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Abstract 11 

Sample size calculations are an essential component of the design and evaluation of scientific studies. However, 12 

there is a lack of clear guidance for determining the sample size needed for phylogenetic studies, which are 13 

becoming an essential part of studying pathogen transmission. We introduce a statistical framework for determining 14 

the number of true infector-infectee transmission pairs identified by a phylogenetic study, given the size and 15 

population coverage of that study. We then show how characteristics of the criteria used to determine linkage and 16 

aspects of the study design can influence our ability to correctly identify transmission links, in sometimes 17 

counterintuitive ways. We test the overall approach using outbreak simulations and provide guidance for 18 

calculating the sensitivity and specificity of the linkage criteria, the key inputs to our approach. The framework is 19 

freely available as the R package phylosamp, and is broadly applicable to designing and evaluating a wide array of 20 

pathogen phylogenetic studies.  21 
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Introduction 22 

As the cost of pathogen sequencing has declined, the number and size of studies based on pathogen sequence 23 

analysis has increased dramatically (Neher and Bedford 2018). Traditionally, researchers have sequenced 24 

convenience samples collected as part of routine clinical or public health activities (e.g., diagnostic specimens 25 

collected as part of an outbreak response), or as part of studies where specimens are collected for other purposes. 26 

However, the analysis of pathogen genomic sequences is increasingly becoming a primary goal of both research 27 

studies and public health surveillance efforts (Gardy et al. 2011; Jackson et al. 2016; Quick et al. 2016; Snider et al. 28 

2016). This shift has been driven by the apparent utility of pathogen sequence data for understanding aspects of 29 

pathogen spread ranging from the frequency and source of introductions into a region (Nelson et al. 2007; Lei and 30 

Shi 2011; Thézé et al. 2018; Weill et al. 2019; Gonzalez-Reiche et al. 2020), to identifying endogenous spread of 31 

emerging diseases (Carroll et al. 2015; Park et al. 2015), to understanding the role of “hotspots” in maintaining 32 

broader community epidemics (Ratmann et al. 2020), to understanding transmission patterns at an individual or 33 

“microscale” level (Gardy et al. 2011; Salje et al. 2012).  34 

Despite these many examples, there is a lack of clear and accessible guidance for appropriately designing and 35 

sizing studies aimed at understanding pathogen transmission, or for evaluating the design and conclusions of past 36 

studies. Without such guidance, it is difficult for researchers to design studies in a way that maximizes the chances 37 

of success, and difficult for reviewers to appropriately evaluate papers and grant applications centered around 38 

molecular or phylogenetic outcomes (Volz and Frost 2013; Frost et al. 2015). In particular, undersampling or biased 39 

sampling can lead to poorly supported inferences about patterns of disease spread (Grabowski and Lessler 2017; 40 

Mavian et al. 2020). While there are examples of researchers conducting careful a priori analyses of sampling 41 

strategies (Network and Others 2013; Farhat et al. 2014; Kelly et al. 2015), these have largely relied on 42 

sophisticated techniques that are not broadly generalizable. Hence, there is a need for broadly accepted and 43 

accessible guidance for the selection of specimens for sequencing and phylogenetic analyses. 44 

As noted above, pathogen sequences have been used to understand multiple aspects of infectious disease 45 

transmission at scales ranging from the global (e.g., movement of pathogens between countries) to the individual 46 

(e.g., reconstruction of individual transmission chains). Arguably, all such analyses can be reduced to the basic 47 

question of whether pairs of infected individuals are related within a particular number of generations of 48 

transmission. Therefore, developing tools for assessing the number of sequences needed to confidently identify 49 

linked pairs (infections separated by no more than a specific number of generations of transmission) is a good place 50 

to start building a theory for power calculations for phylogenetic inference. In this paper, we present a framework 51 

for making critical decisions about study design when the goal is to identify infector-infectee pairs, and we 52 

illustrate this approach with simulation studies.  53 
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Approach 54 

General Principles 55 

In this paper we will deal with studies that aim to identify infector-infectee pairs from phylogenetic analysis of 56 

pathogen sequence data collected from infected individuals. We assume the study aims to achieve some level of 57 

certainty that identified infector-infectee pairs are correct, and may also require identification of some minimum 58 

number of pairs. Below we lay out a precise terminology (Table 1) and general principles.  59 

Table 1: Parameters used in calculations and simulations. 60 

Parameter Description 

M Number of infections sampled 

N Total number of (relevant) infected individuals in an outbreak 

⍴ Proportion of outbreak infections sampled (M/N) 

! Sensitivity of the linkage criteria 

χ Specificity of the linkage criteria 

" Probability that an identified link represents a true transmission event (1-False Discovery Rate) 

R Reproductive number of a pathogen 

Rpop Average reproductive number of a pathogen in a finite population (always <1) 

# Mutation rate of the pathogen (in mutations per genome per transmission event) 

 61 

To start, we define the term linkage criteria to represent all the criteria used to infer whether a set of infected 62 

individuals are linked to one another by direct transmission. The linkage criteria can be derived from a combination 63 

of genetic distance between pathogens isolated from different individuals, tree structure (e.g., clade support), and 64 

epidemiologic information (e.g., relative dates of symptom onset). We refer to infections inferred to be connected 65 

by transmission using this criteria as linked pairs. Some of these linked pairs will represent actual transmission 66 

events (true transmission pairs) and some will be false positives. We want to determine the sample size (M) and 67 

proportion of the population (⍴) required to recover a predetermined number of linked pairs, while keeping the false 68 

discovery rate (the proportion of these linked pairs that are false positives) below a predetermined threshold. When 69 

applied to a study where design was dictated by other factors (e.g., specimen availability), the same methods can be 70 

used to determine the false discovery rate, which will inform the confidence we have in any conclusions about 71 

disease transmission in that study. 72 

To capture true transmission pairs, the infector and their partner infectee must both be in the sample. Therefore, 73 

correctly identifying direct transmission links (and, conversely, calculating the false discovery rate) depends on the 74 

sampling fraction (⍴), which is equal to the sample size (M) divided by the total number of infected individuals in 75 

the relevant population (N). Identification of these links will further depend on the sensitivity (") and specificity (χ) 76 

of the criteria used to define linkage. We define sensitivity as the probability that the linkage criteria will identify a 77 

true transmission pair as a linked pair given that both the infector and infectee are in the sample. Similarly, the 78 

specificity is the probability that two infections not linked by transmission are not linked by the linkage criteria. 79 
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Here we show that, if we have reasonable estimates of the sampling fraction, sensitivity, and specificity, we can, for 80 

a sample of size M, estimate the false discovery rate. The relationship between these parameters can then be used to 81 

design studies with a sample size and sampling fraction that minimizes the false discovery rate and therefore 82 

maximizes our ability to draw inferences from identified infections. 83 

Calculating sample size and false discovery rate 84 

Single link and single true transmission 85 

We start with the simple example of identifying the correct infector of a particular infection (Volz and Frost 2013). 86 

In this scenario, we make assumptions about transmission that simplify the relationship between sample size and 87 

false discovery rate. Namely, we assume that each infected individual is connected by transmission to exactly one 88 

other individual, and that the linkage criteria similarly identifies exactly one probable link for each infection. Under 89 

these assumptions, we can calculate the probability of correctly identifying a true transmission pair, # (equal to one 90 

minus the false discovery rate), as a function of the sensitivity and specificity of the linkage criteria, the proportion 91 

sampled, and the sample size. Figure 1 provides some intuition as to the form of this probability expression under 92 

the stated assumptions of single linkage and single transmission (see Text S1 for full derivation). 93 

 94 

Figure 1. Visual derivation of the probability of correctly identifying a true transmission pair. Blue shaded regions 95 
represent correct identification of the true transmission partner of a random infection i. Red shaded regions represent linkage of i 96 
to an infection that is not its true transmission partner. White shaded regions represent the probability of no linkage occurring. 97 

  98 
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The probability of correctly identifying a true transmission pair (#) under the assumptions of single transmission 99 

and single linkage is: 100 

Under the same assumptions, we can also calculate the expected total number of true transmission pairs that will be 101 

identified in our sample, $[number of true pairs], as: 102 

Through algebraic rearrangement of these equations, we can determine the expected number of linked pairs 103 

(identified with the linkage criteria) observed in this sample ($[number of pairs observed]): 104 

These equations can be used to determine the false discovery rate (1-#) and the expected number of linked pairs 105 

given a particular criteria, sample size, and sampling proportion. Additionally, we can use these equations to 106 

observe how the expected number of links and the true discovery rate vary with the proportion sampled and the 107 

sample size (Fig 2A). For a given sensitivity and specificity of the linkage criteria, we observe that the false 108 

discovery rate increases with sample size if the proportion sampled remains constant, suggesting that studies aimed 109 

at correctly identifying the highest proportion of transmission links should prioritize sampling proportion over 110 

number of samples. Additionally, the relationship between false discovery rate and sampling proportion is 111 

dependent on the sample size needed to obtain that sampling proportion such that the impact of sampling proportion 112 

increases with sample size. We also observe the effects of changing sensitivity and specificity on the false 113 

discovery rate and find that the specificity of the linkage criteria is of key importance when attempting to minimize 114 

the false discovery rate of transmission pairs (Fig 2B). 115 

 116 

Figure 2. Sample size and false discovery rate given single linkage and single transmission. (A) Effect of sample size 117 
(red lines) or proportion sampled (blue lines) on the expected number of linked pairs (upper plots) or the false discovery rate of 118 
linked pairs (lower plots). The specificity and sensitivity are held constant. (B) Effect of varying the sensitivity and specificity of 119 
the linkage criteria on the false discovery rate (FDR). 120 
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Multiple links and multiple true transmissions 121 

In many cases, we will be interested in linking an infected individual to both their infector and anyone they infect. 122 

Therefore, we must account for the fact that each infection in an outbreak may be linked by transmission to 123 

multiple other infections, only some of which may have been sampled. If the goal is to identify all such true 124 

transmission pairs in the sample, the linkage criteria used must similarly allow for multiple linkages. Here, we 125 

calculate the false discovery rate for transmission pairs under these assumptions. 126 

The average number of transmission links per infection is determined by the epidemiological parameter R, the 127 

expected number of other individuals each infected individual infects. However, sampled infections come from a 128 

bounded source population. In this finite sampling frame, the average number of infectees per infector, denoted 129 

Rpop, may differ from R (in fact, Rpop must be less than 1, see below). Because each infection is linked to, on 130 

average, Rpop infectees as well as its infector, each infection has %!"! + 1 true transmission partners. If we assume 131 

that the distribution of the number of transmission partners per infection is Poisson distributed, we get the following 132 

equation for the true discovery rate, # (see Text S1 for full derivation): 133 

Under the same assumptions, we can calculate the total number of sampled true pairs, $[number of true pairs], as: 134 

Through algebraic rearrangement of these equations we can determine the expected number of pairs observed in 135 

this sample, $[number of pairs observed]: 136 

Again, we observe that the false discovery rate increases with the sample size, but decreases with the proportion 137 

sampled, and we see the important effect of the specificity of the linkage criteria on the false discovery rate (Fig 3). 138 

Estimating the average reproductive number 139 

In the previous section, we distinguished R, the basic reproductive number of a pathogen, from Rpop, the average 140 

reproductive number in a bounded population. This is an important distinction because we can show that the 141 

average reproductive number (Rpop) is at most one. This is because any sampling frame contains a finite number of 142 

infected individuals. Therefore, there will always be more infections than infection events (at minimum, all 143 

infectees in a transmission chain plus a single index case, see Fig S1). Hence, Rpop, which is equal to the number of 144 

actual transmission events divided by the number of infections, will be at most one. 145 

In epidemic situations where there is a single introduction, Rpop will be close to one, as the number of infections will 146 

exceed the number of infection events by precisely one. In situations where there are multiple introductions (e.g., 147 
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transmission chains that are persistently seeded from sources outside the sampling frame) then Rpop may be 148 

substantially less than one. Specifically: 149 

The examples shown in this paper focus on epidemics seeded by a single introduction, where Rpop is approximately 150 

equal to one. 151 

 152 

Figure 3. Sample size and false discovery rate given multiple linkage and multiple transmissions. (A) Effect of sample 153 
size (red lines) or proportion sampled (blue lines) on the expected number of linked pairs (upper plots) or the false discovery 154 
rate of linked pairs (lower plots). The specificity and sensitivity are held constant. (B) Effect of varying the sensitivity and 155 
specificity of the linkage criteria on the false discovery rate (FDR). White dots: theoretical sensitivity and specificity values at 156 
different genetic distance thresholds for a hypothetical pathogen with mutation rate = 1 mutation/genome/transmission and R=2 157 
(see ‘Determining sensitivity and specificity’ below for details). In both panels, $!"! = 1. 158 

Determining sensitivity and specificity 159 

In the framework presented here, the sensitivity and specificity of the linkage criteria are needed to estimate the 160 

false discovery rate from sample size and vice versa. This criteria can be based on a number of phylogenetic and 161 

epidemiological metrics, and may depend on the data available for a particular study. In this section, we outline two 162 

methods for approximating the sensitivity and specificity of a simple genomic metric: genetic distance. 163 

Both methods involve determining these parameters from the discrete distributions of genetic distances between 164 

linked and unlinked infections, but they differ in how these distributions are obtained. Given the distributions, we 165 

can consider a number of different genetic distance thresholds (e.g., 2 mutations between sequences) that could be 166 

used as the criteria for differentiating between linked and unliked pairs, and we can calculate the sensitivity and 167 

specificity at each. The optimal threshold and its associated sensitivity and specificity can be selected in a variety of 168 

ways (Youden 1950; Perkins and Schisterman 2006; Liu 2012; Zou et al. 2013) based on the specific study goals. 169 

Below, we describe two ways to obtain the genetic distance distributions of linked and unlinked infection pairs for a 170 

hypothetical pathogen with R=2 and a mutation rate (') of 1 mutation per genome per generation. Here and 171 
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henceforth, “generation” refers to a generation of transmission (i.e., the mutation rate provides the number of 172 

mutations expected per transmission event, not per viral replication). 173 

Empirical method 174 

One way to estimate the relevant genetic distance distributions is to use existing data. Specifically, we need a 175 

subsample of infections for which sequencing data is available and we have a high degree of confidence—based on 176 

epidemiological data—of the true transmission relationships between included infections. For example, infected 177 

individuals who share a household versus community members with no known relationship. We can compute the 178 

genetic distance between every pair of pathogen sequences from this subsample and use the results to approximate 179 

the underlying genetic distance distributions between linked and unlinked infections in the population. 180 

We illustrate this method on a simulated outbreak of approximately 1500 infections (data available at 181 

https://github.com/HopkinsIDD/phylosamplesize), created using the outbreaker R package (R Core Team 2013; 182 

Jombart et al. 2014) (see ‘Outbreak simulations’ below). To create our known subsample, we selected a small 183 

number of infections from early in the outbreak and extracted their true transmission links and simulated genomes. 184 

We then calculated the genetic distance matrix of sequences in this subsample and determined the genetic distance 185 

distributions (Fig 4A). Next, we estimated the sensitivity and specificity at every mutation threshold (0 mutations, 1 186 

mutation, etc.) and used the point closest to the (0,1) corner to determine the optimal threshold for differentiating 187 

between linked and unliked infections. In this case, the optimal threshold was 3 mutations, which had a sensitivity 188 

of 0.95 and a specificity of 0.88. 189 

 190 

Figure 4. Determining the sensitivity and specificity of a genetic distance threshold. (A) Empirical distribution of genetic 191 
distances for linked (purple) and unlinked (yellow) infections for 50 infections selected from early in a simulated outbreak (# = 1 192 
mutation/genome/generation, R=2). Inset: receiver operating characteristic (ROC) for all possible genetic distance thresholds. 193 
Optimal threshold shown as green dot (ROC) and dashed vertical line (distribution). (B) Estimated distribution of genetic 194 
distances for linked and unlinked infections generated by the mutation rate method. Parameters and plots are as in (A). 195 

  196 
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Mutation rate method 197 

Pathogen mutation rates can also be used to estimate the genetic distance distributions, especially when a 198 

subsample of infections with known transmission histories is not available. If we assume that the number of 199 

mutations between two linked infections is Poisson distributed around the mutation rate and that we know the 200 

distribution of the number of generations between infections in the population, the probability of observing a 201 

specific genetic distance (d) between the sequences from any two infected individuals linked by transmission is: 202 

where ((*) is the probability of observing i generations between infections, (#$%&is the maximum number of 203 

generations between infections considered linked, ,(-; * ⋅ ')is the probability of observing d mutations between 204 

two infections separated by i generations, and ' is the mutation rate per genome per generation (see Text S2). 205 

Similarly, the probability of observing a genetic distance d between two infections not linked by transmission is: 206 

Where gmax is the maximum number of generations considered.  207 

Determining the distribution of generations between infections is a non-trivial task (Dobrow 1996; Mahmoud and 208 

Neininger 2003; Salje et al. 2016), and depends on several factors, including the shape of the epidemic and the 209 

period of time from which infections are sampled (Fig S2). In the examples included herein, we use simulations to 210 

empirically approximate this distribution (see Text S2), but it is likely that adequate approximations can be 211 

obtained by other means—or that more sophisticated approaches can be employed to directly estimate the necessary 212 

genetic distance distributions (Worby et al. 2014). 213 

Given the approximate generation distribution between infections, we calculated the genetic distance distributions 214 

for linked and unlinked infections for the pathogen described above. The optimal genetic distance threshold for 215 

distinguishing between linked and unlinked infections was 4 mutations (sensitivity=0.98, specificity=0.99) (Fig 216 

4B). The empirical and mutation rate methods result in a similar, but not identical, optimal threshold for the 217 

pathogen in this example, likely due to sparse sampling in the empirical case. 218 

Additionally, we note that the clear threshold (and high sensitivity and specificity) observed here only occurs when 219 

the mutation rate is high enough (and the reproductive number low enough) that a significant number of mutations 220 

occur between infections considered linked (Campbell et al. 2018). For pathogens that do not meet these criteria, it 221 

may not be possible to use genetic distance alone to distinguish between linked and unlinked infections (Fig S3). 222 
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Methods 223 

Outbreak simulations 224 

We used outbreak simulations to validate our approach. We simulated outbreaks using the ‘simOutbreak’ function 225 

implemented in the outbreaker R package (Jombart et al. 2014). For all simulations we assumed a large number of 226 

susceptible individuals in the population (n.hosts=100,000), a genome length of 1,000 nucleotides, and no 227 

importation events (single source outbreak). We also assumed every infected individual transmitted their infection 228 

exactly one time step after infection, and ran the simulation for the number of generations needed to achieve a final 229 

outbreak size of approximately 1,000 infections (01(1,000)/01(%)). After simulating the source population, we 230 

randomly selected a predetermined proportion of infections from that population.  231 

For each sampling proportion, we simulated outbreaks over a variety of mutation rates and reproductive numbers. 232 

We allowed the mutation rate to vary between 0.0001–4 mutations per genome per generation, and allowed the 233 

reproductive number to vary between 1.3–18. We chose these ranges to encompass mutation rates and reproductive 234 

numbers observed in actual human pathogens. We divided each parameter range into 100 discrete values and ran 235 

simulations with all combinations of mutation rate and reproductive number, for a total of 10,000 simulations for 236 

each sampling proportion. We required simulated outbreaks to contain at least 100 and no more than 2000 237 

infections. 238 

Implementation 239 

Functions for calculating the necessary sample size based on a desired false discovery rate are implemented in the 240 

R package phylosamp, freely available at: https://github.com/HopkinsIDD/phylosamp. This package also includes 241 

functions for calculating the false discovery rate for a specific sample size or proportion, and functions to estimate 242 

the number of transmission pairs that will be observed given a sample size and a set of assumptions (e.g., multiple 243 

links and multiple transmissions, single link and single transmission, etc.). We also provide generation distributions 244 

for values of R between 1.3–18, derived from the simulations described in Text S2. 245 

Results 246 

Method performance with known sensitivity and specificity 247 

We used simulated outbreaks to validate the relationship between sample size and false discovery rate using genetic 248 

distance as our linkage criteria. We subsampled each outbreak and, using the known transmission relationships and 249 

genetic distances between simulated infections, calculated the false discovery rate at each possible genetic distance 250 

threshold in the subsample (“simulated FDR”). For each simulation (before subsampling), we also calculated the 251 

actual specificity and sensitivity at every relevant genetic distance threshold. We used these values and the 252 

observed Rpop (roughly equal to one in most simulations) to then calculate the theoretical false discovery rate at a 253 

particular sampling proportion using Equation 2. We find that the theoretical false discovery rate is consistent with 254 

the simulated value for a wide array of pathogen mutation rates and reproductive numbers (Fig 5).  255 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.10.20150920doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.10.20150920
http://creativecommons.org/licenses/by/4.0/


11 

 256 

Figure 5: Predicted versus observed false discovery rate in outbreak simulations. Theoretical versus simulated false 257 
discovery rate (FDR) for each genetic distance threshold in 10,000 simulations of varying mutation rate and reproductive 258 
number. White line: smoothed conditional mean; grey dashed line: y=x line. Increasing values of the sample size (M) are plotted 259 
in darker color; because the maximum outbreak size is fixed at 2000, the maximum sample size differs for each sampling 260 
proportion. Increasing both the sample size and proportion reduces bias and error, see Table 2. 261 

Overall, the bias of our estimate of the false discovery rate approached zero for all sampling proportions. The 262 

average error was less than 4% in each case, decreasing significantly with increased sample size or proportion 263 

sampled (Table 2, Table S1). We note that special care should be taken with low sample sizes and low theoretical 264 

false discovery rates, as error rates can be particularly high in this range. Additionally, while our method is an 265 

unbiased estimator and overall correct in expectation, it is always possible for performance in a particular set of 266 

individuals sampled from a population to deviate substantially from expectation (for example, when a subsample 267 

happens to contain no true transmission pairs), particularly when sample sizes are low.  268 

  269 
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Table 2: Bias and error of calculated false discovery rate for simulations with fixed sampling proportion.  270 

Bias ⍴=0.10 ⍴=0.25 ⍴=0.50 ⍴=0.75 All ⍴ values N 

FDR=0.00-0.25 -0.0006 0.0045 0.0001 0.0036 0.0022 17,900 

FDR=0.25-0.50 0.0044 0.0045 0.0009 0.0032 0.0032 31,633 

FDR=0.50-0.75 0.0064 0.0039 0.0006 0.001 0.0029 51,069 

FDR=0.75-1.00 0.0001 0.0001 <0.0001 <0.0001 0.0001 965,125 

All FDR Values 0.0005 0.0005 0.0001 0.0002 0.0003 1,065,727 

N 261,360 267,239 268,900 268,228 1,065,727     

 271 

Error ⍴=0.10 ⍴=0.25 ⍴=0.50 ⍴=0.75 All ⍴ values N 

FDR=0.00-0.25 0.2135 0.1359 0.0799 0.0401 0.098 17,900 

FDR=0.25-0.50 0.2751 0.1583 0.079 0.0416 0.1275 31,633 

FDR=0.50-0.75 0.2057 0.0979 0.0478 0.0259 0.092 51,069 

FDR=0.75-1.00 0.0155 0.0069 0.0035 0.002 0.007 965,125 

All FDR Values 0.032 0.0181 0.0097 0.0052 0.0161 1,065,727 

N 261,360 267,239 268,900 268,228 1,065,727  

 272 

To better understand why the error rate of our estimator increases as the false discovery rate decreases, we stratified 273 

the simulation data by the sensitivity and specificity given a particular genetic distance threshold. We found that the 274 

error is highest when sensitivity is low and specificity is high (Fig S4A-B), which occurs when a high genetic 275 

distance threshold is used. This combination often produces low false discovery rates, but is highly dependent on 276 

sampling (namely, if any true positives or false positives are sampled). This leads to highly variable simulated false 277 

discovery rates and consequently higher error rates. Unsurprisingly, this analysis also highlights that a discrete 278 

threshold like genetic distance produces a limited number of possible sensitivity and specificity combinations (Fig 279 

S4C-D). Therefore, obtaining reasonable estimates for these values in tandem is of key importance when using our 280 

method to estimate the false discovery rate of a phylogenetic study. 281 

Method performance with estimated sensitivity and specificity 282 

We repeated the false discovery rate comparison described above, but instead of using the actual sensitivity and 283 

specificity observed in each simulation, we calculated these parameters from the mutation rate used to generate that 284 

simulated outbreak (Fig 6). To reduce reliance on simulation data to calculate necessary parameters, we used 285 

%!"! = 1, rather than the empirical value. 286 
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 287 

Figure 6: Validation of mutation rate method to calculate sensitivity and specificity. Theoretical versus simulated false 288 
discovery rate (FDR) for each genetic distance threshold in 10,000 simulations of varying mutation rate and reproductive 289 
number. White line: smoothed conditional mean; grey dashed line: y=x line. Increasing values of the sample size (M) are plotted 290 
in darker color; increasing both the sample size and proportion reduces bias and error, see Tables S2 and S3. 291 

Under this more realistic set of assumptions, we observe a slight bias, though overall values remain less than one 292 

percent (Table S2, Table S3). However, while mean bias is very low on average, it is greater when the theoretical 293 

false discovery rate is low, reaching nearly 8% for predicted false discovery rates less than 25%. Average error 294 

rates were similarly slightly increased, but remained less than 4% overall. 295 

Given that correct sensitivity and specificity values are an important component of calculating the theoretical false 296 

discovery rate, we looked at the specific estimates for these parameters generated by our mutation rate method. 297 

When considering only direct transmissions as linked (as we do throughout these simulations), Equation 3 298 

simplifies to simply a poisson distribution around the mutation rate, resulting in highly accurate and precise 299 

sensitivity estimates (Fig S5). However, we find that our estimates for specificity (Fig S6) have some positive bias 300 

(and large error, particularly for low sample sizes). We hypothesized that inaccuracies in the estimated specificity 301 

were due to the distribution of generations between infections used in our calculation; as discussed in Approach, 302 

this is a non-trivial distribution that we estimated by averaging over many simulations (see Text S2 for details). 303 
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To test this hypothesis, we used the actual distribution of generations between infections from each simulation in 304 

our calculation of specificity (sensitivity estimates are unaffected by this distribution when considering only direct 305 

transmissions, as described above). We find that this does in fact reduce bias in our specificity estimates (Fig 7) and 306 

leads to largely unbiased (<2%) estimates of the false discovery rate, even at low theoretical false discovery rate 307 

values (Fig S7, Table S4). 308 

 309 

Figure 7: Effect of the generation distribution on specificity of the linkage criteria. Theoretical versus simulated specificity 310 
for each genetic distance threshold in 10,000 simulations of varying mutation rate and reproductive number (proportion sampled 311 
= 0.75). White line: smoothed conditional mean; grey dashed line: y=x line. Increasing values of the sample size (M) are plotted 312 
in darker color. (A) Theoretical sensitivity and specificity calculated using average distribution of generations between infections 313 
from simulations (see Text S2). (B) Theoretical sensitivity and specificity calculated using the actual distribution of generations 314 
between infections from that simulated outbreak. 315 

Discussion 316 

We have developed a mathematical framework for making informed sampling decisions in pathogen genome 317 

sequencing studies. Specifically, this framework allows for easy calculation of the relationship between the number 318 

or proportion of infections sampled during an outbreak and the ability of some phylogenetic or epidemiological 319 

criteria to correctly identify infections within this sample that are linked by direct transmission. Understanding this 320 

relationship is crucial to making correct inferences about pathogen transmission patterns, especially as genomic 321 

studies are becoming more feasible and widely used to answer both scientific and public health questions. 322 

This framework is broadly applicable to a variety of phylogenetic or epidemiological approaches, as long as the 323 

sensitivity and specificity of the criteria can be approximated. With a basic understanding of the pathogen and the 324 

criteria being used, researchers can more effectively design studies that correctly identify transmission pairs with a 325 

known level of confidence. Additionally, this generalizable method (available as a free software, the R package 326 

phylosamp) provides a metric by which reviewers of these studies can evaluate their conclusions. We apply our 327 

method to simulated outbreaks using genetic distance as the linkage criteria and find that we can effectively 328 

estimate the false discovery rate for a variety of pathogen mutation rates, reproductive numbers, and relevant 329 
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genetic distance thresholds. It is important to note, however, that for a given sensitivity and specificity, there may 330 

not always be a study design that achieves the desired false discovery rate. 331 

Performance of the method presented depends on our ability to estimate the sensitivity and specificity of a 332 

particular linkage criteria. While we present two methods for doing this—empirically and theoretically using the 333 

mutation rate of the pathogen—implementing either in practice is not without challenges, and improved estimation 334 

of these values may be a fruitful area for future research. For instance, the mutation rate based approach also 335 

depends on the distribution of the number of generations of transmission between infections in the underlying 336 

population. Although distributions derived from simulations (provided as part of the phylosamp package) provide a 337 

reasonable proxy, estimates of sensitivity and specificity are much improved when using the exact generation 338 

distribution, which currently can only be determined from complete knowledge of all transmission events. Further 339 

research into all the factors affecting this distribution will be necessary to improve its estimation. Likewise, there 340 

are challenges to the empirical approach, particularly for novel pathogens.  341 

Better performance can likely be obtained by not restricting ourselves to genetic distance alone when determining a 342 

linkage criteria. Genetic distance is easy to determine from sequence data, but this simple metric does not take into 343 

account ancestral relationships or uncertainty around these relationships, and is limited to discrete mutational 344 

changes. Applying more complex phylogenetic criteria may allow us to learn more about transmission 345 

relationships, though there is a limit to the extent to which genetic data can be used to distinguish infections in fast-346 

spreading (or slow-mutating) pathogen outbreaks. There are several examples of outbreaks in which multiple 347 

infected individuals have the same consensus viral genome (Campbell et al. 2018). In this case, incorporating 348 

epidemiological data (e.g., location, time of symptom onset) may be important in determining which infections are 349 

unlikely to be linked. Doing so is part of a larger effort to better integrate epidemiological and genomic data into 350 

pathogen transmission studies (Morelli et al. 2012; Ypma et al. 2012; Jombart et al. 2014; Klinkenberg et al. 2017). 351 

While in this manuscript we have focused on direct transmission pairs, our framework is designed to be extensible 352 

to alternative definitions of linkage; for example, infections connected within a specified number of transmission 353 

events. Expanding the definition of linkage to include such indirect transmissions has a number of useful 354 

applications in outbreak research, such as identifying and connecting transmission clusters. This method could also 355 

be extended to more complex direct transmission relationships, for example when within-host evolution results in 356 

the existence of viral quasispecies within infected individuals, each of which has some potential of being 357 

transmitted. In all of these scenarios, it is equally important to understand the sample size needed to make the 358 

desired inferences. 359 

We hope that this work represents a step towards developing a larger theory of study design for making inferences 360 

from pathogen sequence data, but recognize it is only a step. The focus of this paper is sample size, but which 361 

infections are sampled may be equally important (Stack et al. 2010; de Silva et al. 2012; Hall et al. 2016). For 362 

example, understanding routes of direct transmission may require dense sampling of a small group of highly-363 

connected individuals, while understanding general transmission trends over the course of a geographically-364 
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dispersed outbreak may require us to sample broadly over space and time. Additionally, the goal of linking 365 

infections is seldom the linkages themselves, but the larger inferences about risk and transmission derived from 366 

those linkages. Adapting the techniques here to more directly link sample size calculations to these outcomes is an 367 

important next step.  368 
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