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ABSTRACT Chest radiography is an important diagnostic tool for chest-related diseases. Medical imaging research is currently 
embracing the automatic detection techniques used in computer vision. Over the past decade, Deep Learning techniques 
have shown an enormous breakthrough in the field of medical diagnostics. Various automated systems have been proposed 
for the rapid detection of pneumonia on chest x-rays images Although such detection algorithms are many and varied, they 
have not been summarized into a review that would assist practitioners in selecting the best methods from a real-time 
perspective, perceiving the available datasets, and understanding the currently achieved results in this domain. This paper 
overviews the current literature on pneumonia identification from chest x-ray images. After summarizing the topic, the review 
analyzes the usability, goodness factors, and computational complexities of the algorithms that implement these techniques. 
It also discusses the quality, usability, and size of the available datasets, and ways of coping with unbalanced datasets. 

INDEX TERMS Computer vision, chest radiography, unbalanced datasets, medical imaging, pneumonia detection.  

 

 

1. INTRODUCTION 

The chest X-ray (CXR) is an easy, economical, and 
commonly adopted tool for diagnosing lung diseases [1]. 
An experienced radiologist interprets an X-ray as either 
normal or presenting a disease such as lung cancer, 
tuberculosis, or pneumonia. One of the most common 
chest diseases is pneumonia, a lung infection caused by 
viruses, bacteria, or fungi [16]. Pneumonia is life 
threatening to infants, older adults, patients placed on a 
ventilator in hospital, and asthma patients. Moreover, 
pneumonia is a high-risk illness, especially in developing 
countries where millions of people are impoverished and 
lack access to medical facilities. The World Health 
Organization (WHO) [3] estimates that each year, over four 
million deaths are caused by pneumonia and other air 
pollution-associated diseases [4]. Over 150 million people, 
mainly children under five years old, are infected with 
pneumonia annually [5]. Viral pneumonia tends to be slight 
while bacterial pneumonia is more severe, especially in 
children [6]. The fungal type can occur in patients with 
weak immune systems. As CXRs are relatively low cost, 
they are more commonly requested than other medical 
modalities such as magnetic resonance imaging (MRI) and 
computed tomography (CT) [7]. The demand for CXRs 
translates to thousands of readings per radiologist per 
year; accordingly, there is a shortage of radiologists in both 
developing and developed countries [8]. 

Accurate and timely diagnosis is essential for reducing 
the mortality of lung diseases. In developing countries, 
where diagnoses and treatment are delayed by the 
shortage of knowledgeable radiologists, pneumonia in 
children is associated with alarming death rates. The 
massive gap between the number of doctors and the 
population of a specific area also hinders a timely 

diagnosis. Furthermore, CXRs have lower resolution than 
MRI and CT, and are not easily interpreted even by 
experienced radiologists. Decision making by medical staff 
can be supplemented by computer-aided diagnostic (CAD) 
tools, which combine aspects of computer vision and 
machine learning with radiological image analysis for 
recognizing and extracting patterns [9]. A typical CAD 
system sequentially processes the input data (CXRs), 
extracts the features, and classifies the features. The first 
step pre-processes the CXR data, the second step extracts 
the features from the input images by various techniques 
such as Gaussian filters [10], edge detection [11], and 
morphological operation [12], and the third stage 
distinguishes the extracted features by a suitable classifier 
such as a Support Vector Machine (SVM) [13], Random 
Forest (RF) [14], or a Neural Network algorithm [15].  

Publicly available CXR datasets for pneumonia are 
highly class imbalanced, meaning that more images are 
available in one class than in other. Class imbalance 
seriously degrades the efficiency of a classification system. 
For instance, the dataset compiled by Kermany et al. [16], 
which is used as an example in the present work, includes 
5856, 4300 images in the disease (pneumonia) class and 
1583 images in the normal class. Class imbalance problems 
can be tackled by several pre-processing techniques. 
Traditionally, the minority class is over-sampled by 
duplicating randomly selected samples while the majority 
class is under-sampled. However, random over-sampling 
introduces the overfitting problem, and under-sampling 
loses valuable information. Also, the sampling technique 
itself has limited generalization and variance [17]. The 
training dataset is often expanded by data augmentation, 
which creates false representations of the original images 
to avoid overfitting [18]. More recently, artificial data have 
been generated by generative adversarial networks (GANs) 
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[19, 54], which consists of two neural networks: a 
generator and a discriminator. The generator synthesizes 
artificial samples with the required variations from the 
input data distribution, and the discriminator 
differentiates between the samples generated by the 
generator and the samples in the input data. Thoroughly 
engineered architectures such as deep convolutional GAN 
(DCGAN) [2], styleGAN [21], and Cycle GAN [22] have been 
introduced for more robust synthesized data generation. 

Traditional CAD-based systems [23] have successfully 
classified lung diseases in CXRs, but require extensive 
handcrafted techniques for feature-extraction from 
images, followed by machine learning classifiers [23], [52], 
[53]. Such techniques are affected by noise and may need 
to be adapted to different problems. To overcome these 
problems, researchers have developed many artificial 
intelligence (AI) based solutions. Data-driven deep learning 
(DL) methods achieve automatic end-to-end feature 
extraction and classification. The convolutional neural 
network (CNN), a type of deep neural network, has 
achieved ground-breaking results in different tasks related 
to pattern recognition over the last decade. Inspired by the 
visual cortex of humans [27], CNNs differentiate a large 
number of classes in image recognition problems [18] [28]. 
However, they require a large volume of training data to 
learn the better feature patterns [29], and cannot easily 
obtain a large labeled and balanced dataset for medical 
applications. Medical image classification by a CNN is 
usually performed either by training the CNN from scratch, 
using an existing pre-trained network without retraining, 
or fine-tuning a pre-trained network on a target dataset 
[30]. 

Recently, DL-based algorithms have become the 
default choice for medical image applications. Examples 
are SegNet [31], DenseU-Net [32], Chexnet [33], and 
CardiacNet [34]. DL-based techniques are similarly applied 
to pneumonia detection in CXRs [35]. DL can also be 
implemented by techniques other than CNN, such as 
transfer learning. This paper presents the current literature 
on pneumonia identification in CXR images. Specifically, it 
analyzes the usability, goodness factors, and 
computational complexity of the algorithms that perform 
these techniques. It also discusses the quality, usability, 
size, and balance extent of the available datasets.  

The remainder of the paper is organized as follows. 
Section II elaborates on the datasets and their respective 
details. Section III focuses on the data pre-processing and 
augmentation techniques that solve the unbalanced class 
problem, and Section IV reviews the techniques applied to 
lung disease detection. Section V describes the evaluation 
metrics and provides a brief comparative analysis. Section 
VI finalizes the discussion and draws the conclusions.  

 

2. RESEARCH METHOD 

A systematic literature review (SLR) is performed with a 
research method that must be unbiased and ensure 
completeness to evaluate all available research related to 
the respective field.   

2.1. Data Sources  

We used four electronic databases as primary data sources 
to search for the relevant studies. The electronic databases 
used in the search process are listed in Table 1.  

TABLE 1: DATA SOURCES  

Identifiers Databases URL Results 

ED1  IEEE Xplore  https://ieeexplore.ieee.org/  74  

ED2  Science 
Direct  

https://www.sciencedirect.com/  80  

ED3  Springer 
Link  

https://link.springer.com/  74  

ED4  ACM  https://dl.acm.org/  79  

  

2.2. Search Terms  

These are the search terms adopted from the research 
question and literature  

• pneumonia detection OR secure OR Health Safety 
infectious dieses of chest  OR x-ray dataset OR 
deep learning for pneumonia 

• Chest radiography OR Chest x-rays OR Chest 
Disease detection  

• data balancing AND chest X-rays OR pneumonia, 
Generative adversarial networks (GANs) AND chest 
X-rays 

• Search string for the automated search is given 
below:  

(Chest OR Pneumonia OR Diseases OR x-ray OR Xray OR 
CXR OR lung diseases)  

2.3. Study selection procedure  

2.3.1. Inclusion and exclusion criteria  

Inclusion and exclusion criteria are employed to extract 
relevant studies from different data sources in order to 
answer the research questions.  

1) Inclusion:   
• Studies related to Pneumonia Identification using 

chest x-ray.   

• Studies that are not focused on pneumonia 
detection but add value to solve the problem. 

• Studies that were published in a peer-reviewed 
conference or journal.   

• Studies that were published in or after 2010 to 
early 2020.   

• Studies in the English language.   

• Studies that consist of peer-reviewed publications.  

2) Exclusion:   
• Studies other than Pneumonia Identification by 

using chest x-ray.   

• Studies other than English.   

• Studies with no validation of the proposed 
technique.   

• Editorials, short papers, posters, technical reports, 
patents, reviews, blocks information, Wikipedia, 
survey, and extended papers.  
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3. DATASETS 

3.1. THE CHEST X-RAYS 14 DATASET 

Wang et al. [1] presented a chest X-ray database named 
Chest X-ray14 [1] [36], which contains 108,948 images of 
eight (now 14) diseases collected from 32,717 patients. 
This dataset was acquired from Picture Archiving and 
Communication Systems (PACS). The eight common 
thoracic diseases—Atelectasis, Effusion, Infiltration, 
Cardiomegaly, Mass, Nodule, Pneumonia, and 
Pneumothorax—were shortlisted as keywords in a search 
of the PACS system, and the matching reports were 
extracted along with their associated images. Examples of 
each lung disorder are shown in Fig. 1. The typical size of 
the x-ray images (3000 × 2000) pixels was resized to 
1024 × 1024 pixels without losing any significant details 
or content. Among the 108,948 images, 24,636 images 
contained one or more pathologies, while the remaining 
84,312 images were normal. Fewer than 1,500 pneumonia 
images were found in this dataset, which is publicly 
available. 

 

FIGURE 1. Examples of lung-disease images extracted from the Chest X-rays14 

dataset 

3.2. PEDIATRIC CXRS FOR PNEUMONIA DETECTION 

Kermany et al. [16] collected and labeled pediatric CXRs 
from the Guangzhou Women and Children’s Medical 
Centre (Guangzhou, China). All CXR imaging was 
performed as part of the patients’ routine clinical care. The 
CXR images for the present study were selected from 
pediatric patients aged 1 − 5 years, thus obtaining 5856 
images including 3,883 pneumonia images (2538 
bacterial, 1,345 viral) and 1,349 typical images. The x-ray 
images are available in various dimensions: 1040 × 664, 
1224 × 1000, and 1848 × 1632. Figure 2 is an example 
taken from Kermany et al.’s dataset. 

 

FIGURE 2. Sample taken from the Pediatric CXR dataset 

3.3. MIMIC CXR 

MIMIC–CXR–JPG [37] is currently the largest publicly 
available CXR dataset worldwide, containing over 377110 
CXRs associated with 227827 imaging studies. It contains 
the data of 14 chest diseases sourced from the Beth Israel 
Deaconess Medical Centre (Massachusetts, USA) [38] from 
2011 to 2016. Examples of the images from this dataset 
are presented in Fig. 3. 

 

FIGURE 3. Sample images taken from the MIMIC dataset 

3.4. INDIANA DATASET 

Demner-Fushman et al. [39] collected the Indiana (USA) 
dataset from multiple hospitals associated with the Indiana 
University School of Medicine. This dataset is composed of 
7470 chest radiographs. The images are annotated with 
the disease view (frontal or lateral), and include pulmonary 
edema, cardiac hypertrophy, pleural effusion, and opacity. 
This dataset is publicly available for users but contains no 
pneumonia samples so cannot be used as a pneumonia 
detection dataset. Samples from this dataset are 
presented in Fig. 4. 

 

FIGURE 4. Sample images taken from the Indiana dataset 
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3.5. MC DATASET 

Jaeger et al. [40] gathered 138 chest images with the 
collaboration of Montgomery County’s screening program 
for tuberculosis (USA). Among these images, 80 were 
obtained from healthy subjects, and 58 were obtained 
from tuberculosis subjects. The resolution of the images 
varies from 4020 ×  4892 to 4892 ×  4020 pixels. The 
dataset is publicly available for users, but as it contains no 
pneumonia samples, it cannot be used as a pneumonia 
detection dataset. Typical images in the MC dataset are 
presented in Fig. 5. 

 

FIGURE 5. Sample images taken from the MC dataset 

3.6. SHENZHEN DATASET 

In addition to the MC database, Jaeger et al. [40] collected 
the Shenzhen dataset from Shenzhen’s hospital 
(Guangdong Province, China), named the Guangdong 
Medical College. This dataset contains 662 chest 
radiographs: 326 healthy and 336 tuberculosis cases. Some 
examples are displayed in Fig. 6. 

 

FIGURE 6. Sample images taken from the Shenzhen dataset 

3.7. KIT DATASET  

Ryoo and Kim [41] collected 10848 images from the Korea 
Institute of Tuberculosis. This dataset includes 7020 images 
from healthy subjects and 3828 images from tuberculosis 
cases. 

3.8. JSRT DATASET 

The Japanese Society of Radiological Technology [42] 
collected 247 chest images, among which 154 presented 
with pulmonary nodules, and 93 were nodule-free. All X-
ray images are sized 2048 ×  2048 pixels, and the f depth 
of the grayscale is 12 bits. Examples are displayed in Fig. 7. 

 

FIGURE 7. Sample images taken from the JSRT dataset 

 

4. DATA PRE-PROCESSING 

Most CXRs are obtained in Digital Imaging and 
Communications in Medicine (DICOM) format with a large 
amount of metadata, but the DICOM format is difficult to 
understand by experts outside the radiology domain [37]. 
In other domains, the images are usually stored in formats 
such as PNG and JPEG, which are processed by 
compression algorithms to conserve the image 
information without losing any desired information. First, 
the patient’s information is de-identified to satisfy the 
mandatory privacy standards. This step requires the 
removal of the patient’s details, identifiers, and dates by a 
customized algorithm combining image processing and 
optical character recognition, which detects and removes 
text in the X-ray image. After de-identification, the DICOM 
images are converted into JPEG or bitmap format by the 
approaches described in [1][37]. 

Moreover, the dimensions of normal X-ray images 
(3000 × 2000 pixels) are difficult to handle by both deep 
CNNs and the computing hardware. Therefore, X-ray 
images must be reduced to an optimal size while 
preserving their vital information. Wang et al. [1] reduced 
the size of X-ray images to 1024 × 1024 pixels, open to 
512 × 512 pixels. The sizes of the MIMIC [37] and 
paediatric CXR datasets are 2048 ×  2048  and 1024 ×
1024  pixels, respectively. 

4.1. DATA BALANCING, AUGMENTATION, AND 
ENCANCEMENT BY TRADITIONAL TECHNIQUES 

Most of the datasets containing pneumonia images are 
class-imbalanced, which biases the classification toward 
the majority class. The imbalance problem has traditionally 
been resolved by the following techniques. 

The mean squared error (MSE) sums the errors in the 
whole dataset and calculates their average. The MSE-
based loss function fails when the data are imbalanced, as 
it favors the majority. Wang et al. [43] proposed the mean 
false error (MFE) and its improved version, the mean 
squared false error (MSFE), for training neural networks on 
imbalanced data. This loss function computes the average 
errors on a class-by-class basis and adds them, ensuring 
that each class has the same loss value. Data sampling can 
also help in data balancing problems [35]. Samples can be 
randomly duplicated from the minority class and randomly 
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removed from the majority class. However, as mentioned 
above, random duplication and under-sampling result in 
overfitting (owing to duplicate samples), and loss of 
important information, respectively. Under-sampling and 
over-sampling methodologies for solving data-unbalanced 
problems have been substantially developed since the late 
1990s [45-53]. Numerous researchers have suggested and 
employed different sampling techniques. 

 Several reviews have focused on the effectiveness and 
usability of these methodologies [45], [[46]. Random 
sampling, as proposed by some researchers, has several 
shortcomings. First, it can eradicate important relevant 
samples from the data, thereby risking the overfitting 
problem. Kubat [47] selected samples from the original 
population by one-sided selection, forming an under-
sampled dataset. To identify the bad samples in the data, 
the authors employed the Tomek links algorithm [48] and 
the condensed nearest neighbor method [49]. The latter 
algorithm filters out the noisy and bad examples from the 
majority class that needs to be under-sampled. 

Laurikkala [50] suggested the Neighborhood Cleaning 
Rule for filtering excess examples from the majority class 
data. They calculated three nearest neighbors for every 
example (Di) from the training set such that if Di fits within 
the common class but has been misclassified by the chosen 
nearest neighbors, it (sample) is detached from the 
dataset. Similarly, if Di locates within the less common class 
and has been misclassified by the chosen nearest 
neighbors, it should be detached from dataset. This 
approach can hit a computational bottleneck when 
processing large, highly imbalanced datasets. The synthetic 
minority oversampling technique (SMOTE) [51] creates 
simulated data based on the similarities between pairs of 
existing minority samples. However, the SMOTE technique 
is limited in generalization and variance.  

Wang [52] incorporated SMOTE into a locally linear 
embedding algorithm (LLE) that maps high-dimensional 
data into a low dimension. They collected three datasets of 
CXR images and checked the pulmonary detection 
performances of their method using multiple classifiers (k-
neural network, SVM, and naïve Bayes). The minority-to- 
majority class ratio was almost 1:25. In terms of 
classification accuracy, the LLE–SMOTE algorithm 
outperformed conventional SMOTE by 2–4%. Krawczyk et 
al. [53] presented several data sampling techniques for 
class-imbalanced problems (SMOTEBoost, OverBagging, 
RAMO, ADASYN, and conventional SMOTE) and tested 
them on a dataset of 340 images for breast cancer 
detection. The majority class contained 144 images of 
intermediate malignancy, while the minority class 
contained 26 images of high malignancy (giving an 
approximate imbalance ratio of 6:1). As the base classifier, 
they employed an SVM with a Gaussian kernel and a 
minimal optimization training procedure. SMOTEBoost 
achieved the highest sensitivity (88.46%) and specificity 
(exact negative rate = 88.8%) among the tested 
oversampling methods. 

4.2. DATA BALANCING USING GENERATIVE 
ADVERSARIAL NETWORKS (GANS) 

First introduced by Goodfellow et al. [54], a GAN generates 
new samples based on the learned input (training) data 
distribution 𝑝. GANs consist of two multi-layer 
perceptrons: a discriminator (𝐷) and a generator (𝐺). The 
generator creates samples from a simple distribution p(g) 
such that 𝑝(𝑑𝑎𝑡𝑎) =  𝑝(𝑔). During the training process, G 
maximizes the probability of D making an error, and 
creates fake samples that follow the input data distribution 
[5]. After several steps of training, the goal 𝑝(𝑑𝑎𝑡𝑎) =
 𝑝(𝑔) is achieved and 𝐷 cannot discriminate between real 
samples and samples from 𝐺. In this way, the GAN 
generates synthetic samples. GANs have attracted 
attention for their high performance but are unstable 
during training, often producing nonsensical outputs from 
G [54]. To overcome these problems, researchers have 
recently developed modified GANs such as DCGAN [2], 
styleGAN [21], and Cycle GAN [22]. 

Wei et al. [55] proposed the structure-correcting 
adversarial network (SCAN) for organ segmentation (left 
lung, right lung, heart) in CXRs. SCAN is suitable for small 
training datasets. The algorithm was evaluated on the 
publicly available JSRT [42] [56] and Montgomery [40] [57] 
datasets. They trained a fully convolutional network (FCN) 
on a small dataset of grayscale CXR images. The FCN 
optimized the segmentation network, whereas the SCAN 
differentiated the segmentation network predictions from 
the ground truth annotations. Data augmentation was not 
applied, as it did not improve the results. The algorithm 
was tested by the intersection-over-union (IoU) and Dice 
coefficient metrics. In the JSRT evaluation, the adversarial 
training improved the performance from 92.9% in FCN to 
94.7% in the proposed algorithm. 

Adar et al. [58] isolated the region of interest (ROI) in a 
synthetic liver lesion using a GAN architecture, and 
classified its features using a CNN. They used a limited 
dataset of 182 CT images of liver lesions (53 cysts, 64 
metastases, and 65 hemangiomas). The sensitivity and 
specificity were improved from 78.6% and 88.4% 
respectively in classic data augmentation to 85.7% and 
92.4% respectively in the GAN-generated synthetic data 
augmentation. However, the ROI segmented in their paper 
was excised only from a 2D CT image. Gupta et al. [25] 
proposed a GAN for bone-lesion detection. To reduce the 
computational resources, they extracted a lesion patch 
from the X-ray rather than from the full image, and thereby 
obtained many patches. For training, the lesions were 
annotated manually under expert advice. A non-lesion 
patch was translated into a lesion patch.  

Salehinejad et al. [20] proposed DCGAN for generating 
artificial CXR images from real x ray images. The dataset 
was obtained from the Radiology Information System, 
which stores the data of four diseases, and the 
classification was performed by AlexNet [18]. The accuracy 
improved from 88.4% in [58] to 92.1% in DCGAN, but the 
generated images had relatively low resolution. 
Chuquicusma et al. [59] artificially generated CT images of 
lung nodules by DCGAN, and checked their quality in a 
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visual Turing test by two radiologists. If the radiologists 
confused the original images with the DCGAN-generated 
samples, then the DCGAN was judged to produce highly 
realistic samples.  

Chuquicusma et al. [59] extracted 145 lung nodules 
(635 benign, and 510 malignant) from the Lung Image 
Database Consortium image collection, and supervised a 
visual Turing test by two radiologists, one with 13 years of 
experience (Radiologist 1), the other with four years of 
experience (Radiologist 2). Radiologist 1 correctly assessed 
67% and 58% of the fake and real generated nodules, 
respectively. Meanwhile, Radiologist 2 correctly evaluated 
100% and 92% of the fake and real nodules, respectively. 
The inter-observer agreements of the benign and 
malignant real cases were 44.91% and 58.56%, 
respectively. This experiment confirmed that DCGAN 
generates realistic samples. However, some samples 
contained the signs of both benign and malignant nodules, 
which were confusing and inferior in quality. 

Baur et al. [60] proposed the deeply discriminated GAN 
(DDGAN) algorithm, a modified Laplacian pyramid GAN 
(LAPGAN) that generates realistic high-resolution samples 
of skin lesions from a set of 2000 training samples. The 
algorithm was evaluated on the 2017 International Skin 
Imaging Collaboration (ISIC) [61] dataset, which contains 
2000 samples (374 melanomas, 1372 benign lesions, and 
254 seborrheic keratosis samples). The performance of 
LAPGAN was compared with those of DCGAN and DDGAN. 
Although LAPGAN slightly outperformed DDGAN, it proved 
challenging to train, and its hyperparameters were difficult 
to adjust. Meanwhile, when trained on 374 images, 
DCGAN failed but DDGAN trained easily with fast 
convergence and no degradation from severe high-
frequency artifacts; accordingly, it realistically generated 
high-quality images of 256 × 256 pixels. 

Malygina et al. [62] attempted to solve the unbalanced 
data problem using CycleGAN for sample creation and 
DenseNet for classification. Pollastri et al. [63] modified the 
LAPGAN and DCGAN algorithms to generate skin lesion 
samples and their segmentation masks, which ease the 
task of adding data to a training set. After training, LAPGAN 
and DCGAN generated 192 × 256 pixel-sized images from 
the ISIC training dataset, and their associated binary 
segmentation masks. Data augmentation was performed 
on both real and generated images. In various 
experiments, LAPGAN outperformed DCGAN when trained 
on only 500 annotated images, but DCGAN’s performance 
rose when the number of annotated samples increased. 

Using a conditional GAN and an active learning 
technique, Mahapatra et al. [64] generated CXR images 
from the Segmentation in Chest Radiographs (SCR) 
database, which contains 247 lung images (153 nodules 
and 93 healthy). They varied the number of samples in the 
initial training set, and showed that even when trained and 
tested on 35% of the full dataset, the method achieved 
almost the same results as fully supervised learning 
(training and testing on the whole dataset). An image and 
its manually segmented mask were input to the sample 
generator to generate realistic-looking images. After their 

informativeness was checked by a Bayesian Neural 
Network (BNN), the generated images were added to the 
training data to fine-tune the classifier. The test set 
included 400 images (200 normal, 200 nodular). When 
trained on 35% of the labeled data, the accuracy was 
91.9%, versus 92.4% in fully supervised learning. 

 

5. DATA MINING TECHNIQUES 

5.1. TRADITIONAL MACHINE LEARNING 

Oliveria et al. [65] proposed a machine learning-based 
network that classifies pediatric CXR images as pneumonia 
or normal images. They constructed an up-to-date 
database of 40 images (20 with pneumonia, 20 without 
pneumonia), and evaluated the system on 20 random test 
images from the database. Among various wavelet 
coefficients, the Haar wavelet transforms provided the 
highest accuracy of feature extraction from x-rays (97%), 
but a mediocre specificity (80%). Macedo et al. [66] 
proposed a system that detects pneumonia from chest 
radiographs by machine learning algorithms with the Haar 
wavelet transform as the feature extractor and a k-nearest 
neighbor (KNN) classifier. The model was trained and 
evaluated on a dataset of 166 child chest radiographs 
verified by a radiologist. 

Sousa et al. [67] compared the performances of 
different machine learning algorithms in childhood 
pneumonia detection from CXRs. They utilized their self-
generated pneumonia-detection dataset called 
PneumoCAD-dataset, which contains 156 grayscale chest 
radiographs. These images were first annotated by expert 
radiologists following the WHO guidelines. The authors 
extracted several texture-based features for the 
classification task: the coefficient of variation, energy, 
contrast, average energy, correlation, entropy, difference 
variance, average deviation, difference entropy, inverse, 
difference moment, sum average, residual mean, sum 
entropy, variance, sum variance, standard deviation, and 
suavity [75-78]. The SVM, KNN, and naïve Bayes classifiers 
on these extracted features achieved accuracies of 77%, 
70%, and 68%, respectively. 

Sousa et al. [98] proposed a pneumonia detection 
algorithm and tried five machine learning classifiers (KNN, 
naive Bayes, multi-layer perceptron, decision tree and 
SVM) combined with different dimensionality-reduction 
techniques (principle component analysis (PCA), 
sequential forward elimination, and kernel-PCA). For each 
combination, they tested the pneumonia-detection 
performance of their algorithm on CXRs. The dataset and 
features were those used in [23]. When 13-dimensional 
features produced by the kernel PCA were classified by 
naïve Bayes, their algorithm achieved an accuracy of 96%. 

Depeursinge et al. [68] similarly compared the 
performances of five machine learning classifiers (naïve 
Bayes, KNN, J48 decision trees, multi-layer perceptrons, 
and SVM) in pneumonia detection. Their self-collected 
dataset contained 843 radiographs with their annotated 
ROIs. They extracted a total of 39 texture-based attributes 
and optimized the parameters of each classifier by grid-
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searching. The performance was evaluated by McNemar’s 
statistical tests and the accuracy measure. They concluded 
that SVM achieved the best values of each metric, with a 
correct prediction rate of 88.3%. 

Yao et al. [69] proposed a machine learning-based 
automated system that identifies five diseases, including 
pneumonia. They collocated 40 CXRs and employed SVM 
classifiers with texture-analysis ability. Their extracted 
feature vector contained 25 texture features, such as the 
mean, variance, energy, and correlation. The co-
occurrence matrix was also calculated. They achieved an 
accuracy of 80% in a pneumonia detection task. 

Naydenova et al. [70] employed machine learning 
methods in a novel diagnostic process. Their methods 
input numerous clinical measurements that can be 
calculated by cheap and easy utensils. To evaluate their 
findings, they collected a dataset of 1093 patients, 
including 777 pneumonia samples and 316 healthy 
samples. They also extracted 47 clinical characteristics 
tools and employed nine feature-selection techniques 
(correlation coefficients, minimum redundancy, Gram–
Schmidt, Relief, orthogonalization, selection operator, 
least angle shrinkage, elastic net, and sparse linear 
discriminant analysis). The extracted features were learned 
by the SVM and RF machine learning procedures. The 
authors also employed a predictive algorithm with four 
predictive attributes (temperature, heart rate, oxygen 
saturation, and respiratory rate). They reported a 
sensitivity of 96.6%, a specificity of 96.4%, and an area 
under curve (AUC) of 97.8%.  

Antin et al. [71] proposed a supervised learning 
technique for pneumonia detection in CXR images. They 
accessed the NIH database of 112120 radiographs 
collected from 30805 patients. These images are pre-
annotated with “one”, “more than one” or “no” diseases 
by expert radiologists. The authors selected 500 random 
samples and colored them by k-means clustering. The 
colored samples were preserved as the ground truth set. 
The classification results of a supervised learning 
methodology were verified by logistic regression. The 
authors claimed comparable performances in their 
experiments and discussed how deep learning could 
improve the outcomes of this task.  

5.2. DEEP LEARNING 

A CNN consists of three main parts: the input images, an 
in-depth feature extractor, and a classifier. Through its 
multiple layers, the feature extractor automatically learns 
the essential features from the raw input (or pre-
processed) images. The learned features are passed to a 
classifier such as SoftMax, where they are classified based 
on the learned features. A CNN contains several layers, 
namely, a convolutional layer, a pooling layer, an activation 
layer, a dropout layer, and the classifier (e.g., SoftMax) 
[72]. A CNN can be built from scratch [6], by employing an 
existing pre-trained network without retraining, or by fine-
tuning a pre-trained network on a target dataset. 

5.3. TRANSFER LEARNING (OF PRE-TRAINED 
NETWORKS)  

Wang et al. [1] classified pathologies from CXRs using 
various pre-trained models (AlexNet [18], GoogleNet [74], 
VGG16, and ResNet). The ResNet model (AUC = 0.63) 
proved more accurate than the other pre-trained 
networks. Yao et al. [77] proposed a two-stage end-to-end 
model with a DCNN encoder and an RNN (long short-term 
memory) decoder that predicts the labels of the 
pathologies in Chest X-ray14 data. The DCNN was a 
modified DenseNet trained from scratch on the Chest X-
ray14 dataset. The classification accuracy was 71.0%. To 
improve this result, Rajpurkar et al. [33] proposed Chexnet, 
a pre-trained 121-layer DenseNet trained on the Chest X-
ray14 dataset. The Chexnet algorithm achieved a higher 
performance of the F1 metric than experienced 
radiologists. For pneumonia detection, the dataset was 
divided into training (98637 images), validation (6351 
images), and testing (420 images) sets. To apply the 
algorithm to all 14 diseases in Chest X-ray14, the dataset 
was also split into a 70%: 10%: 20% ratio of training, 
validation, and test sets. The accuracy of pneumonia 
detection was 76%. 

Kermany et al. [16] proposed a transfer learning 
algorithm for retinal OCT diagnosis based on transfer 
learning of retinal OCT images, and reported state-of-the-
art performance. The same transfer learning system was 
applied to pediatric chest x rays [16]. In normal versus 
pneumonia images, the accuracy, specificity, and 
sensitivity of this system were 92.8%, 0.90 and 0.93, 
respectively. Meanwhile, the accuracy, specificity, and 
sensitivity of detecting bacterial versus viral pneumonias 
were 90.7%, 0.88 and 0.90, respectively. Ayan et al. [73] 
compared the performances of two pre-trained networks 
(VGG16 and Xception [78]) on the same dataset. The 
sensitivity and specificity of distinguishing normal from 
pneumonia images were 0.82 and 0.91 respectively for 
VGG16, and 0.85 and 0.76 respectively for Xception. 

Togacar et al. [79] applied three deep learning methods 
(Alexnet, VGG16, and VGG19) in a deep feature learning 
model that extracts CXR images at the eighth fully 
connected layer. The 1000 features obtained from each 
deep learning model were reduced to 100 by minimum 
redundancy maximum relevance. Finally, the selected 
features were combined into a latent Dirichlet allocation 
model, which achieved a 99% classification accuracy on a 
CXR dataset [16]. However, the authors did not apply the 
standard data division given in [16]; instead, they balanced 
only the normal images by data augmentation. Similrly, 
Liang et. al. [102] proposed 49 layers convolutional layers 
residual structure that overcome overfitting for 
pneumonia detection on pediatric chest X-rays dataset 
[16]. 

Putha et al. [80] trained a deep learning system on the 
largest available dataset, which contains 2.3 million CXR 
images with different pathologies. The deep learning 
algorithm (ResNet) was validated on 100000 of these 
images (CQ100k) and was further evaluated on 2000 
images (CQ2000) collected from three hospitals in India. 
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The pathologies were obtained from the images and their 
associated reports by a natural language programming 
(NLP) algorithm. To evaluate the correctness of the NLP 
algorithm, the 1930 x-ray images were independently 
verified by experienced radiologists. The accuracies of 
pathology classification on the CQ2000 dataset ranged 
from 89.0 to 99.0%. Similar results were obtained on the 
CQ100k dataset, but the accuracy of detecting normal x-
ray images in this dataset reduced to 86.0%. 

5.4. DL and non-image features 

Baltruschat et al. [35] supplemented the CXR dataset with 
the non-image features (patient age, gender, and 
acquisition type). The authors applied the transferred 
learning technique with and without fine-tuning, as well as 
a CNN trained from scratch. The data were split in two 
ways. In the first data splitting, patients with multiple 
follow-up records were assigned to a single subset. This 
splitting enables a vast range of patient numbers; for 
example, 22420 images can be split into 5817 patients 
(split 2) or 6245 patients (split 5). The second dataset split 
is described in Wang et al. [1]. The former split improved 
the accuracy of classifying pneumonia by transferred 
learning from 75.3% to 76.7 % (for image dimensions of 
448 × 448 pixels. The latter split reduced the AUC result 
of detecting pneumonia with ResNet-38 to 0.71, but 
achieved superior results on the five other diseases in the 
CXR dataset. 

Bar et al. [82] concatenated the Decaf [26] features 
with the low-level features (the GIST [83] and bag-of-words 
features), and classified lung pathologies by a feature 
selection method. For feature selection, they selected the 
5000 most significant features among the 18920 features 
obtained by concatenating the Decaf and low-level 
features.  

 Er et al. [44] performed a comparative study of 
different neural networks in chest disease diagnosis. Their 
dataset was obtained from Diyarbakir Chest Diseases 
Hospital from southeast of Turkey  hospital in Turkey, 
which contains the epicrisis reports of patients with 
tuberculosis (50 samples) , COPD (71), pneumonia (60), 
asthma (44), or lung cancer (32), along with healthy 
samples (100). The authors collected 357 samples and 
analyzed 38 non-image features, including complaints of 
coughing, weakness, chest aches, and high body 
temperature. In the pneumonia analysis (60 samples), the 
multilayer neural network with the Levenberg–Marquart 
architecture (one hidden layer) achieved the highest 
accuracy for pneumonia detection (91.67%). No other 
metrics were presented in their paper. 

5.5. Customized CNN 

Stephan et al. [5] proposed a CNN with four convolution 
layers, which they trained from scratch on the pediatric 
CXR dataset proposed by Kermany [16]. They split the data 
differently from Kermany, assigning 2134 images to the 
validation set, and increasing the training dataset by 
augmentation techniques. They reported an accuracy of 
93.7% on the validation set, but did not consolidate this 
performance by other metrics. This lack of further 
verification is a significant drawback of their paper.  Raheel 

[6] proposed an 18-layer DCNN, and trained it on the 
pediatric CXR dataset following the dataset division of the 
original authors, i.e. 80% for training and 20% for test. The 
accuracy of their system (94.3%) was 1.6% higher than 
that of Kermany et al. [16], and the sensitivity was 
99%, but the specificity was only 86%.  

CNN is perceived as a black box that outputs a 
performance without relaying an understanding of that 
performance. Such lack of transparency can adversely 
affect the decision making. To improve this situation, 
Rajarman et al. [84] proposed a visual explanation of the 
prediction and activation of CNNs. They evaluated two 
models (VGG16 and CNN built from scratch), and visually 
presented their results. The lung boundaries were 
detected by an atlas-based detection algorithm [84], and 
the classification was performed by a DCNN. The VGG16 
achieved a better learning and optimization outcome than 
customized CNN. The VGG16 improved the accuracy of 
distinguishing between pneumonia and normal images 
from 92.8% in Kermany et al. [16] to 96.2%. Meanwhile, 
the accuracy of distinguishing between viral and bacterial 
pneumonias was improved from 90.7% to 93.6%.  

Abiyev et. al. [99] proposed customized CNN, 
competitive neural networks (CpNNs) with unsupervised 
learning, and backpropagation neural networks (BPNNs) 
with supervised learning for pathology detection from 
chest X-rays. Multiple experiments performed show that 
CpNN converges faster than CNN, however, the accuracy 
of the proposed CNN is higher than CpNN, BPNN as well as 
VGG16, VGG19 and CNN with GIST. 

5.6. Segmentation by FCN and RCNN 

Gu et al. [85] proposed a two-step method that 
classifies bacterial and viral pneumonias from chest 
radiographs. The first step extracts the lung regions from 
the x-ray images using an FCN. The second step classifies 
the lung regions into pediatric viral or bacterial pneumonia 
by a deep learning network with handcrafted features. The 
authors used the publicly available MC [40] and JSRT [42] 
datasets for segmentation, and data from the Guangzhou 
Women and Children's Medical Center for binary 
classification. Feature extraction by transfer learning 
achieved higher accuracy (80.0% ± 2.02%) than other 
feature-extraction techniques. The performance was 
further improved by an ensemble of features (gray-level 
co-occurrence matrix, wavelets, histogram of oriented 
gradients, and DCNN features), although the improvement 
was slight (accuracy = 82.3% ± 0.14%). 

Mask–RCNN [87] is a deep neural network for tasks 
such as segmentation. Jaiswal et al. [81] proposed Mask–
RCNN with ResNet101 (and ResNet50) as a backbone 
detector for pneumonia detection, and trained it on the 
dataset of the Radiological Society of North America [88], 
which contains 30,000 annotated x-ray mages. When 
evaluated on the test set (the Society of Thoracic Radiology 
dataset [89]), Mask–RCNN outperformed several object 
detection techniques, such as YOLO3 and U-Net. The 
proposed model predicts the bounding box of each CXR, its 
label, and its masks with the respective class. 
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The method of Li et al. [90] identifies and localizes 
disease lesions in CXRs [1] under a limited amount of 
supervision. The proposed method accurately visualizes 
the location of the disease in the x-ray image, improving 
the disease interpretation. First, the image input is 
processed by Preact–Resnet (Resnet-v2) [91], which 
extracts the feature tensors of size ℎ’ = ℎ/32, 𝑤’ =
 𝑤/32 and 𝑐’ =  2048. Here, ℎ, 𝑤, and 𝑐 are the height, 
width, and number of channels of the input image, 
respectively. The image is then divided into a 𝑃 × 𝑃 grid for 
predicting K possible disease types. As the recognition 
network, they applied FCN [92]. The image model was 
Resnet-v2-50, and the patch-slice size was selected from 
{12, 16, 20}. The CXR dataset contains 984 labeled 
bounding boxes for 880 images; the reaming 111,240 
images are unannotated. The first evaluation was 
performed by five-fold cross-validation on 70% of the 
unannotated images and 70% of the annotated images. 
The second evaluation checked the effectiveness of the 
supervision provided by the bounding boxes. To this end, 
the proportion of unannotated bounding boxes was 
reduced from 80% to 0%. The authors showed that in 
some cases, the result of 40% (44496) unannotated 
images with 80% (704) annotated images outperformed 
the result of 80% (88;  892) unannotated images. 

5.7. Ensemble methods 

Chouhan et al. [93] proposed an ensemble of different 
state-of-the-art deep learning algorithms (Alexnet, 
Inception v3, Resnet, GoogleNet, and Densenet-121) for 
pneumonia detection in pediatric CXRs. Multiple 
experiments confirmed that the ensemble method 
outperformed other methods [16], achieving 96.4% 
accuracy and 99.0% sensitivity (versus an average of 
92.8% accuracy and 93.2 sensitivity in previous methods). 
However, the precision (93.2%) was not appreciably 
changed from the previous methods. 

Vijendran et al. [94] proposed a multi-layered method 
called Online Sequential Extreme Learning Machines 
(OSELM) for pneumonia detection in images of the MNIST 
dataset. The classification accuracy of multi-layered 
OSELM exceeded those of SVM and conventional extreme 
learning machines and achieved almost the same accuracy 
as traditional CNN within a shorter runtime. However, no 
additional performance metrics were provided in the 
paper. 

Islam et al. [95] proposed ensemble DCCN models that 
accurately detect abnormalities (Cardiomegaly and 
Tuberculosis detection) in chest x-rays. They detected 
cardiomegaly events in the Indiana, JSRT, and Shenzhen 
datasets, detection, and achieved a 17% higher accuracy 
than single DCNN with 93.0% for Cardiomegaly detection 
and 90% for Tuberculosis detection.  

Sirazitdinov et. al. [101] proposed ensemble of 
RatinaNet and Mask R-CNN for pneumonia detection and 
localization from dataset of 26,684 images from Kaggle 
Pneumonia [100] which achieved precision, recall and F-1 
score of 0.75, 0.79 and 0.77, respectively. 

5.8. Analyses of partial datasets with nonstandard 
divisions 

Some researchers have performed non-standard divisions 
of partial datasets. Rahmat et al. [96] proposed Faster 
RCNN, which classifies pathological and normal CXRs. They 
selected a subset of 200 pathological and normal images 
from the Chest X-ray14 dataset. The accuracy of their 
Faster RCNN was 62.0%, higher than the judgement 
accuracies of a general practitioner and a medical student, 
but still very low because the data were highly imbalanced. 
The specificity (54.39%) was also low. Malygina et al. [62] 
proposed CycleGAN as a solution to the unbalanced data 
problem. They created samples using CycleGAN and 
classified them by DenseNet. 

Varshni et al. [97] applied three deep learning 
algorithms (DenseNet, Resnet, Inception) as the feature 
extractor and SVM as the classifier of pneumonia signs in 
CXRs. As the Chest x-ray14 dataset [1] contains 1431 
pneumonia images, they selected 1431 normal images to 
balance the dataset for binary classification. In a series of 
experiments with the appropriate parameters of the SVM 
classifier in DenseNet169, the AUC on the 573-image test 
dataset was 0.8002. 

 

6. PERFORMANCE METRICS  

The performance of a pneumonia detection system is 
evaluated by various performance metrics. The accuracy 
metric, which determines the correctness of the identified 
instances in both classes of a binary classification, must be 
supplemented by other metrics such as the precision, 
recall, 𝐹1 score, and AUC. The precision, recall, and 𝐹1 
score are respectively given by Eqs. (1), (2) and (3) below. 
Table 1 shows the structure of a confusion matrix. 

TABLE 1: PROVIDES A CLEAR DEPICTION OF CALCULATION THE 

PERFORMANCE METRICS. 

Actual Label Prediction (Disease) Prediction (Normal) 

Positive (Disease) TP FN 

Negative (Normal) FP TN 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑟𝑒𝑐)  =  𝑇𝑃/𝑇𝑃 + 𝐹𝑃   (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝑒𝑐) =  𝑇𝑃/𝑇𝑃 + 𝐹𝑁    (2) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2(𝑃𝑟𝑒𝑐 𝑥 𝑅𝑒𝑐)/𝑃𝑟𝑒 + 𝑅𝑒𝑐  (3) 

 

7. COMPARATIVE ANALYSIS AND DISCUSSION 

In this section, we will briefly discuss and compare the 
relevant dataset and approaches for pneumonia detection. 
We will evaluate these approaches in terms of robustness 
and usability.  

TABLE 2: COMPARISON OF DATASETS COMPRISED OF CHEST X-RAY W.R.T DETECTION 

OF PNEUMONIA 

Dataset Statistics Relevance 

Chest X-rays 14 
dataset [1] 

108948  
Images 

Relevant but Only 1500 
Pneumonia cases 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.09.20150342doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.09.20150342
http://creativecommons.org/licenses/by-nd/4.0/


   

 

10   

Pediatric Chest 
X-rays [16]  

5856  Images All Pneumonia cases  

MIMIC CXR [37] 377110  
Images 

Relevant but only a few cases 
of pneumonia 

Indiana dataset 
[39] 

7470 images No pneumonia cases 

MC dataset [40] 138 Images No pneumonia cases 

Shenzhen 
dataset [40] [86] 

662 Images No pneumonia cases 

KIT dataset [41] 10848 images No pneumonia cases 

JSRT dataset 
[42] 

247  Images No pneumonia cases 

Pediatric chest x-
ray [72] 

40 images Relevant but Only 20 images 

PneumoCAD-
dataset [65] 

156 Images Relevant but only 78 cases 

Depeursinge 
dataset [68] 

843 Images Relevant but only 400 cases 

Naydenova [70] 1093 Images Relevant but only 777 cases 

 

As can be seen in Table , there are multiple datasets 
available for the prescribed task. The most famous and 
most significant is to MIMIC CXR [37] and then the Chest X-
rays-14 dataset [1]. However, these two datasets only 
contain fewer examples of pneumonia as compared to 
other classes, which makes them highly imbalanced. 
Although various techniques [43]-[71]  have already been 
presented in the literature to tackle this problem, still only 
a few researchers have followed the techniques. In most 
cases, the authors have only utilized under-sampling and 
conclude the results with fewer images. The results re 
there for unreliable and cannot be exploited on an 
industrial scale. It can also be observed that most chest x-
ray dataset did not contain any sample or pneumonia at all 
[24],[39],[41],[42],[98]. We suggest collecting massive 
scale data which should be balanced and should have 
around 1 million samples of pneumonia cases. As a 
temporary solution, the composite samples from the 
present dataset can also be exploited, but still, the 
combined image made only around five thousand images, 
which are far less for efficient and reliable detection. 

TABLE 3: COMPARISON OF PNEUMONIA DETECTION TECHNIQUES 

Citation Technique Dataset Results 

Oliveria et al. 
[65] 

(Haar) wavelet 
transform as a 

feature extractor 
and KNN as a 

classifier 

PneumoCAD-
dataset [65] 

AUC= 97%  

Sousa et al. 
[67] 

SVM, KNN, and NB PneumoCAD-
dataset [65] 

77%, 70%, and 6 
8% accuracies 

Sousa et al. 
[98] 

KNN, Naive Bayes, 
MLP, Decision Tree 
and SVM combined 
with PCA, sequential 
forward elimination 

and kernel-PCA 

PneumoCAD-
dataset [65] 

96% accuracy 
with NB 

Depeursinge 
et al. [68] 

NB, KNN, J48 
decision trees, MLP, 

and SVM 

Depeursinge 
dataset [68] 

88.3% accuracy 
with SVM 

Naydenova et 
al. [70] 

Feature delection 
techniques;SVM and 

RF 

Clinical data 
[70] 

97.8% AUC 

Benjamin 
Antin et al. 

[71] 

k-means clustering Chest X-ray14 
[1] 

AUC=0.60 

Wang et al. 
[1] 

Transfer learning of 
pre-trained AlexNet, 
GoogleNet, VGG16, 

ResNet. 

Chest X-ray14 
[1] 

63% AUC 

Yao et al. [77] LSTM Chest X-ray14 
[1] 

76%  accuracy 

Kermany et 
al. [16] 

Transfer learning Pediatric chest 
x rays [16] 

90.7% accuracy 

Ayan et al. 
2019 [73] 

Transfer learning of 
VGG16 and Xception 

Pediatric 
chest x rays 

[16] 

0.82, 0.91, 
sensitivity 

Togacar et al. 
[79] 

Deep feature 
learning model 

Chest X-ray 
dataset [33] 

99.4% accuracy 

Putha et al. 
[80] 

ResNet CQ dataset 
[80] 

89.0%  accuracy 

Baltruschat et 
al. [35] 

Transfer learning and 
CNN from scratch 

Chest X-ray 
dataset [33] 

71% AUC 

Bar et al. [82] PiCodes features 
and Decaf  

93 X-rays 
from Sheba 

Medical 
center 

AUC= 0.79  

Er et al.  [44] Deep Neural 
Network 

Self-
generated 

dataset [44] 

91.67% accuracy 

Stephan et al.  
[5] 

CNN with four 
convolution layers 

Pediatric 
chest X-ray 
dataset [16] 

93.7% accuracy 

Raheel [6] 18-layer DCNN Pediatric 
chest X-ray 
dataset [16] 

94.3% accuracy 

Rajarman et 
al. [84] 

Atlas-based 
detection algorithm 

[96] and DCNN 

Pediatric chest 
X-ray dataset 

[16] 

96.2% accuracy 

Gu et al. [85] FCN and DCNN MC [86] and 
JSRT [42] 

82.3% accuracy 

Jaiswal et al. 
[81] 

Mask-RCNN [81] 
with Resnet 101 

RSNA [101] Mean score = 
0.21 

Li et al. [90] FCN [105] and 
Resnet-v2-50 

Chest X-ray14 
[1] 

80% accuracy 

Chouhan et 
al. [93] 

Ensemble Chest X-ray14 
[1] 

96.39% accuracy 

Vijendran et 
al. [94] 

Multilayer Online 
Sequential Extreme 
Learning Machines 

MC [86] and 
JSRT [42] 

- 

Islam et al. 
[95] 

Ensemble DCCN MC [86] and 
JSRT [42] 

93.0% for 
Cardiomegaly 
detection and 

90% for 
Tuberculosis 

detection 

Rahmat et al. 
[96] 

Faster-RCNN Chest X-ray14 
[1] 

62.0% accuracy 

Malygina et 
al. [62] 

DenseNet and  
CycleGAN 

Chest X-ray14 
[1] 

76% AUC 

Liang et. al. 
[102] 

Risdual deep 
learning architecture 

Pediatric 
chest X-rays 

[16] 

90.05 % accurcy 

Varshni et al. 
[97] 

DenseNet-169 with 
SVM 

Chest X-ray14 
[1] 

80.02% AUC 

Abiyev et. al. 
[99]  

  

CNN, CpNN, BpNN Chest X-rays 
14 [1] 

92% accuracy by 
CNN 

Sirazitdinov 
[101] 

Ensemble of Mask R-
CNN and RatinaNet 

RSNA [100] precision, recall 
and F-1 score of 
0.75, 0.79 and 

0.77, 
respectively 

 

As it can be seen from Table 3, that several author have 
presented significant amount of work in the pneumonia 
detection domain. Most of them have comparable 
accuracy, however the results are evaluated on small scale 
databases and cannot be utilized on a commercial scale. In 
the domain of traditional machine learning algorithms, 
Sousa et al. [98] have achieved 96% accuracy by exploiting 
NB with dimensionality reduction techniques. For 
traditional models, this much progress is worth noting and 
remarkable. By applying Transfer learning Kermany et al. 
[16] have achieved 90.7% accuracy which is lower as 
compared to Sousa et al. [98]’s performance. Chouhan et 
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al. [93] have achieved 96.2% accuracy by employing 
assemble method which contains a major part of DCNN, 
and the computational resources required for such type of 
models are huge. Therefore, the current best performance 
with less computational requirement is provided by Sousa 
et al. [98]. However, if the computational power is not 
constrained and performance is the only requirement, 
than the work of Chouhan et al. [93] can also be considered 
as remarkable. Besides, there are several other works 
which have provided <90% accuracy for pneumonia 
detection such as Rajarman et al. [96],, Stephan et al.  [5], 
and Raheel [6]. 

 

8. CONCLUSION 

The use of chest radiography has a vital role in the 
examination and diagnosis of chest related diseases, which 
made the automatic detection one of the hot topics in 
computer vision as medical imaging research. Thus, many 
algorithms using various techniques are available from the 
research community. However, there is a lack of available 
literature that summarizes all the current available 
practices, so one can visualize what methods to choose as 
a real-time perspective, which are the available datasets, 
and what are the currently achieved results in this domain. 

This paper presented the overview of current literature 
on the topic of pneumonia identification by using chest x-
ray, it summarizes the topic and provides the analysis of 
present algorithms in terms of usability, goodness factor, 
and computational complexity associated with these 
techniques. We have observed that there are multiple 
datasets available for the prescribed task.  

However, most of them are highly imbalanced and only 
a few researchers have followed the balancing techniques. 
In most cases, the authors have only utilized under-
sampling and conclude the results with fewer images. The 
results are there for unreliable and cannot be exploited on 
an industrial scale. We suggested collecting a massive scale 
data which should be balanced and should have around 1 
million samples of pneumonia cases. 

 Similarly, several authors have presented significant 
amount of work in the pneumonia detection domain. The 
current best performance with less computational 
requirement is provided by Sousa et. al. [98]. However, if 
the computational power is not constrained and 
performance is the only requirement, than the work of 
Chouhan et al. [93] can also be considered as remarkable. 
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