the longitudinal model with standard adjustment (Figure 2) and presented in Table S3; for 

each variable, the value in 2011 was acted the reference to evaluate the impact attributable to 

its temporal changes. 
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Tables 

Table 1. Constant variables of the studied subjects. 

Variabl

e 
Subgroup 

Number of subjects (percentage of the 

total) 

All subjects 
Subjects with three 

measurements 

Total number of subjects 15,954 (100%) 9,123 (100%) 

Educatio

n 

Below elementary 6,133 (38.44%) 3,786 (41.50%) 

Elementary and 

middle 
6,099 (38.23%) 4,220 (46.26%) 

Above middle 1,712 (10.73%) 1,117 (12.24%) 

Unknown 2,010 (12.60%) 0  

Sex 

Female 8,331 (52.22%) 4,702 (51.54%) 

Male 7,621 (47.77%) 4,421 (48.46%) 

Unknown 2 (0.01%) 0 

Place of 

residenc

e 

Rural 9,765 (61.21%) 5,748 (63.01%) 

Urban 6,189 (38.79%) 3,375 (36.99%) 

Region 

Midwest 5,367 (33.64%) 3,152 (34.55%) 

North 4,451 (27.90%) 2,586 (28.34%) 

Southeast 6,136 (38.46%) 3,385 (37.10%) 

 

Table 2. Longitudinal variables of the studied subjects.  

Total 2011 CHARLS*  2013 CHARLS  2015 CHARLS  

Variable Mean (standard deviation) 

Depression score 8.1 (6.2) 8.3 (6.3) 7.8 (5.8) 8.1 (6.4) 

PM2.5 concentration 

(μg/m3) 
58.2 (19.8) 61.6 (18.9) 60.3 (22.2) 53.1 (16.7) 

Temperature (°C) 14.0 (5.3) 13.6 (5.2) 13.9 (5.6) 14.4 (5.0) 

Age (years) 60.5 (9.3) 59.2 (9.2) 60.3 (9.4) 61.9 (9.2) 

Variable 
Subgrou

p 
Number of visits (percentage of the total) 

Total number of visits 41,031 (100%) 12,658 (100%) 14,352 (100%) 14,021 (100%) 

Married 

No 6727 (16.39%) 1964 (15.52%) 2276 (15.86%) 2487 (17.74%) 

Yes 
34303 

(83.60%) 

10694 

(84.48%) 

12076 

(84.14%) 

11533 

(82.26%) 
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Unknow

n 
1 (0.00%) 0 0 1 (0.01%) 

Smoking 

No 
28422 

(69.27%) 
8797 (69.50%) 9970 (69.47%) 9655 (68.86%) 

Yes 
12608 

(30.73%) 
3861 (30.50%) 4381 (30.53%) 4366 (31.14%) 

Unknow

n 
1 (0.00%) 0 1 (0.01%) 0 

Drinking 

Frequent 
10944 

(26.67%) 
3238 (25.58%) 3934 (27.41%) 3772 (26.90%) 

Rare 3312 (8.07%) 977 (7.72%) 1140 (7.94%) 1195 (8.52%) 

Never 
26758 

(65.21%) 
8443 (66.70%) 9266 (64.56%) 9049 (64.54%) 

Unknow

n 
17 (0.04%) 0 12 (0.08%) 5 (0.04%) 

Cooking 

energy type 

Clean 21257 (51.81%) 5548 (43.83%) 7686 (53.55%) 8023 (57.22%) 

Unclean 
19292 

(47.02%) 
6965 (55.02%) 6512 (45.37%) 5815 (41.47%) 

Unknow

n 
482 (1.17%) 145 (1.15%) 154 (1.07%) 183 (1.31%) 

Building 

type 

One 

story 

23683 

(57.72%) 
7884 (62.28%) 8684 (60.51%) 7115 (50.75%) 

Multi-

storey 
17159 (41.82%) 4722 (37.30%) 5614 (39.12%) 6823 (48.66%) 

Unknow

n 
189 (0.46%) 52 (0.41%) 54 (0.38%) 83 (0.59%) 

Rent 

payment for 

residence 

No 
39353 

(95.91%) 

12289 

(97.08%) 

13734 

(95.69%) 

13330 

(95.07%) 

Yes 1200 (2.92%) 285 (2.25%) 457 (3.18%) 458 (3.27%) 

Unknow

n 
478 (1.16%) 84 (0.66%) 161 (1.12%) 233 (1.66%) 

In-house 

telephone 

No 
24798 

(60.44%) 
6350 (50.17%) 8482 (59.10%) 9966 (71.08%) 

Yes 
16122 

(39.29%) 
6262 (49.47%) 5823 (40.57%) 4037 (28.79%) 

Unknow 111 (0.27%) 46 (0.36%) 47 (0.33%) 18 (0.13%) 
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n 

Indoor 

temperatur

e 

maintenanc

e 

Very hot 412 (1.00%) 254 (2.01%) 74 (0.52%) 84 (0.60%) 

Hot 3573 (8.71%) 1345 (10.63%) 1134 (7.90%) 1094 (7.80%) 

Bearable 
34561 

(84.23%) 

10491 

(82.88%) 

12189 

(84.93%) 

11881 

(84.74%) 

Cold 1342 (3.27%) 436 (3.44%) 516 (3.60%) 390 (2.78%) 

Very 

cold 
102 (0.25%) 63 (0.50%) 23 (0.16%) 16 (0.11%) 

Unknow

n 
1041 (2.54%) 69 (0.55%) 416 (2.90%) 556 (3.97%) 

* CHARLS, China Health and Retirement Longitudinal Study 
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