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Abstract (150 words) 

Biological age measures outperform chronological age in predicting various aging outcomes, yet 

little is known regarding genetic predisposition. We performed genome-wide association scans of 

two age-adjusted biological age measures (PhenoAgeAcceleration and BioAgeAcceleration), 

estimated from clinical biochemistry markers1,2 in European-descent participants from UK 

Biobank. The strongest signals were found in the APOE gene, tagged by the two major protein-

coding SNPs, PhenoAgeAccel—rs429358 (APOE e4 determinant) (p=1.5010-72); 

BioAgeAccel—rs7412 (APOE e2 determinant) (p=3.1610-60). Interestingly, we observed inverse 

APOE e2 and e4 associations and unique pathway enrichments when comparing the two biological 

age measures.  Genes associated with BioAgeAccel were enriched in lipid related pathways, while 

genes associated with PhenoAgeAccel showed enrichment for immune system, cell function, and 

carbohydrate homeostasis pathways, suggesting the two measures capture different aging domains. 

Our study reaffirms that aging patterns are heterogenous across individuals, and the manner in 

which a person ages may be partly attributed to genetic predisposition.   
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Introduction 

While chronological age is arguably the strongest determinant of risk for major chronic 

diseases, it alone is not sufficient to reflect the state of biological aging. Individuals with similar 

chronological ages are heterogenous in their physiological states, and subsequent health risks, due 

to differences in both the rate and manner of biological aging. As a result, efforts have been 

launched to develop measures that can capture the concept of biological age (BA)3. Typically, 

these measures encompass single or composite biomarkers found to be associated with a surrogate 

of biological age, usually chronological age or mortality. In principle, a valid BA measure needs 

to outperform chronological age in predicting lifespan and a wide range of age-sensitive tests in 

multiple physiological and behavioral domains4. BA predictors may help discover drivers of the 

aging process and can be used for secondary prevention by identifying at-risk individuals prior to 

disease onset. Additionally, they have been proposed as tools to monitor intervention or treatment 

effects aimed at targeting the aging process5. 

A variety of data modalities, covering different biological levels of organization, have been 

used to develop BA predictors, e.g., DNA methylation data, gene expression data, proteomic data, 

metabolomic data, and clinical chemistry measures6,7. A study comparing 11 BA predictors found 

low agreement between those based on DNA methylation, clinical biomarkers, and telomere 

length, in terms of both their correlations with each other and their relative associations with 

healthspan-related characteristics: balance, grip strength, motor coordination, physical limitations, 

cognitive decline, self-rated health, and facial aging8. These findings suggest that different BA 

predictors may be capturing distinct aspects of the aging process. Furthermore, a recent paper9 

combining various omics data identified distinct “ageotypes”, which represent diverse aging 

patterns across individuals.  
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We hypothesize that individual susceptibility to one biological aging domain versus 

another may be due in part to underlying genetic mechanisms. To test the hypothesis, we used data 

from the UK Biobank study to understand genetic predisposition to accelerated aging, measured 

by two validated biological age predictors (PhenoAge1 and BioAge2). PhenoAge is a function of 

chronological age, albumin, creatinine, C-reactive protein (CRP), alkaline phosphatase, glucose, 

lymphocyte percentage, mean corpuscular volume, red blood cell distribution width (RDW), and 

white blood cell count. BioAge is function of chronological age, albumin, creatinine, CRP, and 

alkaline phosphatase (also in PhenoAge), plus glycated hemoglobin (HbA1c), systolic blood 

pressure, and total cholesterol. Both aging measures have been shown to be robust predictors of 

aging outcomes1,2,10, yet are clearly distinct. Biological age acceleration measured by either 

biological age measure adjusted for chronological age (PhenoAgeAccel or BioAgeAccel) was 

similarly associated with morbidity and mortality in the full sample and subgroups of National 

Health and Nutrition Examination Survey (NHANES) IV, but PhenoAgeAccel outperformed 

BioAgeAccel in those disease-free and with normal body mass index10. Overall, this study is fully 

supported by UK Biobank, featured by a large sample and extensive genetic and phenotypic data. 

Results 

451,367 genetically-determined Europeans were identified in UK Biobank. Of whom, 

379,703 unrelated participants were included in analyses. Among the included samples (Table 1), 

204,736 (54%) participants were female. After a mean follow-up time of 11.49 years (standard 

deviation (SD)=1.55) to April 26, 2020 (last death in the data), 23,060 participants died with the 

mean age at death 69.06 years (SD=7.21, range: 40.84 to 82.50). A summary of PhenoAge or 

BioAge biomarkers is provided in Table 1.  
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Participants were biologically younger than their chronological ages, with the mean 

PhenoAge and BioAge, 54.43 years (SD=9.56) and 56.16 years (SD=8.17) versus the mean 

chronological age 56.74 years (SD=8.02). PhenoAge acceleration (PhenoAgeAccel) estimated by 

residualizing PhenoAge based on chronological age via a linear regression model was weakly 

correlated (r=0.23) with BioAge acceleration (BioAgeAccel) that was similarly defined. Both 

BioAgeAccel and PhenoAgeAccel were significantly associated with all-cause mortality in this 

young cohort (p<210-6), with the hazard ratio (HR) 1.100 (95% CI: 1.097 to 1.102) per year 

increase in PhenoAgeAccel and 1.054 (95% CI: 1.046 to 1.062) per year increase in BioAgeAccel. 

In the above models, sex was included, additional to chronological age and PhenoAge or BioAge. 

When both PhenoAge and BioAge were included, the hazard ratio with PhenoAgeAccel was little 

changed (HR=1.099, 95% CI: 1.097 to 1.102) but that with BioAgeAccel (HR=1.000, 95% CI: 

0.992 to 1.008) was reduced towards the null.  

The data was split with a 1 to 2 ratio, where PhenoAge was available for 107,460 

participants in the training set and for 214,192 participants in the testing set. Similarly, BioAge 

was available for 98,446 participants in the training set and for 195,847 participants in the testing 

set. The training set was used to perform genome-wide association analysis and the GWAS 

summary statistics were used to construct polygenic risk scores (PRSs) in the testing set, evaluated 

for the use of risk stratification for age-related outcomes. Demographics and PhenoAge or BioAge 

biomarker levels were quite balanced between the training and testing sets (Table S1). 

PhenoAgeAccel GWAS 

In the Genome-Wide Association Study (GWAS) of PhenoAgeAccel, 7,561 genetic 

variants were identified (p<5×10-8) (Figure 1). The SNP p-value distribution showed sizable 

deviation from the null distribution of no association. However, there was a lack of evidence of 
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population stratification or cryptic relatedness (LD score regression intercept 1.02 with the 

standard error (SE) 0.01, compared to the null value 1), and the proportion of inflation not 

explained by polygenic heritability was only 6.33% (SE=3.06%).  

The SNP-heritability for PhenoAgeAccel was estimated to be 14.45% (SE=0.95%). We 

identified 55 independent signals (p<5×10-8) tagged by 55 lead SNPs. Of which, 29 were near 

genes (Table 2). Both APOE isoform coding SNPs (rs429358 and rs7412 on chromosome 19) were 

identified. Multiple lead SNPs were associated with CRP, glucose or HbA1c, and hematology 

traits, based on previous GWAS catalog11 results (Table S2). Lead SNPs nearby GCKR, FTO, 

ZPR1, and APOE were associated with various traits including cardiovascular diseases and/or 

PhenoAge biomarkers (Table S2). 

The Multi-marker Analysis of GenoMic Annotation (MAGMA) gene set analysis 

identified 11 gene sets at the Bonferroni-corrected level of 5%, including regulation of signaling 

and transcription, homeostasis (carbohydrate homeostasis, homeostasis of number of cells, and 

myeloid cell homeostasis), and immune system process (Figure 2). In the MAGMA tissue 

expression analysis, we found that genes expressed in whole blood and liver were more likely to 

be associated with PhenoAgeAccel than genes expressed in other tissues (Figure 3). 

BioAgeAccel GWAS 

In the GWAS for BioAgeAccel, 996 genetic variants were identified (p<5×10-8) (Figure 

1). The observed p-value distribution was significantly deviant from the expected under the null 

(Figure 2). However, there was no evidence to suggest population stratification or cryptic 

relatedness (LD score regression intercept=1.02, SE=0.01), and the proportion of inflation not 

explained by polygenic heritability was small, 6.58% (SE=3.78%).  
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The SNP-heritability for BioAgeAccel was estimated to be 12.39% (SE=0.95%). Twenty 

lead SNPs were identified (p<5×10-8) and 16 were nearby genes (Table 3). The strongest signal 

appeared in the APOE gene, tagged by the APOE isoform coding SNP rs7412. Several lead SNPs 

were associated with blood pressures. Other lead SNPs were associated with HbA1c, 

cardiovascular disease, and/or lipid biomarkers (Table S3). 

The MAGMA gene set analysis identified 10 lipid-related gene sets at the Bonferroni-

corrected level of 5%, including lipid homeostasis, lipid protein particle clearance, and 

triglyceride-rich plasma lipoprotein particle (Figure 2). None of the 53 tissues showed significant 

specificity in gene expression for the genes associated with BioAgeAccel (Figure 3). 

PhenoAgeAccel GWAS vs. BioAgeAccel GWAS 

PhenoAgeAccel and BioAgeAccel shared the lead SNPs, rs560887 (near SPC25, G6PC2), 

rs17321515 (near AC091114.1), rs16926246 (near HK1), and rs7412 (near APOE). Interestingly, 

three out of four common lead SNPs were oppositely associated with PhenoAgeAccel and 

BioAgeAccel.  

• The rs560887 T allele, associated with decreased HbA1c12,13, is associated with decreased 

BioAgeAccel and PhenoAgeAccel.  

• The rs16926246 C allele, associated with increased HbA1c14, is associated with increased 

BioAgeAccel, but decreased PhenoAgeAccel.  

• The rs17321515 A allele, associated with increased triglycerides15, is associated with 

increased BioAgeAccel, but decreased PhenoAgeAccel.  

• The rs7412 T allele, or APOE e2 determined allele, associated with increased longevity16, 

is associated with decreased BioAgeAccel, but increased PhenoAgeAccel.  
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Genetic Associations 

Among the biomarkers, PhenoAge acceleration was genetically highly correlated with 

RDW (rg=0.65), followed by CRP (rg=0.48), and then white blood cell count (rg = 0.46) (Figure 

S1). BioAge acceleration was genetically highly correlated with systolic blood pressure (rg = 0.84), 

followed by alkaline phosphatase (rg=0.43), and then CRP (rg=0.36) (Figure S1).  

The genetic correlation between PhenoAgeAccel and BioAgeAccel was 0.42 (SE=0.047). 

Both PhenoAgeAccel and BioAgeAccel had low genetic correlations with gastrointestinal diseases 

(GWAS summary statistics from Liu et al., 201517), prostate and breast cancers18,19, and 

Alzheimer’s disease (Figure S2). Both were genetically correlated with coronary artery disease 

(CAD)20 (rg=0.27 with PhenoAgeAccel, rg=0.38 with BioAgeAccel), osteoarthritis21 (rg=0.30 with 

PhenoAgeAccel, rg=0.25 with BioAgeAccel), stroke22 (rg=0.30 with PhenoAgeAccel, rg=0.34 

with BioAgeAccel), chronic kidney disease23 (rg=0.35 with PhenoAgeAccel, rg=0.26 with 

BioAgeAccel), type II diabetes24 (rg=0.36 with PhenoAgeAccel, rg=0.33 with BioAgeAccel), a 

49-item frailty including pains and diseases25 (rg=0.34 with PhenoAgeAccel, rg=0.27 with 

BioAgeAccel), and parental mortality26 (rg=0.42 with PhenoAgeAccel, rg=0.45 with 

BioAgeAccel) (Figure S2).  

PhenoAgeAccel (rg=0.44) was genetically more positively correlated with body mass 

index (BMI)27 than BioAgeAccel (rg=0.24). Waist circumstance and waist-hip ratio, adjusted for 

BMI and physical activity28, were not correlated with PhenoAgeAccel genetically, but a modest 

genetic correlation was found between BioAgeAccel and waist-hip ratio (rg=0.16). BioAgeAccel 

(systolic: rg = 0.84, diastolic: rg=0.57) also was genetically more positively correlated with systolic 

and diastolic blood pressures than PhenoAgeAccel (systolic: rg=0.23, diastolic: rg=0.17). 

Genetically increased PhenoAgeAccel and BioAgeAccel were correlated with lower forced vital 
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capacity (FVC)27 and forced expiratory volume in one second (FEV1) to a moderate degree27 but 

not with the FEV1/FVC ratio27. The genetic correlations between PhenoAgeAccel or BioAgeAccel 

with heel bone mineral density27 and heart rate variability (the root mean square of the successive 

differences of inter beat intervals, RMSSD)29 were minimal (Figure S3).  

PhenoAgeAccel was genetically more correlated than BioAgeAccel with hematology 

traits27 with no surprise as four hematological measures are included in PhenoAge versus none in 

BioAge (Figure S4). PhenoAgeAccel and BioAgeAccel were genetically associated with different 

cholesterol biomarkers: total cholesterol, LDL cholesterol, and apolipoprotein B with 

BioAgeAccel, and HDL cholesterol and apolipoprotein A-1 with PhenoAgeAccel. Similarly, 

BioAgeAccel was genetically more correlated than PhenoAgeAccel with the liver biomarkers of 

alanine aminotransferase, aspartate aminotransferase, and gamma glutamyltransferase, whereas 

albumin, another liver biomarker, was more correlated with PhenoAgeAccel genetically. 

PhenoAgeAccel also was genetically more correlated than BioAgeAccel with creatinine, cystatin 

C, HbA1c, and CRP — biomarkers linked to kidney function, diabetes, and inflammation (Figure 

S5). 

Polygenic Risk Scores 

5,198 SNPs (p<0.0064) were selected to calculate PRSs for PhenoAgeAccel, which 

explained 0.50% of the variance in PhenoAge, in addition to 74.23% by other covariates, primarily 

baseline chronological age, plus sex, baseline assessment center, genotyping array type, and the 

first five genetic principal components. Similarly, 146,223 SNPs (p<0.45) were selected for 

BioAgeAccel, accounting for 0.068% of the variance in BioAge, independent of 94.49% by 

baseline chronological age and other covariates. SNPs were selected for PRS to best explain the 

variance of PhenoAge or BioAge given other covariates were in the model. More SNPs were 
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included in the PRS of BioAgeAccel than in the PRS of PhenoAgeAccel likely due to the small 

residual variance after accounting for other covariates and also small SNP effects in general for 

BioAgeAceel. While the variance independently explained by the PRS was minimal, the top 20% 

(high-risk class) and bottom 20% (low-risk class) of PRS showed distinct aging phenotypes. 

The top 20% was compared to the bottom 20% of PhenoAgeAccel or BioAgeAccel PRS 

for a variety of aging traits adjusting for baseline chronological age, sex, baseline assessment 

center, genotyping array type, and the first five genetic principal components. The mean difference 

in PhenoAge between the top and bottom 20% of PhenoAgeAccel PRS (0.20 SD, 95% CI: 0.19 to 

0.21 SD) was larger than the mean difference in BioAge between the top and bottom 20% of 

BioAge PRS (0.073 SD, 95% CI: 0.070 to 0.076 SD) in terms of either SD, PhenoAge SD=9.56 

and BioAge SD=8.17. PhenoAge and BioAge share CRP, creatinine, and alkaline phosphatase in 

composition. Higher levels of the three biomarkers, particularly CRP, were observed in the top 

20% than in the bottom 20% of PhenoAgeAccel or BioAgeAccel PRS (top left, Figure 4). The 

top-and-bottom mean difference of PhenoAgeAccel PRS was larger than that of BioAgeAccel PRS 

in biomarkers that appear in PhenoAge but not in BioAge, and vice versa (top left, Figure 4). 

Interestingly, the top 20% of PhenoAgeAccel PRS had lower mean cholesterol (-0.09 SD, 95% 

CI: -0.10 to -0.07 SD) than the bottom 20%, which was opposite for BioAgeAccel that the top 

20% had 0.09 SD (95% CI: 0.08 to 0.11 SD) higher mean cholesterol than the bottom 20% (top 

left, Figure 4). The opposite trend was also found in mean corpuscular volume, with smaller top-

and-bottom mean differences (top left, Figure 5). 

The top 20% of BioAgeAccel PRS were more likely to die early (HR=1.13, 95% CI: 1.07 

to 1.19) and have higher parental mortality risk (HR = 1.11, 95% CI: 1.09 to 1.13), and were less 

likely to have both parents survive to the top 10% of sex-specific lifespans (OR = 0.73, 95% CI: 
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0.66 to 0.81) than the bottom 20%. Similar results were observed for PhenoAgeAccel PRS, but 

with smaller risk ratios, participant mortality HR=1.08 (95% CI: 1.03 to 1.14), parental mortality 

HR=1.03 (95% CI: 1.01 to 1.05), and parental longevity OR=0.97 (95% CI: 0.88 to 1.07) (bottom 

left, Figure 4). We also found higher likelihoods of chronic pain and Fried frailty30 (frail, if 3 or 

more items checked) for the top 20% versus the bottom 20% when considering either 

PhenoAgeAccel or BioAgeAccel PRS. The top 20% of PhenoAgeAccel or BioAgeAccel PRS was 

associated with higher mean BMI and more deficits in a 49-item frailty31 (a modified Rockwood 

frailty index, essentially accumulation of deficits32), plus lower FVC and FEV1 but not FEV1/FVC 

ratio, grip strength, heel bone mineral density, or cognitive measures of reaction time and visual 

memory errors (top right, Figure 4). 

Both PhenoAgeAccel and BioAgeAccel PRSs were not associated with prevalent cancers 

including prostate cancer, breast cancer, and colorectal cancer (bottom right, Figure 4). The 

associations of BioAgeAccel PRS were stronger than those of PhenoAgeAccel PRS with prevalent 

cardiovascular diseases, particularly CAD and hypertension (Figure 5). The odds ratio of CAD 

was 1.27 (95% CI: 1.22 to 1.33) and that of hypertension was 1.58 (95% CI: 1.53 to 1.62) 

comparing the top 20% to the bottom 20% of BioAge PRS. At the biomarker levels, total 

cholesterol, low LDL cholesterol, apolipoprotein B, and triglycerides, risk factors of CAD, were 

elevated in the top 20% of BioAgeAccel PRS but reduced in the top 20% of PhenoAgeAccel PRS 

compared to the bottom 20% of each (Figure S6). These biomarker results suggested the 

association between PhenoAgeAccel PRS and CAD was likely driven by non-lipid mechanisms 

as indicated by the gene set analysis results.  

PhenoAgeAccel PRS was more strongly associated than BioAgeAccel PRS with liver and 

kidney diseases (Figure 5) and the associated biomarkers, e.g. albumin, total bilirubin, creatinine, 
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and cystatin C (Figure S6), plus COPD, hypothyroidism, type I and type II diabetes, and 

rheumatoid arthritis (Figure 5). The odds ratio of type I diabetes was 1.76 (95% CI: 1.52 to 2.03) 

and that of type II diabetes was 1.38 (95% CI: 1.30 to 1.45) comparing the top 20% to the bottom 

20% of PhenoAgeAccel PRS, and those comparing the top 20% to the bottom 20% of 

BioAgeAccel PRS were 1.12 (95% CI: 0.98 to 1.30) for type I diabetes and 1.27 (95% CI: 1.20 to 

1.34) for type II diabetes. The associations of PhenoAgeAccel or BioAgeAccel PRS were minimal 

with bone diseases such as osteoporosis and osteoarthritis, age-related macular degeneration 

(AMD), anxiety and depression, and two neurological disorders, Parkinson’s disease and delirium 

(Figure 5). A negative association was observed between PhenoAgeAccel PRS and dementia 

(OR=0.80, 95% CI: 0.67 to 0.96). This was mainly driven by APOE, which when adjusted for 

completely accounted for the association (OR=0.97, 95% CI: 0.80 to 1.16).  

Biological Age Measures and APOE Genotypes 

Some of the strongest associations for both PhenoAgeAccel and BioAgeAccel were with 

APOE isoform coding SNPs, but the effect directions were opposite. The APOE e2 determined T 

allele of rs7412 was associated with increased PhenoAgeAccel but decreased BioAgeAccel. 

Similarly, the rs429358 C allele (APOE e4), a risk factor for Alzheimer’s disease, was associated 

with decreased PhenoAgeAccel but increased BioAgeAccel although the association with 

BioAgeAccel didn’t reach genome-wide significance (p=1.310-7). 

Taking a step further, we associated PhenoAge and BioAge with APOE isoforms 

determined based on the genotypes of rs429358 and rs7412. For BioAge, results suggested that 

e2e3 and e2e2 were both associated with younger BioAge relative to the reference genotype 

(e3e3), while e3e4 and e4e4 exhibited higher BioAges, where the results were adjusted for baseline 

chronological age, sex, genotyping array type, baseline assessment center, and the first five genetic 
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principal components (Figure 6). When comparing APOE genotypes as a function of PhenoAge, 

we find the reverse—e2e3 and e2e2 appeared older than e3e3, whereas e3e4, and e4e4 appeared 

younger. 

To further disentangle the associations between APOE genotypes and accelerated aging by 

the two biological age measures, we examined the associations between APOE genotypes and the 

individual biomarkers that make up the composites. We found that the trend of mean BioAge (e4e4 

> e4e3 > e3e3 > e2e4 > e2e3 > e2e2) also held for total cholesterol, which was most strongly 

associated with APOE genotypes among the biomarkers of BioAge (Figure 6). When adjusting for 

total cholesterol, the trend of mean BioAge was reversed, i.e., e3e4 and e4e4 younger than e2e3 

and e2e2, suggesting that decelerated BioAge associated with e2 was driven by differences in 

plasma total cholesterol levels. The biomarkers that appeared to show inverse associations (similar 

to PhenoAge) were RDW, CRP, alkaline phosphatase, creatinine, and white blood cell count. For 

all of these biomarkers there was a trend towards higher levels among participants with e2 alleles 

and lower levels among those with e4 alleles (Figure 6). 

Discussion 

Overall, our analysis using the UK Biobank biomarker data identified both overlapping 

and distinct genetic underpinnings of two widely applied biological age measures. Our results 

suggested that although the estimated heritability is similar for PhenoAgeAccel (14.45%) and 

BioAgeAccel (12.39%) with the genetic correlation being 0.42, these two measures capture 

distinct aging domains with different genetic determinants, as a result of their differential 

biomarker compositions. SNPs associated with BioAgeAccel (p<510-8) tended to relate to 

systolic blood pressure and lipid biomarkers, with enrichment analysis pointing to an increased 

proportion of genes involved in lipid homeostasis, plasma lipoprotein particle clearance, 
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chylomicron, sterol homeostasis, and cholesterol transport activity. Conversely, SNPs associated 

with PhenoAgeAccel were shown to relate to CRP, white blood cell count, and RDW, and were 

enriched in biological processes involved in regulation of cell signaling by CBL, transcription, 

immune system process, and myeloid cell homeostasis.  

The immune/inflammation versus lipid findings for PhenoAgeAccel and BioAgeAccel, 

respectively, were also recapitulated when comparing the associations between PRS and age-

related outcomes. Results suggested that the top 20% of PhenoAgeAccel and BioAgeAccel PRS 

were differentially linked to a variety of diseases. For instance, BioAgeAccel PRS outperformed 

PhenoAgeAccel PRS in prioritizing cardiovascular and all-cause mortality risk in this young 

cohort, while PhenoAgeAccel PRS showed more robust associations than BioAgeAccel PRS for 

liver/kidney diseases, and chronic inflammatory and autoimmune diseases. The stronger link 

between BioAgeAccel PRS and all-cause mortality (compared to PhenoAgeAccel PRS) may be 

driven in part by its association with cardiovascular disease, which is the leading cause of death in 

the UK. By comparison, the diseases associated with PhenoAgeAccel PRS tend to contribute to 

major morbidity, while being less common causes of death. This may suggest that individuals 

genetically predisposed to accelerated BioAge may be more likely to experience shortened 

lifespan, while those genetically predisposed to accelerated PhenoAge, may not experience major 

reductions in lifespan, but may experience decreased healthspan (disease-free life expectancy). 

The hypothesis needs to be tested in older adults, however. Of note, accelerated aging is not only 

determined by genetics but also by environment. Interestingly, when considering the actual values 

rather than the PRS, accelerated PhenoAge is more strongly associated with all-cause mortality 

than accelerated BioAge in UK Biobank, which implies that the association between accelerated 
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PhenoAge and all-cause mortality may be explained to a larger degree by the environmental 

components. 

The PhenoAgeAccel PRS was also related to dementia, but in the opposite than the 

expected direction, such that individuals with increased PhenoAgeAccel had reduced odds of 

dementia. This result was almost entirely driven by the association between PhenoAgeAccel and 

APOE, which is the most well-known genetic risk factor for late-onset Alzheimer’s disease 

(LOAD). Our results suggested that while PhenoAgeAccel and BioAgeAccel were both associated 

with the two APOE isoform coding SNPs (rs429358 and rs7412), the relationships were inverse. 

For instance, the APOE e4 allele is traditionally associated with adverse health outcomes, 

including an increased risk of Alzheimer’s disease, cardiovascular disease, and reduced life 

expectancy, while the e2 allele confers protection. However, in our results, we observed increased 

PhenoAgeAccel associated with e2 genotypes and decreased PhenoAgeAccel associated with e4 

genotypes, relative to the common e3e3 genotype. This paradoxical result was also found for a 

number of the biomarkers that make up PhenoAge, which likely explains this finding. For instance, 

APOE e2 allele was associated with higher CRP, RDW, alkaline phosphatase, creatinine, and white 

blood cell count, while APOE e4 allele was generally associated with lower levels of these 

biomarkers33. APOE e4 allele has previously been linked to lower CRP34; however, it remains 

unclear what drives the APOE e4-and-CRP association and the resulting consequence. Contrary to 

PhenoAgeAccel, BioAgeAccel showed an expected association with APOE that consisted of 

decelerated aging among participants with e2 alleles and accelerated aging among participants 

with e4 alleles. This association was accounted for by higher levels of total cholesterol among 

those with increased BioAgeAccel. This is in-line with APOE known function as a transporter of 
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extracellular cholesterol and the existing evidence suggesting those with the e2 allele exhibit 

reduced circulating cholesterol, particularly low-density lipoproteins (LDL)33.  

Inevitably, our study has limitations. The UK Biobank participants are healthier than the 

general population35; therefore, are less susceptible to accelerated aging. The disease status was 

determined based on self-reported doctor diagnoses at baseline and electronic health records to 

2017. Given that some participants were still relatively young and will likely go on to develop late-

onset morbidity this will contribute to misclassification, which could bias associations towards the 

null. Nevertheless, when disease prognostic biomarkers were analyzed, we observed consistent 

results. Last but not least, our findings are based on European-descent participants and may not be 

generalizable to other ancestry populations. 

Overall, the mapped genes and enriched genes sets highlight that these two biological age 

measures may capture different aspects of the aging process—cardiometabolic by BioAge and 

inflammaging/immunoscenece by PhenoAge. Nevertheless, PhenoAgeAccel and BioAgeAccel 

PRSs are not disease-specific and can be used to prioritize genetic risk for multiple morbidity or 

mortality outcomes—particularly cardiovascular diseases and all-cause mortality via BioAge, and 

liver or kidney diseases, COPD, rheumatoid arthritis, hypothyroidism, and type I and type II 

diabetes via PhenoAge. Our findings confirm the hypothesis that individuals may age in different 

ways, due in part to different underlying genetic susceptibility. In moving forward, understanding 

personalized aging susceptibility phenotypes has important implications for primary and 

secondary disease interventions.  

Methods 

UK Biobank 
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Over 500,000 participants between the ages of 40 and 70 were recruited by UK Biobank 

from 2006 to 2010 36,37, of which, over 90% of the cohort were European-descent. Phenotypes 

considered in this study include participant mortality, parental lifespan, cognitive function, 

physical measures, and diseases. The death status was determined based on death certificate data, 

updated to March 2020 for all participants. Some deaths were recorded in April 2020 but the 

mortality data for that month is incomplete. The disease diagnosis was confirmed based on self-

reported doctor diagnoses at baseline, cancer registry data to 2016, and hospital admission records 

from 1996 to 2017. A list of disease ICD-10 codes used to identify diseases is provided in Table 

S4. At recruitment, participants completed online questionnaire and physical measurements and 

their biological samples were collected for biomarker assays. Physical measurements were 

described elsewhere33. A full list and technical details are available via the UK Biobank Biomarker 

Panel38 and UK Biobank Haematology Data Companion Document39. 

Genetic Data 

DNA was extracted from blood samples and was genotyped using Affymetrix UK BiLEVE 

Axiom array for the first ~50,000 participants and Affymetrix UK Biobank Axiom array for the 

remaining cohort – the two arrays have over 95% overlap 37. Imputation was performed by the UK 

Biobank team using the reference panels of 1000 Genomes and the Haplotype Reference 

Consortium (HRC), yielding ~93 million variants in 487,442 participants. Of whom, participant 

(n=968) with unusually high heterozygosity or missing genotype calls were further removed37.  

Biological Age Measures 

Biomarkers included in PhenoAge1 and/or BioAge2 are listed in Table 1. To correct 

distribution skewness, we set the bottom 1% of values to the 1st percentile and the top 1% to the 

99th percentile. PhenoAge was developed based on mortality scores from the Gompertz 
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proportional hazard model on chronological age and nine biomarkers, which were selected from 

42 clinical biomarkers by Cox penalized regression model predicting  age-related mortality in the 

NHANES III1. The formula of PhenoAge is given by 

PhenoAge =  141.50 +
ln {(−0.00553) ×

(−1.51714) × exp (𝑥𝑏)
0.0076927 }

0.09165
 

where  

𝑥𝑏 = −19.907 − 0.0336 × albumin + 0.0095 × creatinine + 0.1953 × glucose

+ 0.0954 × ln(CRP) − 0.0120 × lymphocyte percentage

+ 0.0268 × mean corpuscular volume + 0.3306 × RDW

+ 0.00188 × alkaline phosphatase + 0.0554 × white blood cell count

+ 0.0804 × age 

and 𝑎𝑔𝑒 denotes the chronological age.  

Seven biomarkers and chronological age were used to calculate BioAge, where albumin, 

creatinine, CRP, and alkaline phosphatase were overlapped between PhenoAge and BioAge. 

BioAge2 was trained for the biological age surrogate of chronological age, using the NHANES 

III data by applying an algorithm previously proposed by Klenmera and Doubal40,  

BioAge =

∑ (𝑥𝑗 − 𝑞𝑗) (
𝑘𝑗

𝑠𝑗
2) +

𝑎𝑔𝑒
31.63

7
𝑗=1

∑ (
𝑘𝑗

𝑠𝑗
)

2
7
𝑗 +

1
31.63

 

where 𝑥𝑗 denotes the level of j-th biomarker, with the corresponding parameters 𝑞𝑗 , 𝑘𝑗 , and 𝑠𝑗 

provided in Table S5. 𝑎𝑔𝑒 here, again, denotes the chronological age. Biological age acceleration 
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was estimated by the residual of PhenoAge or BioAge after subtracting the effect of chronological 

age using a linear regression model, termed PhenoAgeAccel and BioAgeAccel, respectively. 

Included Samples 

Participants of European descent were included, identified using genetic principal 

components analysis in detail in Thompson and colleagues 41. Additionally, one in third-degree or 

closer pairs were removed, identified via pairwise kinship coefficients. The sample was randomly 

split into a training and a testing set, with a 1 to 2 ratio. The training set was used to perform 

genome-wide association analysis with the results being used to create PRSs in the testing set to 

evaluate the use for risk stratification for age-related outcomes. 

SNP Quality Control 

Of 93,095,623 genotyped or imputed SNPs, 16,446,666 SNPs passed the quality control, 

where SNPs were excluded if meeting any of the criteria: 1) imputation information score <0.3, 2) 

minor allele frequency <0.1%, 3) Hardy-Weinberg equilibrium test p-value significant at the 

Bonferroni-corrected level, 4) missing imputation information score, minor allele frequency, or 

Hardy-Weinberg equilibrium test result. The SNP summary statistics were calculated using the 

QCTOOL software version 242. 

Genome-Wide Association Analysis 

The association between accelerated PhenoAge or BioAge with each SNP was examined 

using an efficient Bayesian linear mixed effects model (BOLT-LMM software version 2.2)43 for 

the outcome of PhenoAge or BioAge with additive allelic effect of the candidate SNP, and other 

fixed effects: chronological age (to make the case of accelerated biological age), sex, genotyping 

array type, and assessment center, plus random polygenic and environment effects. By default, the 
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LD scores included in the BOLT-LMM for European-ancestry samples were used to calibrate the 

BOLT-LMM statistic. SNP p-values smaller than 5×10-8 were deemed to be statistically 

significant. Manhattan plots were created for visualization using the FUMA (Functional Mapping 

and Annotation) software version 1.3.544. The genomic inflation due to population stratification or 

cryptic relatedness was evaluated by linkage disequilibrium (LD) score regression45, where SNPs 

were filtered to the HapMap3 SNPs, well imputed in most studies to avoid bias from poor 

imputation quality. The LD scores were downloaded from the url 

(https://data.broadinstitute.org/alkesgroup/LDSCORE/), precomputed using the European data 

from the 1000 genome project phase 3. 

We performed a stepwise model selection procedure on the genome-wide SNP summary 

statistics to identify independent signals (p<5×10-8) using the COJO (Conditional & JOint 

association analysis) function in the GCTA (Genome-wide Complex Trait Analysis) software46 

version 1.92.1 beta6 Linux. SNPs more than 10,000 kb away from each other were assumed to be 

in complete linkage equilibrium. As SNPs were selected, those with multiple regression R2 greater 

than 0.9 with already pre-selected SNPs were excluded, so as not to include redundant signals from 

high LD. The loci marked by the selected SNPs were mapped to genes based on GRCh37/hg19 

coordinates, and were used in searches for published GWAS associations based on GWAS 

catalog11.  

Gene Enrichment Analysis 

The GWAS p-values were analyzed by Multi-marker Analysis of GenoMic Annotation 

(MAGMA)47 in FUMA to perform a comparative gene-set analysis to test if genes in the gene set 

were more strongly associated with PhenoAgeAccel or BioAgeAccel than others, for 10,678 gene 

sets (curated gene sets: 4,761, GO terms: 5,917) from the MsigDB v6.248,49. Additionally, a gene-
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property analysis was performed to test for positive relationships (one-sided test) between tissue-

specific gene expression profiles and gene associations with PhenoAgeAccel or BioAgeAccel, 

using 53 tissue types from the GTEx repository version50. Both test results were adjusted for 

multiple testing using the Bonferroni correction method.  

Genetic Correlations 

Genetic correlations of PhneoAgeAccel or BioAgeAccel were calculated by LD score 

regression45 using GWAS summary statistics, filtered to HapMap3 SNPs. GWAS summary 

statistics were downloaded from previous published GWAS. Those of biomarkers, not limited to 

PhenoAge or BioAge biomarkers, were downloaded from the Neale Lab27, where biomarkers were 

transformed by the rank-based inverse normal transformation, and the SNP-biomarker associations 

were adjusted  for age, age2, sex, age  sex, age2  sex and the top 20 genetic principal components 

in over 361,000 UK Biobank participants. 

Polygenic Risk Scores 

The PRSice-2 software version 2.2.251 was used to perform polygenic risk score (PRS) 

analysis. SNPs were clumped to obtain SNPs in low LD (r2<0.1) in a 250 base-pair window. SNPs 

with p-values smaller than a threshold were used to calculate the PRS, sum of the effect alleles 

associated with accelerated aging, weighted by the effect size. The optimal threshold was chosen 

by a grid search from 110-5 to 0.5 with the increment of 110-5 plus 1, such that the variance of 

PhenoAge or BioAge in the testing set was best explained by PRS, in addition to that by baseline 

chronological age, sex, genotyping array type, baseline assessment center, and the first five genetic 

principal components. Subjects were equally divided into five groups by the PRS, where the top 

20% (high-risk class) was compared to the bottom 20% (low-risk class) for a variety of aging traits. 
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The association analysis was conducted using a regression model, with adjustment for baseline 

chronological age, sex, genotyping array type, baseline assessment center, and the first five genetic 

principal components.  

Data Availability 

The GWAS summary statistics for PhenoAgeAccel and BioAgeAccel can be downloaded at 

figshare:  

PhenoAgeAccel GWAS summary statistics 

https://doi.org/10.6084/m9.figshare.12620291.v1 

BioAgeAccel GWAS summary statistics 

https://doi.org/10.6084/m9.figshare.12620366.v1 
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Table 1 A summary for demographics and biomarkers in PhenoAge or BioAge 

Variable 

Frequency (%) 

or Mean ± SD 

Demographics (n=379,703)  

Sex (=female) 204,736 (54%) 

Age at recruitment (years) 56.74 ± 8.02 

Current age (set at April 26, 20201) (years)      68.22 ± 7.96 

Follow-up years from baseline to April 26, 2020 (years) 11.49 ± 1.55 

Dead (=yes) 23,060 (6%) 

Age at death (years) 69.06 ± 7.21  

PhenoAge (years) (n=321,652) 54.43 ± 9.56 

    Albumin (g/L) 45.25 ± 2.54 

    Creatinine (umol/L) 72.04 ± 14.16 

    log C-reactive protein (CRP) (mg/L) 0.33 ± 1.04 

    Alkaline phosphatase (U/L) 83.03 ± 22.59 

    Glucose (mmol/L) 5.08 ± 0.93 

    Lymphocyte percentage (%) 28.61 ± 7.03 

    Mean corpuscular volume (fL) 91.38 ± 4.10 

    Red blood cell distribution width (RDW) 13.45 ± 0.83 

    White blood cell count (109 cells/L) 6.87 ± 1.70 

BioAge (years) (n=294,293) 56.16 ± 8.17 

    Albumin (g/dL) 4.53 ± 0.25 

    Creatinine (mg/dL) 0.72 ± 0.14 

    CRP (mg/dL) 0.25 ± 0.34 

    Alkaline phosphatase (U/L) 83.00 ± 22.56 

    HbA1c (%) 5.43 ± 0.50 

    Systolic blood pressure (mmHg) 139.92 ± 19.23 

    Total cholesterol (mg/dL) 220.78 ± 43.14 

1 last death occurred on April 26, 2020, in the data 
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Table 2 Genetic loci associated with PhenoAgeAccel (p<5x10-8) that can be mapped to 

genes 

SNP Chr bp refA freq bJ bJ_se pJ genes 

rs1801133 1 11856378 G 0.66 -0.13 0.022 1.28E-09 MTHFR 

rs12037222 1 40064961 G 0.77 -0.2 0.025 1.98E-15 PABPC4 - HEYL 

rs1805096 1 66102257 G 0.63 0.2 0.021 1.01E-20 LEPR 

rs4129267 1 154426264 C 0.59 0.16 0.021 6.73E-15 IL6R 

rs7553007 1 159698549 G 0.67 0.19 0.022 2.44E-17 CRP - AL445528.1 

rs12239046 1 247601595 T 0.37 -0.12 0.021 1.40E-08 NLRP3 

rs3811444 1 248039451 C 0.66 0.18 0.022 2.61E-16 TRIM58 

rs1260326 2 27730940 T 0.39 -0.13 0.021 2.29E-09 GCKR 

rs6734238 2 113841030 A 0.6 -0.13 0.021 1.51E-10 IL1F10 - RNU6-1180P 

rs560887 2 169763148 T 0.3 -0.18 0.023 1.72E-15 SPC25, G6PC2 

rs35188965 5 1104938 C 0.42 0.15 0.021 5.45E-13 SLC12A7 

rs7775698 6 135418635 C 0.74 0.16 0.024 9.60E-12 HBS1L 

rs592423 6 139840693 A 0.45 0.14 0.021 3.38E-11 AL592429.2 

rs17321515 8 126486409 A 0.53 -0.14 0.021 4.08E-12 AC091114.1 

rs8176746 9 136131322 G 0.94 0.28 0.043 4.54E-11 ABO 

rs7908745 10 45953767 A 0.68 -0.14 0.022 1.31E-09 MARCH8 

rs16926246 10 71093392 C 0.87 -0.2 0.031 1.46E-10 HK1 

rs174548 11 61571348 C 0.69 0.26 0.022 8.18E-31 FADS1, FADS2 

rs964184 11 116648917 G 0.13 -0.17 0.03 3.28E-08 ZPR1 

rs2393791 12 121423956 C 0.38 -0.15 0.021 7.45E-12 HNF1A 

rs8013143 14 23494277 A 0.72 -0.17 0.023 4.66E-14 PSMB5 

rs3169166 15 78563103 A 0.58 0.16 0.021 1.34E-14 DNAJA4 

rs9939609 16 53820527 T 0.61 -0.16 0.021 1.62E-13 FTO 

rs9914988 17 27183104 G 0.2 -0.14 0.026 3.20E-08 ERAL1 

rs8078723 17 38166879 T 0.61 -0.21 0.021 6.25E-23 PSMD3 - AC090844.3 

rs9944715 18 43831259 A 0.25 -0.16 0.024 6.09E-11 C18orf25 

rs1985157 19 18513594 T 0.59 -0.14 0.021 1.10E-10 LRRC25 - SSBP4 

rs429358 19 45411941 T 0.84 0.52 0.029 1.50E-72 APOE 

rs7412 19 45412079 C 0.92 -0.36 0.038 3.07E-21 APOE 

Chr: chromosome, bp: base pairs (Genome Reference Consortium Human Build 37), refA: reference/effect allele, 

freq: reference allele frequency, bJ, bJ_se, pJ: regression coefficient and the associated standard error and p-value, 

adjusted for other lead SNPs, SNPs overlapped between PhenoAgeAccel and BioAgeAccel in gray  

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2020. ; https://doi.org/10.1101/2020.07.10.20150797doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.10.20150797
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

Table 3 Genetic loci associated with BioAgeAccel (p<5x10-8) that can be mapped to genes 

SNP Ch

r 

bp refA freq bJ bJ_se pJ genes 

rs17367504 1 11862778 A 0.84 0.07 0.012 9.03E-10 MTHFR 

rs11591147 1 55505647 G 0.98 0.23 0.033 7.91E-13 PCSK9 

rs541041 2 21294975 G 0.18 -0.09 0.011 2.33E-14 APOB - AC010872.2 

rs560887 2 169763148 T 0.3 -0.06 0.009 9.83E-11 SPC25, G6PC2 

rs16998073 4 81184341 A 0.71 -0.05 0.009 2.46E-08 PRDM8 - FGF5 

rs1173771 5 32815028 A 0.4 -0.05 0.009 6.19E-09 NPR3 - AC025459.1 

rs17477177 7 106411858 T 0.8 -0.09 0.011 4.62E-17 AC004917.1 - LINC02577 

rs17321515 8 126486409 A 0.53 0.06 0.009 2.20E-12 AC091114.1 

rs16926246 10 71093392 C 0.87 0.09 0.013 7.77E-13 HK1 

rs2274224 10 96039597 G 0.57 0.05 0.009 2.41E-10 PLCE1, PLCE1-AS1 

rs17249754 12 90060586 G 0.83 0.07 0.011 9.41E-09 ATP2B1 

rs7497304 15 91429176 G 0.67 -0.05 0.009 1.89E-08 FES 

rs55791371 19 11188153 A 0.88 0.14 0.013 4.95E-26 SMARCA4 

rs58542926 19 19379549 C 0.92 0.11 0.016 1.78E-11 AC138430.1, TM6SF2 

rs7412 19 45412079 C 0.92 0.26 0.016 3.16E-60 APOE 

rs1327235 20 10969030 A 0.52 -0.05 0.009 1.02E-08 AL050403.2 

Chr: chromosome, bp: base pairs (Genome Reference Consortium Human Build 37), refA: reference/effect allele, 

freq: reference allele frequency, bJ, bJ_se, pJ: regression coefficient and the associated standard error and p-value, 

adjusted for other lead SNPs, SNPs overlapped between PhenoAgeAccel and BioAgeAccel in gray 
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Figure 1 PhenoAgeAccel (top) and BioAgeAccel (bottom) Manhattan plots 
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Figure 2 Significant gene sets identified by MAGMA for PhenoAgeAccel and BioAgeAccel 
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Figure 3 Association between tissue-specific gene expression and PhenoAgeAccel-gene or 

BioAgeAccel-gene association 
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Figure 5 Odds ratios (ORs) for diseases comparing the top 20% to the bottom 20% of 

PhenoAgeAccel or BioAgeAccel polygenic risk score (PRS) 
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Figure 6 Mean standard deviation (SD) differences between non-e3e3 and e3e3 genotypes: 

1) biomarkers of PhenoAge (top) or BioAge (bottom) sorted by p-value from left to right 

for the null hypothesis of no genotypic effects; 2) p<0.05, p<0.01, and p<0.001 labelled by *, 

**, ***, respectively. 
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