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ABSTRACT

Introduction: Drug safety research asks causal questions but relies on ob-
servational data. Confounding bias threatens the reliability of studies using such
data. The successful control of confounding requires knowledge of variables
called confounders affecting both the exposure and outcome of interest. Causal
knowledge of dynamic biological systems is complex and challenging. Fortu-
nately, computable knowledge mined from the literature may hold clues about
confounders. In this paper, we tested the hypothesis that incorporating literature-
derived confounders can improve causal inference from observational data.

Methods: We introduce two methods (semantic vector-based and string-
based confounder search) that query literature-derived information for confounder
candidates to control, using SemMedDB, a database of computable knowledge
mined from the biomedical literature. These methods search SemMedDB for
confounders by applying semantic constraint search for indications treated by the
drug (exposure), that are also known to cause the adverse event (outcome). We
then include the literature-derived confounder candidates in statistical and causal
models derived from free-text clinical notes. For evaluation, we use a reference
dataset widely used in drug safety containing labeled pairwise relationships be-
tween drugs and adverse events and attempt to rediscover these relationships from
a corpus of 2.2M NLP-processed free-text clinical notes. We employ standard
adjustment and causal inference procedures to predict and estimate causal effects
by informing the models with varying numbers of literature-derived confounders
and instantiating the exposure, outcome, and confounder variables in the models
with dichotomous EHR-derived data. Finally, we compare the results from apply-
ing these procedures with naive measures of association (�2 and reporting odds
ratio) and with each other.

Results and Conclusions: We found semantic vector-based search to be
superior to string-based search at reducing confounding bias. However, the
effect of including more rather than fewer literature-derived confounders was
inconclusive. We recommend using targeted learning estimation methods that
can address treatment-confounder feedback, where confounders that also behave
as intermediate variables, and engaging subject-matter experts to adjudicate the
handling of problematic confounders.

sam413@pitt.edu (S.A. Malec)
orcid(s): 0000-0003-1696-1781 (S.A. Malec)

1. Introduction

This paper introduces a framework for automat-
ing causal inference from observational data by
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Using computable knowledge to elucidate confounders

exploiting computable knowledge mined from the
literature. Observational data, or data collected
in non-randomized settings, contain a wealth of
information for biomedical research. Such data
are vital in settings where randomized controlled
trials are infeasible, such as is the case with drug
safety research.

A primary goal of drug safety (or pharma-
covigilance) research is to prioritize associations
empirically to the extent that drug / adverse event
associations may be causal or stochastically deter-
minative in nature. Associations that are more
likely to be genuinely causative should be pri-
oritized for review. Unfortunately, confounding,
endemic to such data, can induce misleading, non-
causal associations. While the research question
defines the exposure and outcome variables, the
decision of which covariates to adjust for falls to
the investigator. Classical criteria mandate for the
inclusion of all covariates correlating significantly
with the exposure and the outcome [1]. Unfortu-
nately, such an approach can introduce covariates
that amplify bias rather than reduce it [2, 3, 4].

Recently, to address the issue of problematic
covariates, researchers have enumerated criteria
for identifying adjustment sets emphasizing the
role of causal knowledge for identifying covariates
to reduce bias [5]. Unfortunately, since such ex-
pertise cannot scale to all available human knowl-
edge, it is infeasible to rely solely on human ex-
perts. Consequently, the problem of how to ac-
cess causal knowledge has been noted as an open
research question [6]. Fortunately, knowledge re-
sources and methods exist that could be useful for
guiding the selection of confounders. The Seman-
tic MEDLINE database, or SemMedDB, is one
such resource [7]. The information in SemMedDB
consists of pairs of biomedical entities, or con-

cepts, connected by normalized predicates, e.g.,
"aspirin TREATS headache." We introduce and
test methodological variants that combine com-
putable knowledge with observational data. Our
methods query literature-derived computable knowl-
edge to identify confounder candidates for incor-
poration into statistical and graphical causal mod-
els. The idea is to use existing knowledge from
previous discoveries to catalyze causal inference
and discovery from observational data. We then
use these models to perform statistical and causal
inference from data extracted from a corpus of
EHR-derived free-text clinical narratives.

The purpose of this research is to investigate
the extent to which computable knowledge may be
useful for informing causal inference. To that end,
we introduce and test two methods for accessing
background knowledge to help reduce confound-
ing bias: string-based and semantic vector-based
search. These methods are qualitatively distinct in
how they store, represent, and retrieve information.
We also explore whether or not knowledge repre-
sentation affects performance, given how concepts
are prioritized by the confounder search methods
in search results. We also ask how varying the
amount of literature-derived information affects
bias reduction. Finally, we compare using effect
estimates from literature-informed causal models
with traditional logistic regression adjustment pro-
cedures.

2. Background

With nearly half of the US population having
been prescribed a prescription drug in any given
month, the vast number of drug exposures drives
the high prevalence of adverse events [8]. The
annual financial cost of adverse event-related mor-
bidity in the United States was estimated at 528.4
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Using computable knowledge to elucidate confounders

billion in 2016 alone [9], while another study noted
that 16.88% of hospitalized patients experience an
adverse drug reaction [10]. An adverse drug re-
action is defined as an "appreciably harmful or
unpleasant reaction, resulting from an interven-
tion related to the use of a medical product" [11],
and is distinguished from other adverse events by
the demonstration of a causal link to a drug. The
discipline that helps adjudicate causal links be-
tween drugs and harmful side-effects is known as
pharmacovigilance. Pharmacovigilance encom-
passes the development of procedures for collect-
ing, summarizing, monitoring, detecting, and re-
viewing associations between drug exposures and
health outcomes in general and adverse events in
particular [12]. Causal links are established by the
gradual accretion of evidence from observational
data and by the relative strength of mechanistic ex-
planations justifying biological plausibility [13].

Inmedicine, randomized controlled trials (RCTs)
are widely considered to be the gold standard for
establishing causal links [14]. However, in re-
search areas such as pharmacovigilance, the rele-
vance of RCTs is limited most pertinently by ethi-
cal considerations but further by the size, cost, and
short duration of such studies [14, 15]. Accord-
ingly, to prioritize drug safety signals for review
after regulatory approval of new drugs, regulatory
bodies such as the Food and Drug Administration
in the United States and the European Medicines
Agency in the European Union must rely mainly
on the quality of the inferences drawn from empir-
ical data from non-randomized sources. The tradi-
tional primary data source for pharmacovigilance
research has been spontaneous reporting systems
such as the U.S. Food and Drug Administration
(FDA) Adverse Event Reporting System (FAERS)
[16, 17]. Spontaneous reporting systems’ data are

Figure 1: Illustration of confounding. If both the ex-
posure and outcome variables are effects of the same
cause. That common cause is referred to as a con-
founder.

aggregated from input from patients, clinicians,
and pharmaceutical companies. Unfortunately,
these data present critical deficiencies, including
lack of context, missing data, and no population-
level denominator to estimate the prevalence of
any association [18, 19]. Consequently, there is a
pressing need to advance methods that can more
reliably detect adverse drug reactions from obser-
vational data.

To address the shortcomings of spontaneous
reporting systems, researchers have turned to other
sources of empirical evidence such as social media
[20, 21], claims [22, 23], and EHRdata [24, 25, 26,
27], the focus of the present study. The FDA’s on-
going Sentinel Initiative facilitates the federated
search of structured data from EHR across the
United States [28]. However, structured data may
only provide an incomplete picture. Data embed-
ded in unstructured free-text clinical narratives in
EHR systems contain a wealth of contextual infor-
mation concerning routine clinical practice often
absent from the fixed content fields in structured
data [29]. The embedded contextual information
may include "temporal relations, severity and de-
gree modifiers, causal connections, clinical expla-
nations, and rationale" [30].

The reliability of analytic conclusions from
such data is highly sensitive to the quality of the as-
sumptions used to analyze them [31, 32], including
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assumptions concerning how to adjust for sources
of systematic bias. The focus of the present study
is on confounding bias, though other forms of sys-
tematic bias exist [3].

In randomized experiments, confounding con-
trol is built-in by design. However, in studies using
observational data, variables of interest are subject
to sources of influence outside investigator control.
In this setting, the investigator must identify vari-
ables for which to control by analysis.

A confounder is a type of variable that is rela-
tive to the hypothesis under study that influences
both the likelihood of the exposure and the out-
come (Figure 1) [33]. Confounding bias is in-
duced when both the exposure and outcome of in-
terest share a common cause that is not controlled
analytically.

If it were possible to infer which biomedical
entities, or concepts, might also refer to particular
variables for which to control, i.e., confounders, it
would be possible to facilitate automated discovery
from non-randomized settings from observational
data [34].

Clearly, substantive, extra-statistical a priori
subject-specific knowledge is critical for reliable
causal inference [5, 32]. Since it has not been
clear how to access contextually relevant causal
knowledge automatically, many approaches for in-
ferring causality have been developed to evade the
requirement of subject-specific knowledge. For
example, the approach described in [35] employs
meta-analytic techniques by combining different
data sources (EHR data with FAERS)with the idea
that such combination cancels out bias from indi-
vidual sources of data. Other approaches impute
a pseudo-variable to absorb residual confounding
between measured variables [36, 37, 38].

However, our ongoing research’s focus assumes

Figure 2: Schema depicting our literature-informed
causal modeling toolkit.

the existence of computable knowledgemined from
the literature to help select covariates to facilitate
causal inference. Computable knowledge mined
from the biomedical literature in the form of ma-
chine readable concept-relation-concept semantic
predications could be useful for identifying rel-
evant biomedical concepts such as confounders
given a drug exposure and a health outcome of
interest. This paper’s primary contribution is the
description of how standard epidemiological defi-
nitions can be used to map concepts in literature-
derived computable knowledge to observed, mea-
sured variables in free-text clinical narrative data
derived from EHR relevant for controlling con-
founding bias.

2.1. Components of a causal inference toolkit
In the next section, we introduce background

material vital to understanding our methods in
terms of the essential components and procedures.
Figure 2 illustrates our toolkit’s components for
leveraging background knowledge from the litera-
ture to catalyze causal inference.

2.1.1. Causal inference

The field of causal inference concerns itself
with the development of methods for estimating
causal parameters of interest. Note that in the
causal inference literature, the exposure is often
referred to as the "treatment," andwe shall use both
terms interchangeably (also, treated and untreated
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can stand in for exposed and unexposed).
A common goal of causal inference is to esti-

mate the average treatment effect (ATE). The ATE
represents an expectation (or population-level av-
erage, or mean) quantifying the extent to which an
intervention (such as a drug exposure) would affect
an outcome of interest (such as an adverse event),
given two cohorts (one exposed and the other unex-
posed) with similar characteristics. Causal infer-
ence is achieved by calculating themean difference
in potential outcomes across exposed and unex-
posed subgroups with similar pre-exposure char-
acteristics, or confounders. The do(.) operator first
introduced by Pearl was invented to complement
conventionalmathematical notation to denote such
an operation [34].

For a binary (non-dose-dependent) treatment
A with effect Y, ATE can be estimated as a con-
trast between two levels: the exposed and unex-
posed groups given observed confoundersW. The
lowercase a denotes the variable being fixed to
set value, where a = 1 for exposed and a = 0 for
unexposed. (Henceforth, we shall refer to drug
exposures and treatments interchangeably.) The
ATE (henceforth denoted Δ) is expressed as the
following equation:

E[Y |do(A)] = E[Y |a = 1,W ]−E[Y |a = 0,W ]

(1)

This equation defines the adjusted treatment effect,
and adjusts for confoundersW. However, in order
for Equation 1 to estimate causal effects reliably,
these confounders must first be identified. Con-
sequently, the next important task is to determine
the features or variables W for which to adjust.

To identify confounders, causal theory has in-
troduced the notion of backdoor paths or paths that

point into the exposure, resulting in a mixture of
both the confounder’s and the exposure’s effects.
The backdoor-criterion stipulates that causal in-
ference is possible if a set of covariates W can be
found that block all "backdoor" paths fromA toY.
If so, then bias from confounding can be reduced
or eliminated [34].

In the next section, we discuss computable
knowledge resources and the methods that can rea-
son over large volumes of computable knowledge
extracted from the published biomedical literature
to provide convenient access to identify contextu-
ally relevant knowledge.

2.1.2. Literature-based discovery

The objective of literature-based discovery re-
search (henceforth, LBD) is to reveal meaningful
but implicit connections between biomedical enti-
ties of interest in the published literature [39, 40,
41]. The late Don Swanson pioneered LBD in his
seminal work, discovering the potential of fish oil
to treat Raynaud’s syndrome [42], an example we
will return to below. Much early work in LBD
focused on investigating the strength of associa-
tion between concepts and exploiting insights from
information retrieval into concept co-occurrence
patterns. However, concept co-occurrence alone
can produce more hypotheses than it is possible to
review.

To further constrain the results returned by
LBD systems, researchers have developed ways to
exploit information concerning the nature of the re-
lationships between biomedical concepts. Revis-
iting Swanson’s original example with fish oil, re-
searchers noticed that it was useful to pay attention
not only to concepts themselves but to information
concerning relationships between concepts [43,
44]. For example, certain drug concepts are known
to treat diseases, and so the drug and the disease
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are related through a TREATS relationship. Other
drug exposures may be known as causal agents of
the adverse events in the published literature, and
thus be related via the CAUSES predicate, i.e.,
Vioxx CAUSES acute_myocardial_infarction.

To demonstrate how such knowledge can be
useful, consider the example of Raynaud’s dis-
ease, from Don Swanson’s work [42]. Raynaud’s
is a circulatory disorder manifesting in skin dis-
coloration affecting the extremities. Blood vis-
cosity (loosely defined as “thickness” or “sticki-
ness”) is implicated as a mechanism in Raynaud’s,
[42, 45], with increasing viscosity in cold condi-
tions thought to impede circulation to the periph-
eral extremities causing them to appear white or
blue, the primary symptom of Raynaud’s. Swan-
son noticed that fish oil could have the effect of de-
creasing blood viscosity, thus leading to his thera-
peutic hypothesis that fish oil can treat Raynaud’s
by countering the mechanisms of Raynaud’s. Ex-
trapolating from Swanson’s example, researchers
paid attention to how concepts were related to each
other (e.g., A increases B, B decreases C in the ex-
ample above), and were able to manually extrapo-
late useful patterns, called discovery patterns, that
could generate biologically plausible hypotheses
for novel therapies [46, 43]. Discovery patterns
define semantic constraints for identifying con-
cepts related to each other in particular ways [46].

We conjecture that standard epidemiological
definitions for confounding may be translated into
discovery patterns for identifying concepts describ-
ing confounders for which to adjust to enhance in-
ference from observational data by reducing con-
founding bias.

2.1.3. SemMedDB - a causal knowledge resource

SemMedDB is a knowledge database deployed
extensively in biomedical research and developed

at the US National Library of Medicine. The
knowledge contained in SemMedDB consists of
subject-predicate-object triples (or predications)
extracted from titles and abstracts in MEDLINE
[47] using the SemRep biomedical NLP system
[47, 48, 49]. SemRep can be thought of as a ma-
chine reading utility for transforming biomedical
literature into computable knowledge. Employ-
ing a rule-based syntactic parser enriched with
domain knowledge, SemRep first uses the high
precision MetaMap [50] (e.g.,estimated at 83%
in [48]) biomedical concept tagger to recognize
biomedical entities (or concepts) in the Unified
Medical Language System (UMLS). The UMLS
is a compendium of codes and terms for represent-
ing concepts across many health and biomedical
domains used to enable semantic processing and
translation across terminologies [51].

Next, SemRep categorizes how the recognized
concepts are associated given a fixed set of nor-
malized, pre-specified predicates (with thirty core
predicate types) corresponding to relations of biomed-
ical interest, e.g.,CAUSES, PREDISPOSES,TREATS,
PREVENTS, STIMULATES, INHIBITS,AFFECTS
[51, 48]. For example, the predication "ibuprofen
TREATS inflammation_disorder" was extracted
by SemRep from the source text: "Ibuprofen has
gained widespread acceptance for the treatment
of rheumatoid arthritis and other inflammatory
disorders." In the next subsection, we describe
a knowledge representation scheme for accessing
computable knowledge extracted from the litera-
ture.

2.1.4. Predication-based Semantic Indexing (PSI)

Predication-based semantic indexing, or PSI,
defines a scheme for encoding and performing ap-
proximate inference over large volumes of com-
putable knowledge [52]. The basic premise of
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distributional semantics is that terms that appear
in similar contexts tend to have similar meanings
[53].

By encoding the contexts in which terms ap-
pear, methods of distributional semantics provide a
natural way to extrapolate semantics automatically
from a corpus. PSI’s approach to distributional
semantics derives from the Random Indexing (RI)
paradigm, wherein a semantic vector for each term
is created as the (possibly weighted) sum of ran-
domly instantiated vectors - which we will refer
to as elemental vectors as they are not altered dur-
ing training - representing the contexts in which
it occurs. [54, 55]. To adapt the RI approach
for encoding concept-relation-concept triples ex-
tracted from the literature by SemRep, PSI adopts
an approach that is characteristic of a class of
representational frameworks collectively known
as vector-symbolic architectures [56, 57, 58], or
VSAs. VSAs were developed in response to a de-
bate (with one side forcefully articulated in [59])
concerning the ability to represent hierarchical
structures in connectionist models of cognition.

In RI, elemental vectors of high dimensionality
(of dimensionality ≥ 1000), with a small number
of non-zero values (≥ 10) which are set to either
+1 or -1 at random, are generated for each context
(where a context might represent a document or
the presence of some other term in proximity to
the term to be represented). The resulting vectors
have a high probability of being approximately or-
thogonal, ensuring that each context has a distinct
pattern that acts as a fingerprint for it. Alterna-
tively, and as is the case with the current research,
high-dimensional binary vectors (of dimensional-
ity ≥ 10000 bits) can be employed as a unit of
representation. In this case, vectors are initial-
ized with an equal number of 0s and 1s, assigned

randomly. While these vectors are not sparse in
the "mostly zero” sense, they retain the desirable
property of approximate orthogonality [60], with
orthogonality defined as a hamming distance of
half the vector dimensionality.

VSAs provide an additional mechanism for en-
coding structured information by using what is
known as a “binding operator”, a nomenclature
that suggests its application as a means to bind
variables to values within the connectionist rep-
resentational paradigm. The binding operator is
an invertible operator that combines two vector
representations a and b, to form a third c that is
dissimilar to its component vectors. As this op-
eration is invertible, a can be recovered from c
using b, and vice-versa. Thus, through the invert-
ibility property of the binding operation, a value
can be recovered from a variable to which it is
bound, thereby facilitating retrieval from the en-
coded computable knowledge.

PSI is implemented in the open-source and
publicly available Semantic Vectors package
written in Java [61], and in the context of SemMedDB
is applied to concepts which are defined by nor-
malized biomedical entities in the UMLS hierar-
chy, rather than the original terms as encountered
in the biomedical source text.

The resulting models have been applied to
a range of biomedical problems (as reviewed in
[62]). PSI accepts semantic predications as input
and transforms that input into a searchable vector
space that may then be used as a search engine
to retrieve confounders. Next, we describe how
PSI spaces are built and introduce semantic vec-
tor algebra, a convenient shorthand to describe the
training processes of PSI spaces and to compose
useful queries over the resulting PSI spaces.
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Training a PSI space

The process for training PSI begins by making
an elemental vector, denoted E(.), for each unique
concept and each unique relation, in the corpus.
PSI constructs semantic vectors, denoted S(.), by
superposing, denoted +=, the bound product of
the elemental vectors of each relation and concept
with which it co-occurs. The binding operation,
denoted⊗ is invertible, and its inverse, called ’re-
lease,’ is denoted ⊘. PSI encodes the semantic
predication "aspirin TREATS headaches" like so:

S(aspirin) += E(TREATS)⊗E(headaches) (2)

Note that for directional predications, the inverse
predicate is also encoded. For a predicate like
"TREATS," the meaning would be "TREATED
BY," here denoted TREATSINV, thus:

S(headaches) += E(TREATSINV)⊗E(aspirin)

(3)

However, no such representation is made for predi-
cates lacking “direction” such asCOEXISTS_WITH
and ASSOCIATED_WITH. These predicates are
their own inverse.

After a PSI model has been trained, the result-
ing PSI space may be searched. As we explain be-
low, the process of querying the PSI space reverses
the operations used in the training procedure.

Querying a PSI space

PSI can perform approximate inference over
the knowledge it has encoded after a semantic
space has been constructed from the semantic pred-
ications. The Semantic Vectors package [63,
64] implements a VSA-based query language that
facilitates queries to the resulting vector space,

which underlies theEpiphaNet system for literature-
based discovery [65].

The Semantic Vectors query language pro-
vides a calculus for using vector algebra to perform
logical inference over the computable knowledge
containedwithin the vector space, enabling discov-
ery pattern-based search. It provides a functional
implementation of the binding and superposition
operators used in VSAs. However, in this imple-
mentation it is important to note that binding and
release are equivalent (⊗ == ⊘), and as such are
both represented with the symbol ⊗ (this follows
from the use of pairwise XOR as a self-invertible
binding operator in binary vector based PSI im-
plementations). In this calculus, P (.) denotes an
elemental predicate vector (while, as mentioned
earlier, S(.) and E(.) denote a semantic vector or
elemental vectors for a concept, respectively). We
demonstrate the application of this syntax using
an example composite PSI query for searching for
concepts treated by the anti-diabetic drug rosigli-
tazone, that also causes heart attacks.

S(rosiglitazone)⊗P (TREATS)+

S(AMI)⊗P (CAUSESINV)

In the above PSI query, the syntax denotes a
binding (or release -⊗) operation between the se-
mantic vector of rosiglitazone with the predicate
vector (of the predicate TREATS). The resulting
bound product S(rosiglitazone)⊗ P(TREATS) is
a vector that we would anticipate being similar to
the elemental (random index) vectors for the terms
representing such entities. In the next component
of the query, the semantic vector for acute myocar-
dial infarction (abbreviated "AMI") is bound to the
predicate vector forCAUSESINV that can be read as
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"is caused by."Wewould expect entities of interest
to have elemental vector representations similar to
this bound product. The similarity between these
vector representations is a natural consequence of
the following steps that occur during training of the
model, with diabetes mellitus (DM) as an example
of an entity that meets the desired constraints:

S(rosiglitazone) += P (TREATS)⊗E(DM) (4)

S(AMI) += E(CAUSESINV)⊗E(DM) (5)

The binding operator used in the current imple-
mentation of PSI (pairwise exclusive or XOR with
binary vectors as the base representation) is its own
inverse, so we would expect E(DM) to be sim-
ilar to both S(rosiglitazone)⊗ P(TREATS) and
S(AMI)⊗ P(CAUSESINV) at the conclusion of the
training process.

Recall that the semantic vector derives themean-
ing for each concept from the contexts (other terms
and predicates) inwhich it has appeared. Concepts
occuring in similar contexts, and therefore vector
representations, will tend to have similar mean-
ings. Concepts with similar meanings have similar
vectors because semantic vectors (S) are initially
zero vectors but accumulate representational in-
formation during the training. After training, the
semantic vectors represent the superposition (ac-
complished by counting the number of set and
unset bits added to the semantic vector during the
training, and taking a majority vote with ties split
at random) of the bound products of the elemental
(E) and predicate (P) vectors representing the other
concepts they occur with in semantic predications.

For the current research, the concepts that score
most highly would ideally be confounders (com-

mon causes of both the drug exposure and the
adverse event (outcome)). The next set of con-
cepts in order of rank would be either upstream of
the exposure or the outcome. Concepts that follow
would be, to varying degrees, irrelevant.

Combining knowledge with data

PSI can also be used to generate discovery pat-
terns automatically [66, 67]. Using Semantic
Vectors syntax, we can both query the search
space using discovery patterns, and generate dis-
covery patterns from sets of paired cue terms [67,
66, 68]. In [66], PSI was used to recapitulate the
discovery pattern manually constructed in [43].
While generating patterns automatically for this
work, we observed that certain of these discovery
patterns generated by PSI produced results sugges-
tive of potential common causes of both the expo-
sure and outcome - in other words, confounder
candidates.

We noticed that a recurring discovery pattern
is given a drug and an outcome was TREATS +
COEXISTS_WITH, which suggests that rather than
causing an outcome, a drug may treat a related
comorbidity. (Furthermore, were it not for the
related comorbidity, the patient would likely not
have received the treatment, justifying the causal
interpretation of the confounder "causing" the ex-
posure).

Covariates (confounder candidates) that lie along
the path of an inferred discovery pattern can be
retrieved by constructing queries using the same
Semantic Vectors syntax, as illustrated by the
example confounders identified in Table 1 from
querying a PSI space for concepts that relate to the
(drug) allopurinol and adverse event (AE) acute
liver failure in particular ways. Note that the first
two confounder discovery patterns (which have
only one predicate) in Table 1 only retrieve con-
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Using computable knowledge to elucidate confounders

Table 1
This table illustrates concepts retrieved using discovery pattern search
for the drug allopurinol and the adverse event acute liver failure. "AE" =
adverse event. "INV " = the inverse relation, i.e., "caused by."

Discovery pattern Sample concepts retrieved

P (CAUSESINV)⊗S(AE) transplantation, embolism

P (PREDISPOSESINV)⊗S(AE) transplantation, embolism

S(drug)⊗P (TREATS)+ pericarditis, gout
S(AE)⊗P (COEXISTS_WITH) kidney failure

cepts that are causally related to the outcome.
In previous work [26], we tested the extent

to which literature-derived confounders could be
used to accurately distinguish known causally re-
lated drug/adverse event pairs fromother drug/event
pairs with no known causal relationship by adjust-
ing statistical models (multiple variable logistic
regression) of data embedded in free-text clinical
narrative [26]. Using the discovery patterns enu-
merated in Table 1, our goal was to see if includ-
ing literature-derived covariates suggestive of con-
founding could reduce bias in data derived from
free-text clinical narratives extracted from a large
(de-identified) corpus of EHR data. For method-
ological evaluation, we used a publicly available
reference dataset [69], containing labeled drug/ad-
verse event pairs, including negative control pairs
for which no relationship is known to exist. Next,
we integrated up to ten literature-derived covari-
ates into statistical models of EHR data using mul-
tiple logistic regression [26]. We used the top ten
ranked confounders from PSI as a heuristic, be-
cause the top ten results generally made sense to
subject-matter experts upon inspection. However,
quality degraded in many cases after that rank.

We defined performance as our methodologi-
cal variants’ ability to discriminate genuine causal
associations from non-causal associations as la-

beled in the reference dataset. We measured per-
formance by building literature-informed models
instantiated with EHR data and comparing the per-
formance ofmodels informed by literature-derived
confounders with that of naive estimates of associ-
ation (e.g., reporting odds ratio and �2). To sum-
marize performance quantitatively, we calculated
Area under the ROC (AUROC) from the ranked
order of exposure coefficients from the literature-
informed logistic regression models, and com-
pared these with their �2 baselines. Including
literature-identified covariates resulted in a mod-
est overall performance improvement of +.03 AU-
ROC, depending on the statistical power of the
available evidence used as input. A key find-
ing was that the dual predicate discovery pattern
TREATS+COEXISTS_WITH provided the most
substantial performance improvement compared
with single predicate discovery patterns. We rea-
soned that the dual predicate discovery pattern was
better able to reduce confounding in the aggregate
because it captures more information about both
the exposure and outcome mechanisms, whereas
single predicate discovery patterns only captured
information about outcome mechanisms. This
finding guides the choice of discovery patterns
we have used in subsequent work, including the
present paper.
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In a follow-up study employing the same ref-
erence dataset and EHR-derived data, we again
used PSI to identify causally relevant confounders
to populate graphical causal models and inform
causal discovery using causal structure learning
methods [70]. Graphical causal models repre-
sent variables as nodes and causal relationships
as directed edges. We hypothesized that the struc-
ture learning algorithmwould predict fewer causal
edges in light of the literature-derived confounders
for the negative controls than for the reference
dataset’s positive control relationships. We used
the causal semantics of the predicates to orient
the directed edges in causal graphs. We used
the TREATS+CAUSESINV discovery pattern to
identify indications that are treated by the expo-
sures and that were also noted to cause the adverse
drug reactions. WepickedTREATS+CAUSESINV
since drugs that are prescribed for an indication
would likely not be taken were it not for the indi-
cation for which they were prescribed. The top-
ranked literature-derived confounder candidates
were then incorporated into graphical causal mod-
els. To learn graph structure, we employed the
Fast Greedy Equivalence Search algorithm (FGeS)
[71] implemented in the TETRAD causal discov-
ery system [72, 73] with default algorithm hyper-
parameters. FGeS is a causal structure learning
algorithm that works by stochastically adding and
subtracting edges until the graph’s fit for the ob-
served data is optimized. Each drug/adverse event
pair was given a score determined by the ratio of
causal edges between the exposure and the out-
come in the presence of all possible unique per-
turbations of five literature-derived confounders.
Improvements in the order of +0.08 AUROC over
baselines were noted from this experiment.

2.2. The aim of the present study
The present study documents our framework’s

current stage of evolution for using computable
knowledge extracted from the literature to facilitate
more reliable causal inference from observational
clinical data by reducing confounding bias. In our
previous work, what was not clear is the extent
to which the representation scheme affected the
quality of the confounders and subsequently the
performance of models. To probe this and other
questions, we tested the following hypotheses:

• [H1]: that (overall) literature-informedmod-
els will reduce confounding bias in mod-
els of EHR-derived observational data and
thereby improve causal inference from these
data; [premise: incorporating confounders
into models should reduce confounding bias
compared to naive measures of association]

• [H2]: that incorporating more literature-
derived confounders will improve perfor-
mance over models with fewer such con-
founders; [premise: models with more con-
founders should perform better since models
with fewer confounders may result in omitted
variable bias]; and

• [H3]: that semantic vector-based discovery
pattern confounder search (which compactly
encode a vast array of information) will im-
prove upon string-based search [premise: a
compact representation incorporating global
knowledge of causal mechanisms should bet-
ter prioritize information].

This paper builds upon an active research pro-
gram for performing inference across large vol-
umes of knowledge, though our goal is slightly
different in that we are leveraging inference to in-
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fer relationships to better interpret data. This pa-
per’s primary contributions are to highlight how
background knowledge can be used to 1.) eluci-
date specific confounding factors and 2.) facilitate
causal inference from observational clinical data
in a practical setting - that of drug safety from
real-world data.

3. Materials and Methods
3.1. Extracting and representing clinical narrative

We used data available from previous projects
to benchmark the performance of the new ap-
proaches. Following IRB approval and a data us-
age agreement, we obtained permission to use the
same data as in our prior studies [26, 70] from the
University of Texas Health Science Center clinical
data warehouse [74, 75]. These data included a
large random sample of 2.2 million free-text clin-
ical narratives recorded during outpatient encoun-
ters involving approximately 364,000 individual
patients during the years 2004 and 2012 in the
Houston metropolitan area.

To reveal data in the clinical narratives for
downstreamanalysis, unstructured information em-
bedded in the free-text narrative part of the EHR
was converted to a structured format. Accurate
named entity recognition (NER) is necessary for
causal inference because inference requires data
representations faithful to the source information.
Clinical texts are known to have unique character-
istics (e.g., frequent acronyms and abbreviations)
that require extensive knowledge to disambiguate.
Special tools are needed to process such informa-
tion to take advantage of the particular characteris-
tics of clinical language. Such issues motivate the
development of clinical NER systems such as the
well-regarded Medical Language Extraction and
Encoding (or MedLEE, for short) clinical natu-

ral language processing (NLP) system. We pre-
processed the free-text narratives using MedLEE.

The original decision to use MedLEE was mo-
tivated by its performance characteristics described
in the literature (see for example [76]), and the fact
that internal evaluations conducted with a locally
constructed reference set established thatMedLEE
had the best "out-the-box" performance across a
range of clinical NLP tools that were publicly
available at the time.

At the time the NLP extraction from the EHR
was performed, MedLEE was the state-of-the-art
tool for this task [77, 76, 78]. MedLEEcan identify
clinical concepts accurately from clinical notes,
with a recall of 0.77 and a precision of 0.89 [77].
In another more recent study from 2017, MedLEE
was used to detect early signs and symptoms of
multiple sclerosis from clinical notes with an AU-
ROC of 0.90 [0.87-0.93], sensitivity of 0.75 [0.66-
0.82], and specificity of 0.91 [0.87-0.93] [79].

MedLEE encodes each concept it recognizes
with a concept unique identifier (CUI) in theUMLS
in a structured machine readable output format
[80, 51].

To complete the unstructured data’s transfor-
mation into a structured (rectangular) dataset, we
needed to extract document level concept co-occurrence
statistics from the MedLEE output. To achieve
this, we used the Apache Lucene [81] text in-
dexing engine to create an index containing the
normalized concepts mined from the MedLEE-
processed clinical notes. We then queried the in-
dex for each concept identified in the MedLEE
output, extracted document-by-concept binary ar-
rays for each concept, and stored the resulting bi-
nary arrays in compressed files stored locally on
disk. These binary arrays represent whether a con-
cept was mentioned in a particular document. We
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compiled rectangular matrices by appending the
resulting binary arrays (representing the presence
[1] or absence [0] of a concept mentions) as our
primary source of empirical data with which to
test our inference procedures and instantiate our
models.

3.2. Reference dataset
We used the popular reference dataset com-

piled by theObservationalMedicalOutcomesPart-
nership (OMOP) for performing a methodological
evaluation of novel drug safety methods [69]. The
OMOP reference dataset includes 399 drug/ad-
verse event pairs for four clinically important ad-
verse events.

Since the OMOP reference dataset was origi-
nally published (in 2014), varying degrees of ac-
cumulating evidence have cast doubt on specific
drug/adverse event pairs’ negative control status.
Hauben et al. published a list of mislabeled false
negatives in the reference dataset [82] of negative
control drug/adverse event pairs that have been im-
plicated in adverse events from case reports, the
literature, and pre-clinical studies. Correcting for
the mislabeled false negatives noted by Hauben
reduced the number of pairs for comparative eval-
uation. The number of pairs was reduced still
further by factoring in limitations of the available
empirical evidence.

Not all of the drug/adverse event pairs were
well represented in the available data. We es-
tablished inclusion criteria for which drug/adverse
event pairs and covariates to include in our anal-
ysis by considering the implications of Peduzzi et
al. [83] for the statistical power of the available
EHR data. These authors studied the relationship
between "events per variable" on type I and type
II errors and the accuracy of variance [83]. The
authors found that variables with fewer than ten

events per variable aremore likely to be biased. As
per Peduzzi’s study, we constrainedwhich biomed-
ical entities or concepts (drug exposures, adverse
events, or confounders) to those that occurred at
least ten times. We have reported the number of
drug/adverse event pairs that were compared in
Table 2 (in parentheses), along with the number of
drug/adverse event pairs in the original reference
dataset (not in parentheses).

To consolidate evidence that otherwise may
have been diluted across synonyms, we used the
UMLS meta-thesaurus to map between synonyms
of the adverse events and applied RxNorm map-
ping for synonym expansion at the clinical drug in-
gredient level. RxNorm provides a mapping from
normalized names of drugs to codes used in the vo-
cabularies of commonly used in standard clinical,
pharmacological, and biomedical database appli-
cations [84]. For example, Ibuprofen’s generic
concept is encoded with a UMLS concept unique
identifier (CUI) string of C0020740, while the spe-
cific concept that refers to a brand-name instance
of Advil Ibuprofen Caplets is C0305170. We then
applied these mappings to the EHR data by using
RxNorm to map from the more specific concept to
the generic identifier at the pharmaceutical ingre-
dient level.

Preparing SemMedDB

Wedownloaded and imported the latest release
(at the time, version 40) of SemMedDB into a local
instance of theMySQL relational database system.
This version contains 97,972,561 semantic predi-
cations extracted from 29,137,782 MEDLINE ti-
tles and abstracts.

We performed several operations upon it to tai-
lor the information it contains for the requirements
of this study. For example, if a treatment is known
to cause an adverse event, physicians may avoid
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Table 2
This table presents the drug counts for each adverse event in the OMOP ref-
erence dataset. The number of drug/adverse event pairs was reduced by ex-
cluding misclassified pairs published by Hauben [82] and by the limited power
of the available data in the EHR itself. The number in parentheses reflects the
actual count of drug/adverse event pairs that we analyzed.

Adverse Event Type + Case − Ctrl Total
Acute kidney failure (10) 24 (9) 64 (19) 88
Acute liver failure (43) 81 (11) 37 (54) 118
Acute myocardial infarction (15) 36 (23) 66 (38) 102
Gastrointestinal hemorrhage (20) 24 (32) 67 (52) 91

Total (88) 164 (75) 235 (163) 399

that treatment to eliminate the potential for unde-
sirable outcomes. To emulatewhat knowledgewas
publicly available when the reference dataset was
published (2013), we excluded predicates deriving
from publications after December 31st, 2012. We
also removed concepts that occur ≥ 500,000 times
or were considered uninformative, e.g., patients,
Rattus norvegicus.

3.3. Searching SemMedDB for confounders
Wedeveloped and compared two variant meth-

ods for identifying a set of confounder candidates
by searching computable knowledge mined from
the literature (SemMedDB). Both methods apply
semantic constraint search using the TREATS +
CAUSESINV discovery pattern but rely on distinct
knowledge representation frameworks, which we
refer to henceforth as "string-based" and "semantic
vector-based."

3.3.1. String-based confounder search

Our first method is implemented in structured
query language (SQL) and directly queries the
predications table of the SemMedDB relational
database. Each query takes a drug and an adverse
event (called "focal concepts") and applies the
TREATS+CAUSESINV discovery pattern search.
The SQL query consists of two sub-queries - the

first to obtain indications of the drug TREATS and
the second to obtain the indications that also cause
the adverse event. The result set should contain
a list of confounder candidates that fulfill both of
these semantic constraints.

To find the best subset of confounders, we de-
veloped a score to rank the confounders by the
strength of their support as confounders in the lit-
erature. To score confounders, we calculated the
product of the counts for each confounder given
the number of citations from each arm of the dis-
covery pattern query (the TREATS arm and the
CAUSESINV arm). Results were next ranked in
descending order of this product score. To screen
out potential errors from machine reading, con-
cepts with less than two mentions were excluded
from the result set.

3.3.2. Semantic vector-based confounder search

Our second method transforms SemMedDB
using PSI, the distributional representation scheme
introduced earlier, that facilitates vector algebra
inference (for "vector-based" confounder search).
Using the truncated version of SemMedDB de-
scribed above as input, we derived a binary PSI
space with 32,000 dimensions (in bits). We used
inverse document frequency weighting to adjust

SA Malec et al.: Preprint submitted to Elsevier Page 14 of 41

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 4, 2021. ; https://doi.org/10.1101/2020.07.08.20113035doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.08.20113035


Using computable knowledge to elucidate confounders

for frequently occurring but uninformative predi-
cations and removed generic terms with little dis-
criminative meaning (included in Appendix A).

3.4. Additional confounder candidate filtering
procedures
We conservatively mapped between the refer-

ence dataset and concepts from the UMLS and be-
tween observed variables represented in the EHR
data and knowledge represented by concepts in the
UMLS. Confounder candidates were only incor-
porated into models if they appeared in the EHR
data at least ten times with both the exposure and
the outcome variables (following the heuristic of
Peduzzi et al. [83]). Additional filters and crite-
ria were applied for the inclusion of confounder
candidates in the models. For instance, we identi-
fied highly frequent but uninformative stopwords
such as “disease” and “gene” (see Appendix A).
We also excluded concepts that were synonyms
of the drug exposure and adverse event, as these
terms arise from search procedures, sometimes ei-
ther frommachine reading errors or the confounder
search procedure itself. The exclusion of synony-
mous concepts was achieved by checking to see if
the confounder candidate’s preferred name in the
UMLS matched with the strings representing the
drug exposures and adverse event outcomes. Con-
founders were excluded if they matched either the
exposure or the outcome.

To evaluate the effect of adding different amounts
of literature-derived confounders, we applied two
thresholds on the number of confounders: a lower
threshold of five and an upper threshold of ten. In
the next paragraphs, we have explained our rea-
soning for why we chose these thresholds.

String-based search can only yield results that
match strings from user input. In contrast, the
continuous nature of the underlying vector-based

knowledge representation determines that all of the
entities represented in that vector space are related
to varying degrees.

To limit the number of search results, there are
two primary methods: by either applying an arbi-
trary cut-off from the distributional statistics or ap-
plying a threshold that limits the number of search
results. The first method for narrowing search re-
sults operates by setting a cut-off on the number
of standard deviations required to be included in
the search results given the mean similarity scores
from the PSI query. In our internal evaluations,
we attempted to use a threshold of 2.5 standard
deviations to constrain the number of confounders.
However, we found that this approach had detri-
mental effects, including 1.) uneven quality of re-
sults (standard deviation was not sufficient in some
cases to screen out irrelevant noise); 2.) inconsis-
tent numbers of results at that threshold (some-
times many quality confounders, other times, PSI
would filter out seemingly relevant confounders).
That is, working with statistical thresholds proved
difficult as the utility of this threshold varied de-
pending on the query. Accordingly, we chose not
to use a standard deviation based threshold, and
reverted to the second method for limiting results.

For our research problem, we were left with a
heuristic strategy for how to compare the effect of
not only different search and representation strate-
gies (string-based vs. semantic vector-based con-
founder search) and modeling methods but test-
ing the effects of incorporating different amounts
of information, i.e., numbers of literature-derived
confounders.

In our previous experience using the literature
to identify confounder candidates, we observed
that roughly the first ten concepts returned from
our confounder search were medically meaning-
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ful. Hence, we picked ten for the upper threshold.
To simulate omitted variable bias, we divided ten
in half to arrive at the lower threshold of five con-
founders. Thus, there is a reasonable expectation
that roughly comparable numbers of valid con-
founder candidates can be identified within these
thresholds from either string-based and semantic
vector-based confounder search can be integrated
into the models.

3.5. Assembling models from knowledge and data
As input, concept-by-observationmatriceswere

constructed for each drug/adverse event in the ref-
erence dataset for which we possessed sufficient
data. The input matrices for each drug/adverse
event pair consist of columns representing the drug
exposure, adverse event outcome, and confounder
concepts (where the confounder concepts have been
identified using one of the confounder searchmeth-
ods described above), while each row represents
the presence or absence of concept mentions ex-
tracted from the narratives in clinical notes.

3.5.1. Literature-informed regression modeling

We applied off-the-shelf multiple variable lo-
gistic regression to the EHR data, adjusting for
the literature-derived confounders, where Y = out-
come (the adverse event), A = exposure (drug),
W = the set of confounders, with the Greek let-
ters {�}, {�}, and {} representing the intercept,
the regression coefficients of the exposure and the
covariates, respectively:

logit{prob(Y = 1)} = �+ �A+
k
∑

i=1
(Wi) (6)

In this paper, we use logistic regression as a com-
paratormethod to the exact causal inferencemethod
introduced in the next subsection. Logistic re-
gression provides "guardrails" on more advanced

methods since regression usually does a decent
job at adjustment and provides a predictive check
on the adjustments. For further discussion on the
relationship between causal effect estimation and
regression coefficients, see Chapter 6 in [85].

3.5.2. Literature-informed graphical causal modeling

To construct graphical causal models, we used
the bnlearnRpackage [86]. The bnlearn package
allows the user to incorporate variables and define
the relationships between variables. We exploited
structural information from the literature to create
"white lists" (lists of required edges) and "black
lists" (lists of prohibited edges) to orient those
edges. The white lists contain mandatory labeled
edges between each of the confounders and the
drug and adverse event, while black lists forbid
effects from causing drug exposures.

To learn dependency relationships additional
to those identified from the literature, we applied
the Max-Min Hill-Climbing (MMHC) algorithm,
first described by Tsamardinos et al. [87] and
implemented in bnlearn [86] with default hyper-
parameter settings. MMHC is a hybrid structure
learning algorithm that first uses a constraint-based
search to learn the dependency structure from data
and then orients the edges of the graph using the
a score-based search algorithm that finds a struc-
ture that best fits the data and background knowl-
edge by optimizing a criterion score. We used the
Bayesian Information Criterion score described in
[88]. Next, we applied the maximum likelihood
estimation (MLE) procedure within bnlearn to
find the configuration of weights associated with
each edge in the graph given the data and the graph
structure. These weights quantify the strength of
the dependencies between variables. Once the
structure and the weights have been learned, the
model is ready to answer questions of interest.
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To estimate causal effects, we applied the clas-
sic exact inference procedure known as the junc-
tion tree algorithm, as implemented with default
settings in the R package gRain [89]. The junction
tree algorithm efficiently computes posterior prob-
abilities by transforming the DAG into a tree struc-
ture. The resulting tree structure then propagates
updated values using the sum-productmethod across
the graph. In our use case, the end goal of updat-
ing values is to compute the potential outcomes at
different levels of exposure.

The junction tree method is reasonably effi-
cient because the graph is sparse (unsaturated),
and all calculations are local. Next, we query the
resulting object by telling it to "listen" to the ad-
verse event node in the graph, and by fixing the
value of the exposure/treatment to "1" and then
to "0," and then subtracting the difference to ob-
tain the ATE (Δ) (see Equation 1). More details
about the junction tree algorithm’s derivation may
be found in [90, 91].

3.6. Overview of the evaluation framework
The steps of ourmodeling and evaluation frame-

work are outlined below and illustrated in Figure
3:

1. Query the literature for confounders using
either string-based or semantic vector-based
literature search.

2. Determine the eligibility for the inclusion
of each confounder candidate in the order
of its retrieval. Test each confounder for at
least ten co-mentions with both the drug and
the adverse event using the clinical data and
stop testing after obtaining the thresholds
of five or ten confounding variable candi-
dates, or until reaching the end of the list of
the confounder candidates, if less than the
thresholds, when using string-based search.

3. Build statistical and graphical causal models
incorporating varying numbers of literature-
derived confounders to predict and estimate
causal effects from the EHR-derived empir-
ical data.

We evaluated the performance of our modeling
procedures by comparing the relative performance
of naive measures of association (ROR, and �2)
with statistical and causal models informed by the
literature and instantiated with EHR-derived data.
The EHR data encode concept mentions with dis-
crete dichotomous (binary) variables. We used the
reference dataset labels as ground truth.

Different drug/adverse event pairs can be ex-
pected to have a range of effect sizes, with the
true effect sizes of interest (as one might collect
under randomization) ranging across varying in-
tervals. Two following two assumptions underlie
our methodological comparison:

• ASSUMPTION I: the causal effect esti-
mates and adjusted measures of association
should be greater in magnitude for true posi-
tive drug/adverse event pairs than the causal
effect estimates and adjusted measures of
association for negative drug/adverse event
pairs in the reference dataset; and

• ASSUMPTION II: the effect estimates and
adjusted measures of association of the neg-
ative controls should approach zero.

Working under the above assumptions, we mea-
sured performance by calculating Area under the
Curve of the receiver-operating characteristic (AU-
ROCs), Area under the Precision and Recall Curve
(AUPRC), andMeanAveragePrecision atK (MAP-
K) from the ranked ordering of the following statis-
tics: baselines: [�2, reporting odds ratio (ROR)]
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Figure 3: Illustration of our literature-informed modeling framework.

and modeling scores: the coefficients from per-
forming multiple logistic regression (�) and av-
erage treatment effects (ATE) from the graphical
causal models (Δ).

To evaluate our literature-informed confound-
ing variable identification framework, we aggre-
gated performance statistics across the following
methodological variants:

• more (literature-derived) information vs.
less

• string-based vs. semantic vector-based
search

Finally, to obtain insight into overall perfor-
mance, we needed to consolidate performance statis-
tics across adverse event types, albeit at the ex-
pense of fine detail since each adverse event has a
different underlying prevalence and other unique
characteristics. To calculate global summary scores,
we normalized the scores by transposing themonto

a similar scale. We weighted the scores (whether
� or Δ) for each adverse event type by computing
the proportion of the total number of pairs con-
tributed to the total score from each adverse event
type and then multiplied the individual scores for
each drug / adverse event pair by that proportion.
The weighted scores were then compiled into over-
all weighted metrics.

3.7. Software infrastructure
ThePostgreSQL relational database systemand

various R statistical packages were used to analyze
this study’s data. The list below enumerates that
software packages used for this study: R base ver-
sion 3.6, gRain version 1.3-3: exact causal infer-
ence [89], ggpubr version 0.4.0.999 for boxplots,
RPostgreSQL version 0.6-2: library for R con-
nectivity with Postgres relational database, pROC
version 1.16.1: ROC curves, PRROC: Precision-
Recall curves, tidyverse version 1.3.0: data ma-
nipulation [92], and bnlearn version 4.5: graph-
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ical modeling and parameter estimation [93, 86].
We also used Semantic Vectors version 5.9 [63,
64] (running Oracle Java 1.8.0_231).

The software and more extensive information
and models developed for this paper are publicly
available on the causalSemantics GitHub reposi-
tory. The Material on GitHub includes Receiver-
OperatorCharacteristic (ROC) andPrecision-Recall
curves along with the data tables, box plots com-
paring the various procedures, sample visualiza-
tions of the causal graphical models, and con-
founder sets for the drug/adverse event pairs from
the reference dataset.

4. Results

We begin by enumerating high-level statistics
and then proceed to tease out the strengths and
weaknesses based on what the metrics are telling
us about each of the methodological variants, we
break down the results from comparing ourmodel-
ing procedures in terms of each performance met-
ric. Then we will consider in the discussion the
implications for our hypotheses and future work
and conclude with the lessons learned.

The prevalence of each adverse event in our
EHR data was as follows: acute kidney failure:
4,847; acute liver failure: 28,217; acute myocar-
dial infarction: 54,550; and gastrointestinal hem-
orrhage: 59,695.

We analyzed the number of confounders from
string-based search per drug / adverse event pair
in the reference dataset. The mean number of
confounders per pair was ten, and the median was
approximately seven. The minimum was 0, and
the maximum was 121.

Tables 3, 4, and 5 show the results for vari-
ous performance metrics providing different per-
spectives (AUROC, AUPRC, andMAP-K, respec-

tively) on performance. The AUROC in Table 3
provides a global assessment of classifier perfor-
mance irrespective of the classification threshold,
while AUPRC in Table 4 is preferred with imbal-
anced reference datasets [94]. Table 5 presents
MAP-K, which considers the top-ranked results,
and is arguably the most important metric for prac-
tical purposes.

Although the subset of the reference dataset we
analyzed was only moderately imbalanced over-
all, the class imbalance for each particular ad-
verse event ranged from approximately balanced
(acute kidney failure - with ten positive cases and
eleven negative control drug/adverse event pairs)
to strongly imbalanced (acute liver failure - with
forty-three positive cases and eleven negative con-
trol drug/adverse event pairs). Note that because
of class imbalance where there are more positive
event pairs than negative, we refrain from giving
equal weight to the performance of acute liver fail-
ure, though we report it in the results.

AUROC

As shown in Table 3, the spectrum of perfor-
mancewas broad. Themethodological variant that
performed well the most consistently was "�5psi"
(or the variant using up to five semantic vector-
based confounders with multiple logistic regres-
sion), followed by "Δ5psi" (or the variant using up
to 5 semantic-vector-based confounders calculat-
ing the ATE), as shown in Figure 4 illustrating un-
weighted overall AUROCs. Improvement over the
baseline was most consistent for gastrointestinal
hemorrhage. Vector-based models bested string-
based models. More vs. fewer confounders was a
draw. Logistic regression estimation performed
better than ATE. We included the scores from
acute liver failure in Figure 4 because the overall
class imbalance was extreme; there were 88 pos-
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itive cases and 75 negative controls, as per Table
2.

AUPRC

AUPRC is preferred in analyzing classification
problems where the classes are not well balanced
between positive and negative labels. AUPRC
scores range from 0.0 being the worst to 1.0 be-
ing the best, unlike AUROC scores, which usu-
ally range from 0.5 to 1.0. Acute kidney failure
had the most improvement in the AUPRC metric
with confounding adjustment. Δ5psi performedwell
the most consistently. Vector-based models bested
string-based models. More vs. fewer confounders
was a draw. ATE performed better than Logistic
regression.

MAP-K

As onemight anticipatewithmethods intended
to correct for false positives induced by an other-
wise unmeasured confounding effect, consistent
performance improvements with adjustment are
found with the MAP-K metric, which measures
the accuracy of the top-ranked (most strongly pre-
dicted) results. Arguably, MAP-K is the most
important metric for prioritizing signals, the pri-
mary application focus of this paper. The im-
portance of MAP-K is apparent when comparing
overall performance between the best baseline and
best-adjusted models, with improvements of 0.05
and 0.1 with k=10 and 25, respectively. The
best performance was observed with theΔ5psi mod-
els, which scored the highest MAP-K with k=25.
Vector-based models bested string-based models.
More vs. fewer confounders was a draw. ATE
performed better than Logistic regression.

Performance Summary

While performance differs across metrics, ad-
justment using the literature-derived confounders
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Figure 4: Unweighted AUROC for best results for
literature-derived confounders (querying method = PSI,
# of confounders = 10) vs. (baseline = �2). Light gray
= �2. Medium gray = [logistic regression coefficient].
Black = [average treatment effect/Δ]. The numbers to
the right of the ROCs represent the 95% confidence in-
tervals.

improved predictive and causal inference perfor-
mance over naive baselines of association across
all four adverse events. There were substantive
improvements for particular adverse events, with
increases in AUROC of 0.1 and 0.2 over the best
baseline model with the best-adjusted models for
gastrointestinal hemorrhage and acute kidney fail-
ure, respectively, and smaller but consistent im-
provements in AUPRC where best performance
was always attained by one of the adjusted mod-
els. considering the class imbalances of each con-
dition and the importance of MAP-K, The best
performance was most frequently attained by Δ5psi
models. In general, semantic vectors-based mod-
els bested string-based models, fewer confounders
bested more (though not always, particularly using
the MAP-K metric), and Δ bested � estimates.
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Table 3
This table shows AUROC scores from the various models. �2 = chi squared. � = coefficient from mul-
tiple variable logistic regression. Δ = average treatment effect using graphical causal models. Results
exceeding best baseline performance are in boldface. † indicates best performance for a side effect.

Baselines Statistical
Models

Causal
Models

Adverse event type [+ ctrls, -
ctrls]

ROR �2 �5sql �5psi �10sql �10psi Δ5sql Δ5psi Δ10sql Δ10psi

Acute kidney failure [10+, 9-] 0.6222 0.4667 0.6 0.7444 0.5667 0.6222 0.5 0.8111† 0.5111 0.5
Acute liver failure [43+, 11-] 0.5835 0.5814 0.6004 0.6723 0.4905 0.6765† 0.4926 0.5243 0.5433 0.5624
Acute myocardial infarction [15+,
23-]

0.6261 0.6754 0.658 0.5159 0.4783 0.5217 0.6 0.6725 0.6667 0.6464

Gastrointestinal hemorrhage
[20+, 32-]

0.5688 0.6 0.5672 0.7078 0.5688 0.7156† 0.5484 0.55 0.5203 0.4891

Weighted overall AUROC [88+,
75-]

0.5933 0.5959 0.6032 0.6556† 0.5363 0.6005 0.5215 0.6466 0.561 0.5513

Table 4
Area under the Precision Recall Curve (AUPRC).

Baselines Statistical
Models

Causal
Models

Adverse Event Type [+ ctrls, -
ctrls]

ROR �2 �5sql �5psi �10sql �10psi Δ5sql Δ5psi Δ10sql Δ10psi

Acute kidney failure [10+, 9-] 0.4415 0.47 0.4316 0.3832 0.4535 0.4276 0.4889 0.6785† 0.4781 0.5032
Acute liver failure [43+, 11-] 0.7554 0.7562 0.7464 0.7057 0.7726 0.8055 0.7875 0.7028 0.7303 0.8281†
Acute myocardial infarction [15+,
23-]

0.3387 0.5277 0.4816 0.3743 0.4018 0.3735 0.4499 0.5429 0.5631† 0.4943

Gastrointestinal hemorrhage
[20+, 32-]

0.3243 0.308 0.3192 0.2744 0.3189 0.2735 0.3694 0.3773† 0.3344 0.3397

Weighted overall AUPRC [88+,
75-]

0.4841 0.5266 0.5117 0.4533 0.5092 0.457 0.5357 0.5929† 0.5356 0.5566

5. Discussion
[H1]: Does literature-informed modeling reduce bias?

In most cases, the adjusted models show per-
formance improvements over the unadjusted base-
line measures of association. While there was a
substantial reduction of bias, there was room for

improvement. The overall improvement was con-
sistent with but not significantly better than that
from previous work [26, 70].

We analyzed the distribution of the Δs and �s
across the methodological variants. Across all ad-
verse events, the mean Δs for the positive controls

Table 5
Mean Average Precision at K. ROR = reporting odds ratio. �2 = chi squared. � = generalized linear
models (multiple variable logistic regression). Δ = average treatment effect using graphical causal models.
Results exceeding best baseline performance are in boldface. † indicates best performance for a side
effect.

Baselines Statistical
Models

Causal
Models

Adverse Event Type [+ ctrls, -
ctrls]

ROR �2 �5sql �5psi �10sql �10psi Δ5sql Δ5psi Δ10sql Δ10psi

K = 10

Acute kidney failure [10+, 9-] 0.4756 0.4921 0.4106 0.3068 0.4768 0.4135 0.5378 0.7032† 0.4756 0.5653
Acute liver failure [43+, 11-] 0.8955 0.8917 0.8389 0.7579 0.8803 0.725 0.7972 0.8951 0.6815 0.9627†
Acute myocardial infarction [15+,
23-]

0.4889 0.5981 0.4974 0.4021 0.4911 0.4155 0.5193 0.8529† 0.7296 0.5883

Gastrointestinal hemorrhage
[20+, 32-]

0.5556 NA NA NA 0.1 0.125 NA 0.325 0.125 0.2

K = 25

Acute kidney failure [10+, 9-] 0.4866 0.515 0.4751 0.4166 0.5057 0.4665 0.5422 0.7277† 0.5229 0.5477
Acute liver failure [43+, 11-] 0.7993 0.7863 0.7767 0.7132 0.8449 0.7067 0.8163 0.8764 0.7085 0.9051†
Acute myocardial infarction [15+,
23-]

0.3795 0.6056 0.54 0.4227 0.455 0.4261 0.5092 0.6715† 0.6595 0.5618

Gastrointestinal hemorrhage
[20+, 32-]

0.4258† 0.2093 0.224 0.1937 0.255 0.1857 0.3025 0.3739 0.2361 0.2626
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were higher than for the negative controls in the
reference dataset. For example, for Δ10psi, the mean
Δ for the negative controlswas 0.03 (for reference,
the meanΔ of the positive controls was 0.05). An
ideal deconfounding method would reduce the Δs
for the negative controls to zero. This was not the
case with certain cases, where the mean adjusted
scores for the positive cases were lower than the
negative controls, thus violating ASSUMPTION
II mentioned earlier. We explore this issue in more
detail below.

[H2]: Does adding more literature-derived
confounders versus fewer improve performance?

For two out of threemetrics, as per Tables 4 and
5 (remembering that acute liver failure is problem-
atic in its level of class imbalance towards the pos-
itive), many of the high-performing methodologi-
cal variants were those with five literature-derived
confounders, though that was not always the case.
From the standpoint of causal theory, what may be
happening is that the additional confounder candi-
dates at the higher threshold are introducing over-
control bias [95] and in other cases the additional
confounders address omitted variable bias, result-
ing in better performance [96]. Thus, the extent to
which adding more literature-derived confounders
is inconclusive, and likely depends on the partic-
ular local causal structure and quality of data in
each case.

[H3]: Which confounder search method (string-based
versus semantic vector-based) results in better
performing models?

We can observe interesting patterns compar-
ing the individual adverse drug reaction summary
results of string-based or semantic vector-based
confounder search.

With few exceptions, models informed with
confounders from semantic vector-based confounder

search performedbetter thanmodels informedwith
confounders from string-based confounder search.
We expected the string-based search’s conserva-
tive nature to result in missing coverage of many
drug/adverse event pairs. In many cases, this sus-
picion was confirmed when no confounders were
available after screening out synonyms of the ex-
posure and outcome and stopword-like concepts
for the biomedical domain, e.g., patients, thera-
peutic procedure, Rattus norvegicus).

It is clear that how knowledge is represented
and organized can affect measures of topical rel-
evancy, which in turn affect the specific set of
confounder candidates retrieved by a query. The
question of how the representation of knowledge
affects model performance is an important one. It
also follows that the quality of the confounders
affects the ability of the method to reduce con-
founding.

The present paper partially lends supportive
evidence for what Vanderweele calls the disjunc-
tive cause criterion, or DCC [97, 5]. The DCC
is a criterion for selecting covariates for which to
adjust and recommends selecting known determi-
nants of either the exposure or the outcome, or
both. Arguably, a major factor bolstering the per-
formance of semantic vector-based search is the
proportion of cue concept (drug or exposure) con-
texts occupied by the target (confounder) concept
in the underlying knowledge representation.

To the extent that PSI can pick either determi-
nants of the exposure or the outcome or both, our
framework is a step toward implementing the DCC
for (partially)-automated causal inference. In con-
trast to the relatively brittle Boolean confounder
search used with string matching, the Hamming
distance metric used to measure the similarity be-
tween vector space representations is continuous
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in nature, permitting partial match when only one
of the two constraints is met.

To extrapolate from our results, a key factor
bolstering the performance of semantic vector-
based search lies in its knowledge representation.
The advantage of using semantic vector-based search
over string-based search is analogous to the ad-
vantages offered by Salton’s original vector space
model as an alternative to Boolean retrieval when
it was first introduced [98, 99].

Recall that the median count of confounders
per drug/adverse event pair in the reference dataset
(from string-based search)was approximately seven.
This means that string-based search was limited
by whether or not it could find an exact match in
SemMedDB.

The finding of improved performance is per-
haps not surprising, given the development effort
that has improved PSI’s ability to perform approx-
imate reasoning over large bodies of knowledge.
One explanation for why semantic vector-based
confounder search performed better than string-
based search is that semantic vector-based search
can better integrate relevant informationmore flex-
ibly: because semantic vector-based search quan-
tifies results on a continuous scale, unlike the ex-
act matching underlying the basis of string-based
search. Another explanation for why semantic
vector-based search usually performs better than
string-based search is that semantic vectors are
normalized. Normalization prevents frequently
occurring concepts from dominating the result set.

All aside, a possible research direction would
be to combine the results of both string-based and
semantic vectors-based confounder candidates for
adjustment or simply to use explicit co-occurrence
as a constraint on semantic vector search.

In brief, string-based search takes a verbatim

interpretation of the request and provides results
as specified by the query ("what the user says they
want"), whereas semantic vector-based search ap-
plies vector algebra to infer in a sense what the
user truly needs.

Comparing estimation methods

Literature-derived computable knowledge was
found to be useful for informing causal inference
(as implicated by the performance metrics). (Δs)
from the graphical causal models bested Logistic
regression models (�s).

To connect prediction and causal inference (es-
timation), a less biased estimate of the drug effect
is likely to lead to better prediction performance.
While prediction and causal inference tasks are
closely related, they are not the same: prediction
optimizes byminimizing variance, whereas the ob-
jective of causal inference problems is to reduce
or eliminate bias. Nevertheless, using regression
with known confounders as regressors is a tradi-
tional way of performing causal inference, where
the � in Equation 6 has been interpreted as the
causal effect [100, 101, 102].

Causal graph example

We have included a sample graph in Figure
5. This figure provides a sample of the structure
and content expressivelymodeled by the literature-
informed graphical causal graph formalism and
instantiated with EHR-derived observational clin-
ical data from free-text clinical narratives. Noting
the centrality of asthma in the graph, we searched
the literature to find that asthma as an indication is
associated with a two-fold increased risk of AMI.
While inactive asthma did not increase the risk of
AMI, individuals with active asthma had a higher
odds of AMI than those without asthma (adjusted
OR: 3.18; 95% CI: 1.57 - 6.44) [103]. More such
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Figure 5: Graphical causal model using PSI at the 10 confounder threshold for loratadine, a negative case for
acute myocardial infarction. The thickness of the edges indicates the strength of the observed relationship in the
EHR-derived data.

graphs are available in the GitHub repository.

5.1. Comparison with previous related work
For the sake of a coarse comparison, the AU-

ROCs of several EHR-based pharmacovigilance
methods have been included in Table 6. However,
note that the performance patterns are not strictly
comparable owing to different sample sizes and
populations. However, these results have been
included here for convenience and to provide con-
text, however crude.

In summary, our literature-informed graphi-
cal causal modeling framework resulted in su-

perior performance compared with our previous
purely EHR-based modeling efforts [26, 70] but
fare poorly in comparison with results from ap-
plying meta-analysis from [104] with an AUROC
of 0.89, as seen in the table 6. However mod-
est the improvement, the success of such a prin-
cipled approach using causal models applied to
coarse cross-sectional data opens many doors for
methodological refinement and future avenues of
research.

For example, incorporating outside statistical
information (e.g., from FAERS and claims data)
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Table 6
This table shows AUROC statistics from several EHR-based drug safety studies. Because
these studies used different subsets of the reference dataset, the comparisons are not
strictly comparable. Also note that all of the studies used exclusively EHR data as the
primary source of empirical data, except for [104], which incorporated other sources of
empirical data including claims and FAERS-derived data to attain a higher adjusted score,
pointing to a promising potential area of future drug safety research.

Study Li (2014) Li (2015) Malec (2016) Malec (2018) This study

Naive 0.53 0.51 0.53 0.504 0.55

Adjusted 0.51 (lasso) 0.89 (meta-analysis) 0.55 0.58 0.65

resulted in more considerable performance im-
provements than could be obtained with confound-
ing correction alone. Our approach could be read-
ily applied to any of these data sources or their
combination also.

5.2. Practical applications of literature-informed
modeling
Domain knowledge improves the efficiency of

causal learning tasks by:

• Reducing the dimensionality of features:
the richness ofEHRdata introduces the "curse
of dimensionality" problem, presenting a
large number of potential covariates forwhich
to adjust. By contrast, discovery pattern
search can provide a parsimonious set of
covariates vetted from background knowl-
edge that is useful in many situations for ex-
plaining, controlling for, and reducing con-
founding bias. That is, EHR data have a
large number of variables and are, hence,
high dimensional; having computable do-
main knowledge permits the efficient identi-
fication of a feasibly-sized set of confounders.

• Simplifying causal structure: qualitative
information about the orientation of vari-
ables in causal graphs simplifies the task of
learning causal structure.

• Providing a priori knowledge of causal or-
der: although time is not coded explicitly
in cross-sectional data, a priori knowledge
provides information about the likely order-
ing of events. In terms of graphs, when
we assume that a biomedical entity is a con-
founder relative to exposure and an outcome,
then it has a set topological structure (proba-
bilistic and causal dependency). Without as-
sumptions drawing from substantive knowl-
edge, it is often impossible to determine the
causal direction (such that it exists) from the
data alone [34], though much progress is
being made in this area [105, 6].

Discovery pattern search could be useful for
identifying variables with causal roles besides that
of being a confounder. For example, investigators
may also be interested in identifying certain types
of variable, such as:

• Colliders, or common effects of both the
exposure and outcomes variables, that can
amplify bias [106, 3, 107]; and

• Mediators, or intermediate variables which
lie along the causal chain from the exposure
to the outcome (and which can also bias
estimates if a variant of "total effect" is the
causal parameter of interest) [108].

SA Malec et al.: Preprint submitted to Elsevier Page 25 of 41

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 4, 2021. ; https://doi.org/10.1101/2020.07.08.20113035doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.08.20113035


Using computable knowledge to elucidate confounders

Table 7
Discovery patterns for identifying different variable types.

Variable role Query Graph shape

outcome mechanisms XCAUSESINVAE AE ← outcome_mechanisms

Mediators drugCAUSESX; drug → mediator → AE
XCAUSESINVAE; drug → mediator → AE

Colliders drugCAUSESX; drug → collider ←AE
AECAUSESX; drug → collider ←AE

While we have not screened for such variables
in the current paper, we present the discovery pat-
terns in Table 7 as a starting point for future re-
search.

Furthermore, although we have only used the
TREATS and CAUSES-derived predicates in this
study, other potentially useful "causal" predicates,
and related discovery patterns, exist. For example,
other likely useful predicates include: PREDISPOSES,
AFFECTS, STIMULATES, PREVENTS, INHIBITS,
and PRODUCES.

Note that the discovery patterns we have used
in our paper are "manually-designed" discovery
patterns. As mentioned earlier, methods exist
that can automatically generate discovery patterns
directly from the distributional semantics of PSI
spaces [66, 67] but exploring other discovery pat-
terns is beyond the scope of the present paper.

5.3. Error analysis
We interrogated our modeling procedures to

try to identify why they failed and to gather ideas
on how to address these issues in subsequent work.

We bring the case of ketorolac and acute my-
ocardial infarction to attention. Initially, we thought
that the listing of the right platysma (a facial mus-
cle) demonstrated PSI’s power to infer relation-
ships based on the global similarity of structured
knowledge. Although there were no results in
PubMed or SemMedDB linking "right platysma"

to ketorolac and acutemyocardial infarctions, Ketero-
lac has been a useful adjunct to Botox treatment
to reduce discomfort (after facial injection). Ke-
torolac was also studied in an RCT for biliary colic
pain [109].

However, we note that PSI can only draw in-
ferences based on the global similarity of struc-
tured knowledge when deliberately asked to (us-
ing e.g.,two-predicate path queries from semantic
vector cue to semantic vector target). The results
of the current search method do not benefit from
vector similarity, as we are retrieving elemental
vectors, which are, by definition, dissimilar. An-
other explanation could be that this suggestionmay
have resulted from the random overlap between el-
emental vectors. Within our broader methodolog-
ical framework, it is helpful that the empirical data
can often be used to correct for machine reading or
information retrieval errors in causal models. By
contrast, string-based search often yielded con-
founder candidates that were overly general. Con-
founder search yielding generic confounder candi-
dates was less often the case with PSI, presumably
because statistical weighting was used to deliber-
ately limit the influence of frequently occurring
terms during the construction of the vector space.

As per table 8, the explanation we considered
for the poor performance we observed in some
cases was that some of the TREATS relationships
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Table 8
Problematic source sentences. AKI = acute kidney failure.

Problem Source → Target Confounder Source sentence

Speculation ibuprofen →TREATS X Benign prostatic
hypertrophy

(PMID: 15947693) ’Further research must be done
to investigate the potential use of ibuprofen in pa-
tients with BPH and examine if JM-27 expression in
patients with BPH may stratify individuals who may
be most responsive to pharmacological treatment.’

Negative
evidence

ketoconazole
→TREATS X

Hypercalcemia (PMID: 11033844) ’However, deterioration of renal
function during ketoconazole administration as well
as failure of hypercalcemia to be affected during
short-term ketoconazole treatment suggest that this
drug might not be appropriate for acute treatment of
hypercalcemic sarcoidosis.’

Hedging X →CAUSES AKI Toxic Epider-
mal Necrolysis
/ Steven’s-
Johnson Syn-
drome

(PMID: 19155617) ’CONCLUSION: AKI, the need
for dialysis, and late hypokalemia could be the con-
sequences of SJS/TEN.’

Hedging ketoconazole
→TREATS X

Tuberculosis (PMID: 17644711) ’Further investigation is neces-
sary to determine the role of KTC in the treatment of
TB.,’ ’17644711’

Case
report

X →CAUSES AKI Tuberculosis (PMID: 2386602) ’A 78 year old male patient who
had been treated by haemodialysis for 17 years for
renal failure, secondary to tuberculosis, is reported.’

mined by SemRep in SemMedDB were occasion-
allymore suggestive of potential non-standard uses
that are not as yet FDA approved. It would be un-
likely that a patient would be prescribed the drug
for that particular (confounder candidate) indica-
tion, though it could still affect the outcome. Also,
we noted other cases of hedging, the use of case
reports, and anecdotal evidence.

Recent work on SemRep has focused on as-
signing confidence scores capturing the factual-
ity of extracted SemRep triples [110]. These re-
sults suggest a promising path for constraining
SemMedDB predications further.

Causal irrelevance

Machine reading errors have the potential to
introduce additional bias. Including inappropriate
or irrelevant information can variously (positively

or negatively) bias estimates. Irrelevant covariates
may be classified into two categories: 1.) variables
that are causal relevant (adjacent) but related inap-
propriately to the exposure and outcome; and 2.)
variables that are entirely causally irrelevant. In
the first category of irrelevance, individual covari-
ates may be causally relevant but have the wrong
type of relevance for the question at hand, as is
the case with colliders and mediators mentioned
earlier. Controlling for these covariates may re-
sult collider bias [111, 106, 112]. An example of
collider bias would be controlling for fever when
determining a hypothetical relationship between
influenza and food poisoning [2]. In the case of
mediators, if the intermediate variable’s relation-
ship to the outcome is more vital than that between
the exposure of interest and the outcome, then the
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estimate may be negatively biased.
Wewere curious to see how including variables

selected at random would affect our adjustment
and effect estimation procedures. To interrogate
the notion of causal relevance - and its corollary,
causal irrelevance, we have devised, run, and sum-
marized an additional experiment.

We hypothesized that controlling for randomly
selected covariates (that were presumed to be ir-
relevant) would result in more biased models than
models incorporating literature-derived confounders.
To this end, we built models using the same EHR-
derived clinical narrative data and reference dataset.
We identified and controlled for up to ten covari-
ates selected at random to empirically evaluate the
effect of controlling for irrelevant covariates on er-
ror propagation on the outcome, measured by the
amount of bias. In the next few paragraphs, we
report on our findings.

Figure 6 illustrates the treatment effect esti-
mates from drug / adverse event pairs using dif-
ferent sets of confounders. We ran the procedure
over all of the drug / adverse event pairs described
earlier. However, to obtain a clearer picture of
the methods performed, we removed outliers by
excluding models from drug / adverse event pairs
scoring in the lowest and highest quartiles. This
procedure resulted in slightly different baselines
from the entire subset described earlier since there
are fewer sample pairs per adverse event.

The leftmost boxplot illustrates the distribu-
tion of regression coefficients using ten randomly
selected covariates, while the other two boxplots
represent regression coefficients from models in-
corporating literature-derived confounder candi-
dates ( sql5 and psi10 confounder search).

Of the two literature-derived methods, psi10

better reduces the negative control pairs’ estimates.

The effect estimates for the positive drug / adverse
event pairs are slightly higher than the estimates
of the negative control pairs on average. The raw
regression coefficient scores average treatment es-
timate scores were not as strongly discriminative.

These observations prompted us to revisit the
regression coefficients from the rest of the research
data. Table 9 shows the AUROCs from ranking
the drug / adverse event pairs by calculating the
difference between adjusted vs. unadjusted re-
gression coefficient across different adverse event
types. In this way, we were able to perform a
direct comparison of the performance of models
using randomly selected vs. the literature-derived
confounders ((psi10)).

Treatment-confounder feedback

Wemade simplifying assumptions that assumed
that confounder behavior would be stable for the
practical purpose of reducing confounding bias.
However, it is known that the relationship between
biomedical entities can vary with time. Such is
the case, for example, when a therapy affects the
indication for which it is prescribed that is itself
an independent cause or risk factor of the disease.
In this setting, a confounder variable also behaves
like an intermediate variable or mediator. Media-
tors are links on the causal chain between exposure
and outcome: Aexposure → mediator → Youtcome.

The modeling problem associated with the is-
sue of such problematic covariates is called treatment-
confounder feedback [113, 114, 115]. Treatment-
confounder feedback can result in "overcontrol
bias," wherein estimates are biased toward the null
hypothesis [95]. Bias towards the null hypothesis
occurs if the intermediate variable’s effect over-
whelms the direct effect from the exposure. For
reference literature on this phenomenon, see chap-
ter 20 in [116].
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Figure 6: These boxplots represent the differences in unadjusted vs. adjusted regression coefficients (�) for gas-
trointestinal hemorrhage. The leftmost boxplot shows these differences in � using randomly selected (irrelevant)
covariates whereas the next two boxplots show the differences from using sql5 and psi10 confounder search. Con-
trolling for literature-derived methods resulted in more considerable reductions in the negative controls’ estimates
than randomly selected covariates. The boxplots generated for from the � difference for a drug/adverse event pair
sample size of n = [17+, 18−]pairs. The highest and lowest scoring quartiles were excluded from the counts and
statistics reported below.

Table 9
This table shows baselines from calculating the AUROCS for the unadjusted �s vs. the
difference in the unadjusted vs. adjusted regression coefficients from the set of models
with randomly selected covariates (middle column with numbers) vs. models with literature-
informed confounders in the right column. AKI = acute kidney failure. ALI = acute liver
failure. AMI = acute myocardial infarction. GIB = gastrointestinal bleeding.

AE \Predictor Unadj. � [Baseline] � Difference [Random] � Difference [10psi confounders]

AKI [10+, 8-] 0.762 95% CI: [0.377-1.0] 0.619 95% CI: [0.156-1.0] 0.952 95% CI: [0.82-1.0]

ALI [33+, 11-] 0.587 95% CI: [0.363-0.811] 0.636 95% CI: [0.436-0.837] 0.656 95% CI: [0.482-0.837]

AMI [9+, 15-] 0.667 95% CI: [0.412-0.922] 0.541 95% CI: [0.290-0.792] 0.563 95% CI: [0.311-0.815]

GIB [17+, 18-] 0.680 95% CI: [0.495-0.865] 0.533 95% CI: [0.332-0.733] 0.722 95% CI: [0.545-0.90]

Overall 0.561 95% CI: [0.452-0.669] 0.541 95% CI: [0.429-0.653] 0.662 95% CI: [0.562-0.763]
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For instance, literature search ranks diabetes
as a probable confounder of the anti-diabetic drug
rosiglitazone and acute myocardial infarction. If
rosiglitazone is effective at treating diabetes, the
effect of treating diabetes might reduce the risk of
heart attack. If diabetes is a more powerful risk
factor than rosiglitazone, controlling for diabetes
without truncating the data longitudinallymay bias
conclusions. In this study, the case of acute kidney
failure presented an overall pattern of overcontrol
bias from treatment-confounder feedback in which
the � scores from positive cases were lower on
average than the adjusted scores in the negative
controls, after incorporating the literature-derived
confounders, violating the assumptions mentioned
earlier that the effect estimates of the negative con-
trols should tend towards zero (ASSUMPTION I)
and the estimates of the positive controls should be
greater than the negative controls (ASSUMPTION
II).

Since knowledge is incomplete and imperfect,
misspecified models, or models that erroneously
include or omit certain variables, are likely the
norm in causal modeling. It is also likely that
treatment-confounder feedback introduces addi-
tional hurdles to bias reduction. Fortunately, the
question of how to handle confounding in these cir-
cumstances hasmotivated the developments causal
parameter estimation methods methods that can
address treatment-confounder feedback [117]. Ad-
vanced estimation frameworks such as that of tar-
geted learning are robust tomodelmisspecification
by employing data-adaptive procedures that com-
bine a propensity score model with an outcome re-
gression to optimize causal effect estimates, which
can be further enhanced with ensemble machine
learning [118, 119]. For more details, a paper
is available here [120] outlining how to apply

targeted learning procedures that also offers im-
portant insights concordant with the observations
made in the present study.

5.4. Limitations and themes for future work
Ideally, we would wish that our methods for

studying observational data would possess suffi-
cient rigor to approach the level of scientific confi-
dence of an RCT. We have enumerated additional
limitations of the present study with a view to-
ward future work in this area to bridge gaps in the
following areas:

• IMPROVING DATA

– Improving data hygiene: We did not
carry out advanced phenotyping pro-
cedures, correct for missingness in the
data, or rigorously define exposure and
outcome criteria. Although we have
no evidence to prove that such factors
negatively impacted our methods’ per-
formance, these factors likely set a ceil-
ing on the performance improvements
attainable by applying our methods.
In our current work, we have adopted
more rigorous approaches to measure
and improve the validity of the clinical
data [121, 122]. Other improvements
could be attained with more extensive
vocabulary mapping. For example, we
have not reconciled the data underlying
each synonym into a single represen-
tation for each overarching biomedi-
cal entity of interest representing con-
founder candidate concepts. In future
work, we may explore NER systems
beyond or additional to MedLEE, e.g.,
using ensemble-based NER methods
[78], and take efforts to approximate a
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target trial [123] by better defining the
observation periods and setting "time
zero."

– Addressing temporality: one funda-
mental limitation of our approach stems
from the coarseness of cross-sectional
data. Cross-sectional data represent
a "snapshot in time" rather than tem-
porality. These data may violate inde-
pendence and exchangeability assump-
tions [124] and thereby introduce "im-
mortal time bias" [123]. Study designs
that rigorously apply eligibility criteria
explicitly specifying a "time-zero" and
observation periods for the exposure,
outcome, and confounding variables
can address this limitation. Longitu-
dinal data may also be important for
optimal performance.

– Structured + unstructured data: In
the present study, we used empirical
data extracted from the unstructured
free-text narrative. EHR systems were
designed primarily for administrative
record-keeping such as claims, billing,
and other non-research-specific infor-
mation and to fulfill legislative man-
dates [125]. Anticipating administra-
tive needs, system designers naturally
used structured fields to capture the
most critical information for these pur-
poses. However, unstructured text can
provide unique insight to inform both
clinical ends and basic science [126].
For example, information that may be
absent in structured fields (as was the
case in [79]) about sub-pathological
states such as worry, hypomania, or

other affective states captured by clini-
cians and present in clinical notes could
provide insight into the progression of
chronic illnesses outcomes such asAlzheimer’s
disease and other neurodegenerative dis-
eases. Many other types of valuable
information may be missing in struc-
tured data, including the reasons for
drug discontinuity events [127]. Thus
unstructured data is necessary to en-
hance our understanding of risk fac-
tors as well as potential benefits from
drug exposures. For a more complete
picture of patient health, it will be es-
sential to capture the valuable infor-
mation from both structured fields and
unstructured free-text in the EHR sys-
tems in future work. However, to take
full advantage of the richness of free-
text clinical data in EHR systems, ad-
ditional efforts are needed to mitigate
data quality issues.

• IMPROVING KNOWLEDGE

– Confounderquality control: Machine
reading produces errors, and those er-
rors can propagate additional biases.
As we saw in the randomly selected
variable experiment, controlling for eti-
ologically irrelevant randomly selected
covariates did not help improve the de-
tection of drug / adverse event pairs.
There is no way of knowing whether
the measures of association represent
artifacts of the data sample rather than
support for a causal effect. On the
other hand,machine reading errorsmay
also introduce a variable that is causally
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related to the exposure and outcome of
interest in undesirable ways. For ex-
ample, if machine reading errors in-
troduce a collider into an adjustment
set, then collider or selection bias can
occur, amplifying bias.

– Proxy confounders: While automated
tools such as those described in this
paper may be useful, these tools are
only useful for identifying confounders
from a priori knowledge in the pub-
lished data, and residual bias may re-
main from uncontrolled confounders.
Machines still have a very limited abil-
ity to understand language and causal-
ity. It is crucial that researchers fa-
miliarize themselves both with con-
founders from the literature, the fea-
tures of their data, and engage with
subject-matter experts familiarwith the
local causal structure of biomedical en-
tities involved [120]. Seemingly ir-
relevant covariates may still be use-
ful for capturing missing information,
even though they are not etiologically
related to either the exposure or the
outcome directly. For example, in-
formation about whether patients play
ice hockey may seem irrelevant on the
surface. However, such information
could be potentially useful for control-
ling for the effect of socioeconomic
status since hockey is an expensive sport.
Thus, detailed knowledge of local causal
structures is crucial for formulating a
working model that can most reliably
help test causal hypotheses from ob-
servational data and covariate selec-

tion [32]. However, such procedural
knowledge is likely beyond the capa-
bility of any AI system for the con-
ceivable future. For these methods to
be of use in settings where significant
precision is required, it is necessary to
have a human possessing substantial
subject-matter knowledge in the loop.

– Using improvedknowledge represen-
tation: Our methods may benefit from
updated literature-based discovery and
distributional representation methods.
For example, Embedding of Semantic
Predications (ESP) is a neural-probabilistic
extension of the PSI model that has
been shown to improve performance in
predictive modeling tasks [128]. Still,
other comparator methods exist, which
we will also soon explore [129].

– Including other discovery patterns:
It is probably not the case that a single
discovery pattern is sufficient to cap-
ture all confounders. More research is
needed in this area to expand search
through other pathways.

– Identifying ‘minimal adjustment sets’:
Although the thresholds on the number
of confounder candidates incorporated
into the models are to some extent jus-
tified from a heuristic standpoint on
the basis of examining the number of
confounders per drug / adverse event
pair, we note the arbitrary nature of
these thresholds as a limitation. How-
ever, the selection of optimal subsets of
confounders is a distinct and active re-
search area referred to as causal feature
selection [130], and further optimizing

SA Malec et al.: Preprint submitted to Elsevier Page 32 of 41

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 4, 2021. ; https://doi.org/10.1101/2020.07.08.20113035doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.08.20113035


Using computable knowledge to elucidate confounders

feature selection for causal inference is
not the focus of this paper. We shall
seek to remedy this shortcoming by ap-
plying minimal adjustment set meth-
ods in future work.

– Developments in machine reading:
Limitations in our capability to pro-
cess knowledge into a usable form fur-
ther limit our ability to control for con-
founding. The SemRep system is cur-
rently being upgraded to support end-
user extensibility andwith exciting fea-
tures that include methods for encod-
ing factuality levels [110], where factu-
ality levels denote the degree of belief
in mined assertions from text. Factual-
ity levels are potentially useful for im-
proving "knowledge hygiene" and for
improving the detection and identifica-
tion of contradictory claims in the liter-
ature [131]). The Integrated Network
and Dynamical Reasoning Assembler,
or INDRA, NLP system can translate
scientific prose directly into executable
graphical models [132, 133]. INDRA
output can be filtered through addi-
tional postprocessing filters to provide
confidence scores [134]. Such addi-
tional information weighting the va-
lidity of machine reading output could
help to screen out irrelevant literature-
derived covariates. To this end, we
(authors S.A.M. andR.D.B. alongwith
others) are exploring combining knowl-
edge from the SemRep reading system
with knowledge extracted using the IN-
DRA system [132] into an ontology-
based knowledge graph platform pop-

ulated with comprehensive biomedical
knowledge [135].

– Thedeconfounder: The extent of knowl-
edge itself further limits the ability to
control for confounding (and also the
observation that the claims ofmost sci-
entific studies are invalid [136]). There
have been notable efforts afoot to con-
trive a synthetic variable called a de-
confounder [37, 137]. Deconfounders
can substitute for substantive knowl-
edge of the causal structure relative to
the exposure and the outcome and also
potentially correct formissingness. An
intriguing line of study, as yet unpur-
sued, would be interesting to combine
both simulated and empirically-derived
confounders.

• IMPROVING ESTIMATION

– Advanced estimationmethods: More
advanced effect estimation techniques
exist (e.g., G-methods [115, 114, 138,
139], Inverse ProbabilityWeighting [140],
and targeted learning estimators [118])
with more desirable statistical proper-
ties than the method presented here.
These tools are more resilient against
issues that commonly plague observa-
tional studies including model specifi-
cation errors from treatment-confounder
feedback andmissing-not-at-randomdata.
Accordingly, these more advanced es-
timation methods are a natural fit with
the knowledge integrationmethods out-
lined in this paper (see [120] for an
overview).
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– More appropriate target causal pa-
rameter: Also, causal effect parame-
ters such as Effect of the Treatment on
the Treated (ETT) are often more ap-
propriate for situations where treated
subgroupsmayhave distinct background
characteristics comparedwith untreated
subgroups, as is often the case with ob-
servational data.

5.5. Conclusions
This paper introduced a generalizable frame-

work for helping solve the ubiquitous problem of
confounding bias, an endemic threat to all obser-
vational studies, and expands upon our previous
work combining computable knowledge from the
literature with observational data to reduce con-
founding [26, 70].

We have shown that our knowledge integration
methods canmodestly improve the ability to detect
genuine pharmacovigilance signals from observa-
tional clinical data, though leaving ample room for
methodological refinement, given the limitations
listed above.

Notwithstanding confounding adjustment, resid-
ual bias may remain from unmeasured, mismea-
sured, or omitted variables [96], as well as from
other forms of systematic bias [141] along with
random noise. However, we assume that con-
founding and other forms of bias can be reduced
but not eliminated.

We found that incorporating literature-derived
confounders more often than not improved causal
inference using a publicly available reference dataset
and that confounder candidates from semantic vector-
based search improved the detection of genuine
drug safety signals over string-based confounder
search.

Moreover, semantic vector-based search of-

fered improved performance over string-based search.
We conjectured that the advantageous properties
of the representation scheme helped prioritize the
most useful confounder candidates and resulted in
models with the most improvement over baseline.

Our framework can be easily adapted to help in
other areas, such as estimation of therapeutic rather
than adverse effects, with only a modicum of dif-
ficulty. This provides an avenue through which to
leveraging existing causal knowledge to to acceler-
ate the discovery of new knowledge, by improving
the reliability of causal inference from observa-
tional data.
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A. Appendix A - Stopwords
A.1. Stopterms

The following terms were excluded from being
confounder candidates on account of the termi-
nological vagueness or other reasons. adhesions;
adolescent; adult; agent; animals; antibodies; anti-
gens; apoptosis; application procedure; assay; as-
sessment procedure; assessment procedure; bac-
teria; biopsy; blood; body tissue; boys; canis fa-
miliaris; capsule; cattle; cell line; cell membrane;
cells; cerebrovascular accident; child; chronic dis-
ease; clinical research; cohort; color; complica-
tion; congenital abnormality; contrast media; con-
trol groups; country; detection; diagnosis; dis-
ease; dna; elderly; embryo; entire hippocampus;
enzymes; excision; extracellular; family; family
suidae; felis catus; fibroblasts; follow-up; fracture;
fume; functional disorder; genes; girls; growth;
house mice; human; implantation procedure; im-
plantation procedure; individual; induction; in-
fant; infiltration; injection procedure; injection
procedure; injury; intervention regimes; jersey
cattle; lesion; macaca mulatta; macrophage; mag-
netic resonance imaging; male population group;
malignant neoplasmof breast; malignant neoplasms;
management procedure; management procedure;
medical imaging; membrane; micrornas; mild ad-
verse event; monkeys; monoclonal antibodies; moth-
ers; mus; muscle; nonhuman primates; obstruc-
tion; operative surgical procedures; organ; partic-
ipant; pathogenesis; patient; patient state; patients;
persons; pharmaceutical preparations; pharmacophore;

pharmacotherapy; placebos; plants; plasma; pri-
mates; procedures; prophylactic treatment; pro-
teins; protoplasm; psychopharmacologic agent;
rabbits; radiation therapy; rats; rats; rattus norvegi-
cus; receptor; rna; rodent; screening procedure;
screening procedure; screw; serum; sloths; so-
lutions; stimulation procedure; stimulation pro-
cedure; study models; substance; supplementa-
tion; symptoms; syndrome; techniques; test result;
therapeutic procedure; toxic effect; transplanta-
tion; treatment aids; treatment protocols; volun-
tary workers; water; woman; young child
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