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Abstract. Shelter-in-place and other confinement strategies implemented in the

current COVID-19 pandemic have created stratified patterns of contacts between

people: close contacts within households and more distant contacts between the

households. The epidemic transmission dynamics is significantly modified as a

consequence.

We introduce a minimal model that incorporates these household effects in the

framework of mean-field theory and numerical simulations. We show that the

reproduction number R0 depends on the household size in a surprising way: linearly

for relatively small households, and as a square root of size for larger households. We

discuss the implications of the findings for the lockdown, test, tracing, and isolation

policies.

PACS numbers:

Submitted to: Phys. Biol.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.09.20150227doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.07.09.20150227


A minimal model for household effects in epidemics 2

1. Introduction

The rapid spread of the SARS-CoV-2 virus and the COVID-19 pandemic is a threat

to global public health with very few precedents. The policy response thus far has

often been informed by epidemiological modeling, such as [1]. This paper offers some

suggestions for improving such models by accounting for intra-household effects. The

role of inside-household transmission for COVID epidemiology has been recognized early

[2, 3, 4]. In this work we investigate the combination of relatively fast transmission inside

the households and relatively slower transmission between them.

An important feature in epidemiological models is the way the individuals come in

contact with each other within the model framework. The simplest assumption is the

panmictic one: everybody comes in contact with everybody else with equal probability,

and thus has a chance to infect everybody else [5, 6, 7]. On the other end of the spectrum

are detailed individual-based models where we know exactly who contacts whom at the

individual level [8, 9, 10].

The widespread COVID-19 pandemic and resultant partial quarantine measures

make the panmictic assumption unrealistic: if confinement works, one hopes to lower

the number of contacts outside the immediate surroundings of every individual. On the

other hand, detailed models are quite effective at explaining what has happened in the

past, but predictions about the future and the results of lockdown policies in the context

of these models require detailed assumptions on the mode of future contacts between

individuals. These details are knowable in hindsight, but are rather difficult to predict.

These considerations suggest a third approach: idealized models that are more

realistic than the classical panmictic ones, but less detailed than those based on

individual data. In this class of models, we describe the way the population interacts

through a limited number of well-defined parameters. These parameters are influenced

by policy decisions, so models of this kind can be used to predict the result of specific

policies on the spread of contagion. An example of such models is Stroud’s model of

influenza spreading in a mixed population [11], where the inhomogeneity was represented

by a semi-empirical power law, partially justified by simulations, for the probability of

a new infection.

In this paper, we describe the effect of household size on sheltering in place, with

application to the current COVID-19 epidemic. We assume that, due to shelter-in-

place orders, the contacts between people in different households are uniformly reduced.

However, no shelter-in-place policies restrict the interactions between the members of

the same household. In fact, these interactions may become much closer and more

frequent than before the epidemic. The epidemiological data on COVID-19 in close

quarters such as cruise ships [12] suggest very high contagion rates in such situations.

Therefore, it makes sense to discuss the spread of infection in a model where people

are separated into close-knit groups (“households”) with a high rate of contagion within

groups relative to the rate of contagion between groups.

The idea of modeling epidemics in a stratified population is, of course, not new.
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Figure 1. Household model. Black symbols correspond to infected individuals.

Approaches similar to ours were employed in [13] to simulate the 1918 flu pandemic and

in [14, 15] to study the effect of isolation and vaccination. In [16, 17] the dependence

of the spread of infection was obtained in a household model, but with different

assumptions from ours, which lead to different predictions.

Usually these approaches rely on many parameters to describe the dynamics of

transmission. Here, we instead employ a minimal model that simply introduces within-

household transmission in a standard SIR (susceptible-infected-recovered) formalism.

This approach allows us to isolate the effect of household sizes from other factors that

would affect more detailed descriptions. It is also analytically tractable and presents a

phase space that depends on only a few parameters, so it can be thoroughly explored

numerically. We are thus able to obtain a simple mathematical law that describes the

growth of the epidemic’s rate of spread as a function of the household size. While more

finely grained models could offer a more detailed description, we expect this law to be

universal as long as our main premises —high transmission rate for close contacts and

high rate of asymptomatic transmission— are satisfied.

Below, in Section 2, we describe the model in detail and calculate the fast-growing

modes. This analysis provides insight into the initial dynamics of epidemics and the

influence of various parameters on the rate of infection. In Section 3, we report on the

results of simulations and numerical solution of the mean-field equations. In Section 4,

we discuss the results and their meaning for lockdown strategies. The conclusions are

stated in Section 5.
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Susceptible // Infected
γ // Recovered

Figure 2. State diagram for an individual in the simplest model.

S:(H, 0, 0)
Nobody is infected

// F : (H − 1, 1, 0)
First transmission

α //

γ

))

G : (0, H, 0)
Everybody is infected

γ

��
R : (0, 0, H)

Everybody is recovered

Figure 3. Simplified state diagram for a household. The household state is (s, i, r):

susceptible, infected, recovered.

2. Mean-field models

Let us discuss a population separated into households with high contact rates within a

household and low contact rates between different households.

We will use the SIR model with three states for each individual: Susceptible,

Infected, and Recovered, as shown on Figure 2. The state of a household is described

by the number of individuals in each state (s, i, r). If H is the household size, then

s + i + r = H. In this section, we use a simple model where the first infection quickly

leads to the whole household being infected, so the simplified state diagram becomes the

one shown in Figure 3. Let S be the number of households with noone infected, F be

the number of households with one person infected, and G be the number of households

with everyone infected. The total number of infected persons is F + HG. Let us

neglect secondary outside transmission, i.e., the situation when a member of an already

infected household gets infected through an outside contact. Then the probability that

an arbitrary contact of an infected person is susceptible is SH/N , where N is the total

number of persons. If β is the transmission rate, then the number of households is

governed by the equations

dG

dt
= αF − γG, (1)

dF

dt
= β

SH

N
(F +HG)− αF − γF, (2)

where α is the rate of having the whole household infected, and γ is the recovery rate.

We assume the recovery rate for all household members is the same and neglect the

difference in the time of infections of different household members.

If all members of the household are quickly infected by the index patient, the rate

constant α does not depend on the household size H. If contagion spreads through

aerosols or shared surfaces [18], the rate of spread does not depend on H. This suggests

that the dependence α(H) is weak or non-existent. Therefore, in the subsequent models

we neglect this dependence, and discuss its possible effects in the Appendix.

In the early stages of the epidemic, far from saturation, SH ≈ N , and equations (1)
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and (2) are linear. The positive eigenvalue of the system corresponds to the growing

mode and is equal to

λ =
1

2

(√
α2 + 2(2H − 1)αβ + β2 − α + β

)
− γ. (3)

A fast in-household transmission corresponds to α� β. Equation (3) shows that there

are two regimes for the transmission. For small household sizes, when 2(2H − 1)β � α,

the exponent for the growth of infections depends on H linearly, as λ ≈ Hβ − γ.

However, for larger households, when 2(2H − 1)β � α, the effective growth rate is

proportional to the square root of H, λ ≈
√
αβH − γ. This finding is in contrast with

the one in [16], where a linear dependence on H was found under different assumptions.

It is customary to quantify epidemic-growth potential using the basic reproduction

number R0, which is equal to the increase in the number of infections during the course

of disease for an individual patient. For this model

R0 =
λ

γ
+ 1 =

1

2γ

(√
α2 + 2(2H − 1)αβ + β2 − α + β

)
. (4)

We will assume γ ≈ 0.125 days−1 and the rate of spread in the absence of lockdown

β ≈ 0.3 [19]. Setting different values for β under lockdown, we plot the values of R0 on

Figure 4.

3. Numerical modeling

Eigenvalue analysis of equations (1) and (2) is applicable in the linear regime only. For

the situation where the depletion of the susceptible population is non-negligible, we need

either to solve these equations numerically or perform simulations. Below we report the

results of both approaches.

We performed numerical simulations to validate the analytical models of household

infections described in the above section. In each scenario that we studied, we took a

population of N = 200 000 individuals, placed each individual into a house for a range

of different household sizes, and subsequently initialized a small random subset of 20

individuals in the population with an infection. For each step, we divided the infection

into two phases:

(i) Panmictic phase: each infected individual can infect any uninfected individual in

the simulation, with a probability p0 = ∆t β
N

, where β is the daily rate of infection

in the panmictic phase, N is the population size and ∆t is the time step of the

simulation.

(ii) Household phase: each infected individual can infect any uninfected individual in

their house, with a probability ∆tα, where α is the daily rate of infection inside

the household.

We studied these regimes using ∆t = 0.1 and γ = 0.125. We ran a different

simulation for various combinations of α, β and H. For each combination of values
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Figure 4. R0 for the model with γ = 0.125 day−1. The horizontal line corresponds to

R0 = 1. Each subfigure corresponds to a fixed β with a curve for each value of α.

we ran the simulations n = 10 times. For the same parameters we numerically solved

equations (1) and (2). The results are shown in Figure 5.

The model shows a very good agreement between the predictions of the mean-field

theory and numerical experiments, especially for large in-household transmission α. It

should be noted that the meaning of α is subtly different for simulations and mean-

field theory. For simulations, α is the rate for an individual to become infected inside

a household; while for mean-field theory, α is the rate for a household as a whole to

become fully infected. These two definitions are expected to be convergent in the limit

of fast inside infections, as seems to be the case from Figure 5.

It is interesting to look at the total number of cases during the epidemics. The
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Figure 5. Simulations and mean-field predictions. The lines correspond to numerical

solution of equations (1) and (2). The error bars correspond to the confidence intervals

for repeated simulations computed as 1.58IQR/
√
n [20]. Each subfigure corresponds

to a combination of α and β as shown on the panels with a curve for each value of H.

results of our simulations for N = 200 000 are shown on Figure 6.

4. Discussion

Our approach is based on the existence of two time scales: fast transmission inside

households and slow transmission between the households. Following the scaling

approach (see, for example, [21]), we can imagine the households being “super-

individuals” with renormalized interaction parameters. Since, in this model, H people

have H times as many contacts as one person, one can näıvely expect that the
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Figure 6. The total number of cases for simulations with N = 200 000. Each subfigure

corresponds to a value of H.

spread of contagion scales as the household size H. However, as confirmed by mean-

field calculations and numerical simulations, the scaling law is less steep: the spread

grows only as
√
H. This fact may have profound policy implications, suggesting the

possible establishment of larger “households” such as social circles) rather than a

uniform reintegration of all contacts during reopening. However, further modeling and

comparison with empirical data would be necessary before implementing the results of

this paper as policy. A rather strong dependence of the total number of cases over the

time span of epidemic on the household size (Figure 6) stresses the necessity of caution

at reopening.

The assumptions underlying the model reveal its natural limitations. For mean-
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field calculations (but not numerical simulations), we assumed that inside-household

dynamics are much faster than the transmission between households. This allowed

us to neglect the details of transmission inside households and use an idealized model

depending just on the mean time between the first infection and the completely infected

household. This also allowed us to neglect secondary between-household infections

(i.e., household members of an infected individual getting infected by their outside

contacts rather than by the inside ones). Our numerical simulations did not employ

this assumption explicitly. However, by selecting a very simple inside-household

infection model (pair interactions between household members) we made the assumption

implicitly: the details of the inside transmission should not matter if the transmission is

fast. Another assumption for the mean-field model is the neglect of random fluctuations:

we used mean values to construct the equations. We also neglected the dependence of

the time for a household to become infected on the household size. This dependence

should be significant for very large “households” (see Appendix).

While we use the word “households” throughout this paper, our model may describe

situations beyond the simple picture of families waiting out the epidemics together.

A dormitory, cruise ship, or even apartment building with a common ventilation

system may represent examples of a large “household” (see [22] on the role of common

ventilation systems). While in the calculations here we assume “households” of equal

size, the model could be generalized for a mixture of different groups with a high level

of transmission inside groups and a low level of transmission between the groups.

Another possible application of our model is related to the observation that one

of the ways to slowly reopen may involve the relaxing of social distancing within

certain groups while maintaining it between the groups. In this case, these “relaxed”

groups can be treated as “super-households”. An important application of the super-

household concept could be a rudimentary testing-and-tracing policy, in which we test

all members of the super-household of any asymptomatic infected individual, instead

of a more expensive attempt to trace and test all their contacts. This application

is important because asymptomatic transmission seems to be one of the salient and

dangerous features of the current COVID-19 epidemic [23].

In subsequent papers, we will analyze testing-and-tracing strategies for the

household-based shelter-in-place policy.

5. Conclusions

We studied epidemic spread in a stratified population, such as under shelter-in-place

orders, using mean-field theories and numerical simulations. We found that:

(i) Under shelter-in-place conditions the spread of the epidemics depends on the size

of the “household” (i.e., the group of people sheltered together).

(ii) The dependence of the rate of spread on the household size is linear for relatively

small households and a square-root law for larger households.
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We used idealized models to study the general features of the epidemics in the

shelter-in-place conditions. More realistic models may add to these findings, but we

expect the main results above to hold.
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Appendix A. Dependence of α on H for large households

In models with small households, α has very little dependence onH since most household

members will be infected in short order by the household’s first infected individual. In

this case, we ignore secondary infections. However, in large households, it may be

required to take secondary infections within a household into account.

Here, we look at the dependence of α on H in a regime where secondary interactions

are relevant. In particular, this model uses the same method of in-house infection as

the numerical simulations.

Assume that the infection rate within a household is proportional to the number of

“connections” between infecteds and susceptibles. In a household of size H > 1 with n

infecteds, we may draw H(H−1)/2 connections between household members; n(H−n)

of those connections will be between infecteds and susceptibles. That is to say, the

infection rate is αn = α0n(H − n) for some constant α0 which is independent of H and

n.

The total time to infect the entire household starting with one infected is therefore

T =
H−1∑
n=1

1

α0n(H − n)
. (A.1)

We now reduce this expression for T .

α0T =
H−1∑
n=1

1

n(H − n)
, (A.2)

=
H−1∑
n=1

(
1

Hn
+

1

H(H − n)

)
, (A.3)

=
2

H

H−1∑
n=1

1

n
, (A.4)

=
2

H

(
log(H − 1) + γ +

1

2(H − 1)
+
∞∑
k=1

B2k

2k(H − 1)2k

)
, (A.5)
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where γ ≈ 0.577 is the Euler-Mascheroni constant and Bm is the mth Bernoulli number.

Although it is not obvious that the terms after γ become vanishingly small for large H

(since the Bernoulli numbers grow quickly), it is well known that these terms are only a

small correction in this expression for the harmonic series. Therefore, defining α = 1/T ,

we may write the approximate expression

α ≈ α0
2H

log(H − 1) + γ
(A.6)

for H > 1.
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