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Abstract—Accurate computational models for clinical decision 

support systems require clean and reliable data but, in clinical 
practice, data are often incomplete. Hence, missing data could 
arise not only from training datasets but also test datasets which 
could consist of a single undiagnosed case, an individual. This 
work addresses the problem of extreme missingness in both 
training and test data by evaluating multiple imputation and 
classification workflows based on both diagnostic classification 
accuracy and computational cost. Extreme missingness is defined 
as having ~50% of the total data missing in more than half the data 
features. In particular, we focus on dementia diagnosis due to long 
time delays, high variability, high attrition rates and lack of 
practical data imputation strategies in its diagnostic pathway. We 
identified and replicated the extreme missingness structure of data 
from a real-world memory clinic on a larger open dataset, with the 
original complete data acting as ground truth. Overall, we found 
that computational cost, but not accuracy, varies widely for 
various imputation and classification approaches. Particularly, we 
found that iterative imputation on the training dataset combined 
with a reduced-feature classification model provides the best 
approach, in terms of speed and accuracy. Taken together, this 
work has elucidated important factors to be considered when 
developing a predictive model for a dementia diagnostic support 
system.  

Index Terms—Clinical decision support systems, medical expert 
systems, machine learning, missing data, data imputation, 
dementia, ADNI data, Alzheimer’s disease classification, data 
quality 

I. INTRODUCTION 
The issue of missing data is one of the most ubiquitous 

concerns in data science [1]. This is particularly the case in 
clinical and medical data, which frequently has many missing 
values [2]–[4] (see Fig. 1a for a real-world, routine (i.e. not 
clinical trial) Alzheimer’s disease (AD) dataset). In recent 
years, there has been increased effort to assure data quality and 
reusability, and to automate the processes of discovering and 
analysing data by publishing data annotations and analytical 

workflows [5], [6]. 

A key clinical application of data science is in the 
development and use of computerized decision support systems 
(CDSS), which can enhance consistency, objectivity and 
standardization [6]–[8] In developing a clinical diagnostic 
model for use in a CDSS, large training dataset is typically used 
to build a classification model, while test dataset is used to 
verify model accuracy [9]. Generally, the training and test 
datasets must be complete, with no missing values for any 
variables. In cases of extreme missingness, which we define as 
having ~50% of the total data missing in more than half the data 
features, which often occurs in real-world routine clinical data 
records, it may not be practical or possible to acquire the 
missing data to improve data modelling. Hence, computational 
models must incorporate a strategy (method or combination of 
methods) for handling missing data as part of their analytical 
workflow.  

Current strategies for handling missing data include: (i) 
attempting to acquire missing data at additional expense, e.g. 
performing an assessment which was previously not conducted; 
(ii) complete-case analysis, in which any row with a missing 
value is dropped from analysis; (iii) data imputation, in which 
missing values are replaced with an estimated value; (iv) 
missing-indicator methods, in which missing values are marked 
as missing and then incorporated in the training dataset; and (v) 
various strategies in which missing data is tackled directly in 
the analysis without an intermediate imputation step [10]–[12]. 
The latter includes maximum-likelihood methods [13], 
classifiers which can account for the uncertainty caused by 
missing data such as the naïve credal classifier [14], and tree-
based classifiers which use the surrogate split method [15].  

Data imputation strategies can further be divided into single 
imputation methods, in which a single estimate for the missing 
data is generated, and multiple imputation methods, which 
generate multiple estimates for each missing value and 
therefore will produce multiple imputed datasets for further 
analysis [2], [16]. Another crucial distinction is between 
supervised data imputation methods, where the class label is 
known, and unsupervised methods, which operate in the 
absence of a class label [17]. It is also useful to highlight that 
many commonly used imputation methods are iterative 
imputation methods which impute the entire dataset repeatedly 
until an optimum is reached e.g. [18], [19].   

The appropriate strategy for dealing with missing data will 
depend to some extent on the type of missingness. Missing data 
is often categorized into three types: missing at random 
(MAR); missing completely at random (MCAR); and missing 
not at random (MNAR) [20]. In the case of MAR, the 
probability that data is missing depends upon the variables 
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observed within the dataset. Fig. 1b shows a simulated sample 
AD dataset in which cognitive testing variables are more likely 
to be missing in more severe AD cases due to the difficulty of 
performing cognitive assessments on such patients. MCAR can 
be understood as a special case of MAR – in this case, the 
probability of missingness is independent of all variables in the 
dataset. An example would be someone being late for a medical 
appointment because of a traffic jam so there would be 
insufficient time to complete all of their cognitive assessments 
(see Fig. 1c for a simulated sample example of MCAR). MNAR 
is the case where the probability of missingness depends on a 
variable which is in itself missing; this is the most complex case 
to handle. An example of this might be a survey on income, in 
which people with a very low or very high income refuse to 
report their income [2]. MNAR type missingness is also very 
common in longitudinal data e.g. a clinical dataset where 
disease progression may lead to subjects dropping out of the 
study [21], [22]. Importantly, longitudinal studies on cognitive 
decline have high attrition rates (e.g. [23]–[25]).  

In practice, clinical data tends to have MAR type missingness 
[2]. However the probability of missingness in clinical data is 
often dependent on the outcome variable, as illness/disease 
severity may impact opportunities for data gathering [26]. In 
longitudinal data, this may be MNAR type missingness, such as 
the case where a study participant may not be able to undergo a 
specific assessment or be part of a follow up study due to an 
increase in disease severity. The correlation between 
missingness and disease severity holds true in dementia data, as 
shown in [21].  

Various studies have evaluated different imputation methods 
for replacing missing values in clinical data [2], [16], [27]–[30]. 
The most effective methods are found to be multivariate, 
iterative methods such as Multiple Imputation by Chained 
Equations (MICE) [29] fuzzy k-means [16], [27], Bayesian 
Principal Component Analysis [27] and missForest [18], and 
more recently, unsupervised neural network’s autoencoders 
[31]. However, most studies are focused on handling 
missingness in the training dataset, despite the fact that the test 
dataset can have missing values. For example, the diagnosis of 
a patient may involve unknown data variables from that patient 
(Fig. 2).  

The case of missing values in the test dataset during 
classification was addressed in [32], which also notes the dearth 
of literature on this issue. Specifically, [32] delineated four 

different strategies for handling the situation of missing values 
in the test data: (i) discarding objects with missing values; (ii) 
acquiring the missing value through manual follow-up; (iii) 
data imputation; or (iv) using a reduced-feature classification 
model built with variables which are not missing in the test 
dataset, and concluding that reduced-feature methods provide 
an under-utilised and efficient solution to the problem of 
missing values in the test dataset. Another study evaluated 
strategies for missing values in the test data in the context of a 
tree-based classifier and for eight different missing data 
patterns, using simple datasets with a binary response variable 
[33]. The conclusion was that a missing-indicator method was 
the most useful where missingness is related to the response 
variable. A later study [34] directly addressed the problem of 
missing values in the test clinical dataset, using k-nearest 
neighbors (k-NN) imputation method [35] to impute the dataset 
before testing the impact on classification accuracy, finding that 
even when 25% of the values are missing it is possible to 
achieve good classification accuracy.  

It is clear that the above studies for handling missing test data 
are limited. Specifically, [32] and [33] had yet to test their 
methods on real-world clinical data, and did not discuss the 
issue of missing training data, while the workflow in [34] 
appeared to have training and test datasets imputed together. In 
particular, iterative imputation methods of handling missing 

 
Fig. 1. Sample Alzheimer’s disease (AD) dataset from a memory clinic and its breakdown of data missingness. (a) Actual sample data. Rows: patients; columns: 
diagnosis category (AD MILD or AD MOD for mild or moderate AD, respectively), the various cognitive and functional assessments, Gender and Age. Black 
cells with “NA” label: missing data. (b-c) Simulated data with missingness correlated with diagnosis (Missing at Random, MAR) (b), and uncorrelated with any 
variable (Missing Completely at Random, MCAR) (c).  

 
Fig. 2. Iterative imputation with single-row test dataset of a toy example. 
Iterative imputation begins with mean imputation. (a) It is impossible to 
separately impute training and test datasets when test dataset is very small. (b) 
The training and test datasets are imputed together. Thus, the computational 
time to impute test dataset is the same as imputing the entire dataset. Note: To 
test classification accuracy, the class variable for the test dataset must be 
removed and imputed, to avoid ‘double-dipping’.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 8, 2021. ; https://doi.org/10.1101/2020.07.13.20146118doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.13.20146118


 3 

data may be unsuitable to apply to small test data in real time 
(Fig. 2), potentially limiting the usefulness of such methods in 
a clinical decision-making context. Additionally, very little 
missing data literature deals with extreme missingness. 
Importantly, there is no literature on missing data that deals 
with the specific prerequisites that are likely to be present in a 
clinical decision-making setting, notably: (i) when a patient is 
being diagnosed (corresponding to classification in machine 
learning models), it is likely that there will be significant 
missing data related to that patient (missing test data); (ii) 
patients are diagnosed one at a time by clinicians, 
corresponding to leave-one-out cross validation (LOOCV) 
condition for testing machine-learning models within a CDSS 
(e.g. [36], [37]), and (iii) imputation and classification of the 
test dataset must be performed within a reasonable timeframe 
for efficient and timely diagnosis.  

In this work, we investigate strategies for handling extreme 
missing data which takes these constraints into consideration, 
with missing data patterns that resemble those from real-world, 
routine clinical data. We focus on the diagnosis of dementia, 
particularly Alzheimer’s disease (AD), due to AD being the 
most common form of dementia, and AD’s long time delays and 
high variability in its diagnostic pathway [22]. Additionally, 
there is a substantial scarcity of practical data imputation 
strategies for dementia diagnosis (e.g. [22], [38]–[44]).  

 

II. METHODS 

 Data Description 

1)  Clinical Dataset to Extract Missing Data Characteristics 

Anonymous clinical data were extracted from Altnagelvin 
Area Hospital’s Memory Assessment Service (WHSCT) in the 
form of a CSV file. Ethics approval for this was obtained from 
the Office for Research Ethics Committee Northern Ireland 
(ORECNI, HSC REC B reference: 17/NI/0142; IRAS project 
ID: 230077). This data was used to determine the type of 
missingness in a real-world, routine clinical dataset to 
reproduce in the ADNI dataset. A sample of the dataset is 
shown in Fig. 1A. There were 189 rows in total, each 
representing a patient. Cells with missing values are shown in 
black in the diagram. Features included 7 different Cognitive 
and Functional Assessment (CFA) scores as well as Gender, 
Age and text-based Diagnosis information. AD diagnosis was 
manually categorized into two classes, 85 AD MILD (mild AD) 
and 104 AD MOD (moderate AD). Other diagnostic categories, 
including non-AD dementia subtypes, were discarded due to 
lack of ordinality or their small sizes. In our previous work, we 
showed that CFAs are among the most predictive features for 
classifying AD severity [37], [45]. For the current clinical 
dataset, the CFAs included Addenbrooke’s Cognitive 
Examination (ACE-III) and the Mini-ACE [46], the Bristol 
Activities of Daily Living Scale [47], the Geriatric Depression 
Scale [48], the NPI-Q behavioral, distress and severity 
measurements [49], and the Zarit Caregiver Burden [50]. 
Hence, this study focuses on CFA features. The extracted 
missingness structure of this dataset was replicated in a 
complete open source dataset, as described below.  

2) ADNI Dataset 

The data for evaluating the missing data strategies was 
extracted from the ADNIMERGE table [51] from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) merge R 
package, which amalgamates several key tables from the ADNI 
open source dementia data (adni.loni.usc.edu). The ADNI open 
database included clinical and neuropsychological assessments 
with diagnosis labelled as healthy, mild cognitive impairment 
(MCI) and early AD. It should be noted that the MCI group may 
include prodromal stage of AD, and individuals who will not 
progress to AD. After feature selection (see Section II.B.1) was 
applied to ADNIMERGE CFA variables, we had 8 CFA 
variables in the dataset (see Table I). We also included Gender 
and Age in our analysis, mirroring the routine clinical dataset, 
and the CFA MMSE [52] (Mini Mental State Examination; 
subsequently dropped from analysis) to enable translation of 
missingness structure from clinical data to ADNIMERGE data 
(see section II.B.2).  

We made use of CDR-SB  (Clinical Dementia Rating Sum of 
Boxes) instead of the more subjective clinical diagnosis [53]. 
CDR-SB was re-coded from the ADNIMERGE variable CDR 
(Clinical Dementia Rating) following the protocol in [54]. The 
mild, moderate and severe AD classes were amalgamated 
creating a three-class outcome variable: Healthy Controls (HC), 
MCI, and AD.  

Importantly, we used the resulting ADNIMERGE data to: (i) 
create synthetic missing datasets from a complete ADNI 
dataset, based on the missingness structure of real-world 
clinical data as described in Section II.A.1; (ii) evaluate the 
various computational approaches; and (iii) develop our 
proposed workflow.   

 Computational Methods 
 
1) Feature Selection 
 

Feature selection was performed on the ADNIMERGE table 
using the mutual information (MI) algorithm [55]:   

𝑀𝐼 = 𝐻(𝐶𝑙𝑎𝑠𝑠) + 𝐻(𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) − 𝐻(𝐶𝑙𝑎𝑠𝑠, 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)		 

 (1) 

where H is Shannon’s entropy [56] defined by  

𝐻(𝑋) = −∑ 𝑝(𝑥)	𝑙𝑜𝑔! 𝑝(𝑥)"∈$ 																						 (2) 

				𝐻(𝑋, 𝑌) = −∑ ∑ 	𝑝(𝑥, 𝑦)	𝑙𝑜𝑔! 𝑝(𝑥, 𝑦)%∈&	"∈$              (3) 

in which P is the probability function of some random variable 
X	or	Y		for	possible	outcomes	x	and	y, respectively. H can be 
understood as a measure of “disorder”: the sum of the 
probability of each label multiplied by the log probability of 
each label, with a value ranging between 0 and 1. The MI of a 
given attribute is the reduction in disorder of the class variable, 
when the class variable is separated according to that attribute.  

The 8 CFAs which had the highest MI with respect to the 
CDR-SB outcome variable were selected. In addition, the 
MMSE score was retained to facilitate mapping of the types of  
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missingness from the real-world clinical dataset, as described 
in Section II.B.2. Rows with original missing values for any of 
these features were dropped, creating an initial complete 
ADNIMERGE dataset with 1185 rows (the base dataset), with 
each row representing one individual participant visit. Multiple 
visits from the same participant at different time points were 
considered as separate cases here, as our original clinical data 
was not longitudinal. The dataset had imbalanced classes with 
478 healthy controls, 614 MCI and 93 AD cases. This base 
dataset provided the ground truth for our study. Synthetic 
missing datasets were derived from this dataset for imputation 
and classification testing. 

2) Missing Data 

Next, we searched for the relationship between missing 
values and the degree of cognitive decline of the 
individual/patient. Although no CFA in ADNIMERGE can be 
found in the clinical dataset, a previous study has provided a 
table of conversion between ACE-III scores (in our clinical 
dataset) and MMSE scores (in ADNIMERGE) [60]. In 
particular, these two CFAs were temporarily used to map the 
missingness structure from the clinical dataset to 
ADNIMERGE but subsequently not considered in the analysis 
(see below). We used the ACE-III scores in our clinical dataset 
as the benchmark for the relationship between missingness and 
cognitive decline, to facilitate this mapping without using the 
outcome variable for generating missingness (which would 
create double-dipping in subsequent analysis).   

We first performed a regression of the proportion of missing 
values in the clinical dataset on ACE-III. The resultant 
regression equation (see Section III.1) was then used to 
generate synthetic missing data in the ADNIMERGE dataset. 
Specifically, the MMSE score in ADNIMERGE was converted 
into an ACE-III score using the conversion table in [60]. 
Missing values were then synthetically introduced into the CFA 
variables in the ADNIMERGE dataset using this conversion. 

It should be noted that due to the different variables in the 
ADNIMERGE data compared to our real-world clinical data, 
no attempt was made to reproduce any column-wise 
missingness patterns from our clinical data, as this would not 
have reflected any true underlying relationships among 
variables in the new dataset.  We showed, in Section III.A, that 
the proportion of missing data for CFA values was very high. 
Thus, in total, 10 synthetic ADNIMERGE datasets with 
different random missing patterns were generated, to ensure 
robustness in the results. ACE-III and MMSE scores were 

dropped from subsequent analysis, because ACE-III was not in 
ADNIMERGE and MMSE was not selected by feature 
selection.  

3)  Data Imputation Methods 

We included traditional mean and median data imputation 
methods [1] for analysis as they are straightforward to interpret 
and can function as a benchmark. We also used a multiple 
imputation method termed Predictive Mean Matching (PMM) 
[61]–[64] from the multivariate imputation via chained 
equations (MICE) package in R [65]. We used PMM both in the 
form of a single imputation (PMM1) and the mean of 5, 10, 15 
and 50 imputations (PMM5, PMM10, PMM15 and PMM50, 
respectively). It should be noted that PMM is the default 
method for MICE, the most commonly used multiple 
imputation package. Imputation algorithms such as the k-NN 
method [35] which generalize from complete cases, were 
unsuitable for our high proportion of missing data, and were not 
considered.  

The general steps for PMM within the context of MICE are 
as follows [64]: (i) linearly regress observed values for each 
column on the other columns, obtaining a set of coefficients; 
(ii) make a random draw from the posterior predictive 
distribution of this set of coefficients, creating a new set; (iii) 
use the newly generated coefficients to generate predictive 
values for missing values in this column (iv) identify a set of 
cases with observed variable whose predicted values are close 
to the predicted values for the case with missing data; and (v) 
from these cases, randomly choose one case and assign its 
observed value to substitute for the missing value. Steps (ii) to 
(v) are repeated for each column, and the whole process is 
iterated 10 times to generate one imputed dataset. For PMM1, 
one imputed dataset is generated, while for PMM5, 5 imputed 
datasets are generated (see Supplementary Fig. 1 for details).  

Another algorithm which we used was the iterative 
missForest [18] from the missForest package in R [66], which 
uses Random Forest (RF) regression to impute missing data 
[67]. The missForest imputation method was chosen as it had 
been shown to outperform MICE at imputation [18], [68] and 
involved few assumptions about the structure of the missing 
data [18]. The MissForest method entails the following steps: 
(i) impute the column mean for each missing value in dataset D 
to create imputed dataset D’; (ii) copy D’ to D’’; (iii) for each 
column in D’ use the rows with no missing values to build a RF 
model, and use the model to predict the missing values; (iv) 
update D’ with new predictions for the missing values; (v) test 
convergence and output D’’ if convergence is reached – if 
maximum iterations have been reached output D’; otherwise 
iterate steps (ii-v) (see Supplementary Fig. 2 for details).  

Finally, we also used the Bayesian Principal Components 
Analysis (BPCA) [69] algorithm for imputation as it has been 
found to be effective in previous studies [27], and in order to 
explore whether a PCA-based method impacts imputation 
accuracy by variable. Bayesian PCA is a computationally 
complex method which uses an iterative approach similar to 
Expectation Maximization, combined with Bayesian modelling 
to estimate the eigenvalues of the underlying principal 
components of the data (see Supplementary Fig. 3 for details).  

TABLE I  
FEATURES SELECTED BY MUTUAL INFORMATION (MI) WITH OUTCOME 

Label in 
ADNIMERGE 

Description MI against 
 CDR-SB  

EcogSPTotal ECog (Study Partner) Total Score [57] 0.41556 
EcogSPMem ECog (Study Partner) -Memory [57] 0.40924 
LDELTotal Logical Memory Delayed Recall [58] 0.37831 
EcogSPLang ECog (Study Partner) – Language [57] 0.37228 
MOCA Montreal Cognitive Assessment [59] 0.37145 
EcogSPPlan ECog (Study Partner)- Planning [[57] 0.35002 
EcogSPVisspat ECog (Study Partner) – VisioSpatial 

[57] 
0.343062 

EcogPTTotal ECog (Patient) -Total Score [57] 0.338375 
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The adjusted R2 of the linear regression of the imputed values 
on ground truth (complete data) was used as a measure of 
imputation accuracy, with values ranging from 0 to 1 (poorest 
to highest in accuracy, respectively). The mean, minimum and 
maximum R2 measurements from each of the 10 synthetic 
datasets were obtained. This methodology was also used to 
calculate the average imputation accuracy of each variable 
using the missForest algorithm.  

The computation time over 10 missing datasets for each 
imputation method was recorded and normalized by dividing 
by the time for the fastest method (mean imputation) 

4) LOOCV Classification Accuracy Testing 

Classification accuracy was tested using leave-one-out cross-
validation (LOOCV) [70]. In the LOOCV condition, the test 
dataset is only one row. We used LOOCV to mimic one-patient 
classification condition. Further, LOOCV is suitable for smaller 
data sizes, which may occur in some clinical/medical centres. 
Although LOOCV is computationally intensive, it minimizes 
model bias by using almost all the training data for each 
classification while allowing conservative estimation [71]. The 
approaches we used for handling missing values in the test row 
can broadly be divided into two categories: 1) impute the 
missing values in the test row using the imputation approach 
used for the training dataset; or 2) use a reduced-feature 
classifier, where a classification model is built using only the 
features which are not missing in the test row. In a dataset with 
N rows, a classification model will be built N times and tested 
on each row in turn. A schematic of this process is shown in 
Fig. 3. Hyperparameter tuning using the bootstrap method with 
3 repeats, and class balancing using downsampling, were 
incorporated within the “Build Classifier” step [68].  

The workflows shown in Table II are different instantiations of 
the general workflow shown in Fig. 3 (except for workflow H 
where no imputation was used). The workflows consist of the 
combination of training dataset imputation method, test dataset 
imputation method, and classifier method. The RF classifier 
(from the caret R package [72]) was used in most cases, as it is 
versatile and adaptable to a wide variety of different datasets 

[18], with the SVM classifier (also from the caret package) used 
in some workflows to test whether imputation strategies have 
different compatibility with different classifiers. The naïve 
Bayes (NB) classifier (from the e1071 R package [73]) was 
used in (H) as it does not require a strategy for handling missing 
values; the classifier can skip a missing value while still making 
use of values in the same row of the dataset due to the 
conditional independence assumptions in the naïve Bayes 
algorithm. The RF imputation method was used as it was the 
most effective single imputation method, as well as multiple 
imputation with PMM-5 (higher values of multiple imputation 
were not considered here due to the impact on classification 
speed) and single imputation with  the mean of PMM-15, which 
although not intended for single imputation was found to be 
both faster and more accurate as an imputation method than RF. 
Multiclass area-under-the-ROC curve, AUC [74], over the 1185 
cases was calculated using the pROC package [75]. 95% AUC 
confidence intervals were bootstrapped with 500 resamples. We 
also provide in Supplementary Table I, sensitivity and 
specificity results, as well as a baseline comparison using RF, 
SVM and naïve Bayes classifiers on the complete dataset with 
no missing values. In a clinical decision support setting, 
imputation and classification will occur in different contexts, so 
the computation times for imputation and classification in each 
workflow were recorded separately. The mean computation 
time in seconds (s) for each of the 1185 classification and 
imputation cases was recorded.  

TABLE II  
IMPUTATION AND CLASSIFICATION WORKFLOWS 

 Training 
dataset 
imputa-
tion 

Test 
dataset 
treat-
ment 

Classifier Imputa
-tion 
time 
(s) 

Classific
ation 
time (s) 

AUC 

A mean mean RF 0.002 1.974 0.871 

B class 
mean 

reduced 
feature 

RF 0.010 1.297 0.878 

C RF RF RF 11.520 1.950 0.889 

D mean reduced 
feature 

RF 0.002 2.029 0.867 

E RF reduced 
feature 

RF 11.444 1.860 0.876 

F PMM5 
multiple 

PMM5 
multiple 

modal 
imputed 
outcome 

3.179 0.021 0.839 

G PMM5 
multiple 

PMM5 
multiple 

RF 
ensemble 

3.179 14.566 0.885 

H none none NB 0.000 0.000 0.885 

I PMM5 
multiple 

reduced 
feature 

RF 
ensemble 

3.179 10.100 0.891 

J Mean Mean SVM 0.002 1.717 0.867 

K RF RF SVM 11.520 2.313 0.882 

L RF reduced 
feature 

SVM 11.520 1.694 0.893 

M PMM15 
mean 

RF RF 10.315 2.150 0.887 

N PMM15 
mean 

Reduced 
feature 

RF 10.315 0.318 0.884 

O PMM15 
mean 

RF SVM 10.315 0.122 0.888 

P PMM15 
mean 

Reduced 
feature 

SVM 10.315 0.142 0.874 

 

 
 

Fig. 3.   Workflow for LOOCV (single case) classification testing, emulating 
actual clinical decision-making conditions. Data is first split into training and 
single-case test datasets. Training and test datasets are imputed separately.  
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 Software and Hardware for Analysis 
The above analyses and algorithms were run within R Studio 

version 1.146 on a Windows machine with eight memory cores, 
Intel i7 processor, 16GB Ram and R version 3.5.2 installed. The 
analyses were all single threaded to allow for straightforward 
comparison of computational cost.  The codes are available at 
https://github.com/mac-n/BHI-missing-data.  

 

III. RESULTS 

 Synthetic missing data with missingness type from clinical 
data 

To reduce the size of the ADNIMERGE dataset to better 
resemble the real-world clinical dataset, we performed feature 
selection using the mutual information algorithm [55] which 
selected the best features with respect to the class variable 
(CDR-SB scores in our case), and identified the 8 most relevant 
CFA features. Table I shows the selected CFAs in descending 
order of their mutual information with the class 
variable.  Interestingly, most of the selected CFAs were 
completed by study partners, who accompanied the patients to 
the study site throughout the ADNI study, as opposed to being 
completed by the patients themselves (Table I, column 2). Next, 
we used the top 8 CFAs, plus Gender and Age variables and our 
class variable from the ADNIMERGE data to form our baseline 
dataset which resembled the types of features in the memory 
clinic data. We then investigated the missingness in our 
memory clinic data, in order to reproduce the same missingness 
patterns in the ADNIMERGE data.  

Using the memory clinic data, we determined that the data 
had MAR type missingness by regressing the number of 
missing values in each row, normalised by the number of CFA 
columns, on Addenbrooke’s Cognitive Examination (ACE-III.) 
The ACE scale was used because there is known mapping from 
ACE to MMSE scores [60]. Although there are no common 
CFAs between the memory clinic data and ADNIMERGE, 
MMSE scores are available in ADNIMERGE to recreate the 
same type of missingness in ADNIMERGE as found in our 
memory clinic data. Higher order fits were tested but higher 
order terms were found to be non-significant in the polynomial 
regression (2nd order: p -value = 0.051; 3rd order:p -value = 
0.39). 

We found that the resulting regression equation could be 
described by Nmiss	=	0.48	+	(0.06	ACE-III), where Nmiss	was 
the proportion of CFA values missing in each row, and ACE-III 
consisted of its normalized score. The 0.48 constant in the 
equation meant that 48% of the CFA values were missing. The 
low p-value (p	=2x10-16, n=189) and low R2 (0.02502) of the 
regression indicated that cognitive decline, as measured by 
ACE-III scores, was significantly correlated with missingness 
but cognitive decline could not explain most of the missingness 
in the data. Hence the data could be considered either MCAR 
or MAR. A conversion table to convert MMSE scores in ADNI 
to ACE-III scores [60] was used. The regression above was then 
used in combination with the generated ACE-III scores to 

generate a probability of missingness, Pmiss,i. for every row i in 
ADNIMERGE. Each variable in each row i was substituted 
with a missing value, with probability Pmiss,i. In this manner, 10 
missing datasets were generated from the original complete 
ADNIMERGE data with the same degree and type of 
missingness as in our clinical data (see Section II.A.2).  

 Computationally expensive imputation methods are not 
necessarily more accurate 

Based on the synthetic missing datasets, we performed 
various imputation methods. We found that the Predictive Mean 
Matching (PMM) and Random Forest (RF) imputation methods 
provided the highest accuracy when tested against the complete 
dataset (ground truth) (Fig. 4). PMM imputation methods were 
further divided into PMM5, PMM10, PMM15, PMM50 - the 
mean of 5, 10, 15 and 50 multiple imputations, respectively. 
Specifically, the regression of the mean of the PMM50 
imputation method against ground truth was the most accurate, 
with a mean R2 over 10 synthetic datasets of 0.86 (Fig. 4).  This 
was non-significantly (p=0.204) higher than the accuracy 
when using PMM15 imputation (mean 0.861), but significantly 
higher than the accuracy for PMM10 (0.856) (t-test p-value 
over 10 datasets = 0.002). The PMM15 method was in turn 
significantly (p=0.001) more accurate than the RF method 
(mean 0.849) although the RF was the only method with 
accuracy close to the PMMs. Thus, PMM’s accuracy 
marginally increased when more multiple imputations were 
generated. All PMM methods involving more than 15 
imputations were significantly more accurate than RF.  

The next most accurate method, Bayesian Principal 
Component Analysis (BPCA), was found to have an R2 of 
0.773. The BC mean (mean by class) imputation method had a 
reasonable accuracy for a computationally simple method 
(R2=0.735), but as an imputation method it had the 
disadvantage that it could not be used to impute the test row as 
the class value of the test row was not known. Finally, the 
median and mean methods did not achieve high accuracy.  

Given that many of the mean R2 values were between 0.8-
0.9 (Fig. 4, grey bars), we next investigated the computational 
cost of individual imputation methods. We found that there was 

 
Fig. 4.  Imputation accuracy R2 and computation time depend on imputation 
methods. Grey (black) bars: accuracy R2 (computation time). Left-to-right bars: 
mean imputation, mean by class imputation, median imputation, RF imputation, 
PMM averaged over 1, 5, 10, 15 and 50 imputations, and BPCA.  
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a wider range of computational times across the various 
imputation methods (Fig. 4, black bars; note the logarithmic 
scale). In particular, BPCA and PMM50 had similar timescales, 
while RF was about twice as fast. PMM15 was twice as fast as 
RF. The mean, BC mean and median methods, as might be 
expected, were not computationally costly. Overall, 
computationally expensive methods could achieve higher 
accuracy than simpler methods (e.g. RF and PMMs cf. mean, 
median and BC median), but algorithmic complexity did not 
guarantee high accuracy (e.g. BPCA). 

 Running time varies logarithmically across workflows 
Next, we investigated the most effective data imputation 
methods, with respect to classification accuracy and 
computational cost. We tested various workflows A-P (Table II; 
see Supplementary Table I for additional results) for 
classification and imputation of training and test datasets in the 
LOOCV condition, where each case in the dataset was 
classified one at a time, mimicking handling a single 
patient/individual (Section II.B.4). To demonstrate this, it 
sufficed to use just one of the synthetic datasets. The test 
dataset, consisting of only 1 row, was imputed either with the 
same imputation algorithm as the training dataset, or was not 
imputed and was classified using a reduced-feature classifier 
which used only features which were not missing in the test 
dataset. Class balancing and parameter tuning were 
incorporated within the classification step.  

Among the workflows we tested, the multiclass AUC ranged 
between 0.83 and 0.89. This was a surprising result, given the 
extreme (48%) missingness that was introduced (and 
comparable to the AUCs using the complete dataset – see 
Supplementary Table I). Most of the workflows performed at 
similar levels, and the bootstrapped confidence intervals 
overlapped substantially. An outlier performing below the 
others was workflow F (AUC=0.839) which did not use a 
conventional classifier but a mode of multiple imputed values. 
Workflows J (mean imputation plus SVM classifier) and D 
(mean imputation + reduced feature random forest classifier) 
both performed relatively poorly with AUC below 0.87 - 

perhaps poor performance was unsurprising with simpler mean 
imputation, although it should be noted that mean imputation 
by class combined with a reduced feature random forest 
classifier (workflow B) performed better than many workflows 
deploying more sophisticated imputation methods.  

We found workflows L (AUC=0.893), I (AUC=0.891), and C 
(AUC=0.889) to be ranked top in our results. Workflow L was 
a mixture of methods: RF imputation with a reduced feature 
SVM classifier. Workflow I used 5x multiple imputation and 
an ensemble of reduced feature RF classifiers, while workflow 
C imputed both training and test dataset with RF and used a 
RF classifier. Given that no particular approach substantially 
stood out in terms of AUC measure, we then investigated the 
computation time. In particular, the running time for the 
LOOCV workflows had been divided into classification time 
(time to build the classifier and perform classification) and 
imputation time (time to impute the training set) (presuming 
that in a clinical decision support setting, imputation was 
executed during off-peak times). Hence, workflows C, F, G 
and K, with test dataset imputed iteratively alongside the 
training dataset, might be impractical for use in a clinical 
decision-making setting if the dataset was large (Fig. 5) and 
we included them here primarily for benchmarking purposes. 
In terms of imputation time, RF imputation and PMM 
imputation methods were the slowest, and mean imputation 
methods were orders of magnitude faster. 

An interesting outlier in terms of computation time was 
workflow H (naive Bayes classification), which used no 
imputation and was an exceptionally fast classifier with 
AUC=0.885. Other outliers in terms of classification time were 
workflows G and I which used an ensemble of RF classifiers 
and were hence considerably slower than other methods. In 
general, the reduced feature classifiers were faster to build than 
the classifiers which used all the features in the dataset.  

IV. DISCUSSION 

Clinical datasets such as in electronic health records often have 
a significant proportion of missing data [3], [4], [6]. Various 

 
Fig. 5. Imputation and classification workflows evaluated for multiclass AUC (light grey, left axis; linear scale), imputation time and classification time (respectively 
dark grey and black, right axis; logarithmic scale.) Details of the workflows are explained in Table 2. Workflows marked with * impute the test dataset alongside 
the training data; hence imputation and classification must be performed together. 
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strategies have previously been proposed, however, there is no 
study that deals with the practical problem of missing dementia 
data in the test dataset, even though this is very likely to occur 
in clinical practice. This “test dataset” comprises the individual 
patient to be diagnosed. Missing data in the test dataset may 
prohibit the use of many popular imputation methods, which are 
frequently iterative and computationally costly when datasets 
are large. In this work, with a focus on AD diagnosis, we have 
replicated the missingness structure of a real-world routine 
(memory) clinical dataset and proposed practical strategies for 
dealing with a significant proportion (48%) of missing data in 
training and test datasets (Fig. 2). Moreover, we evaluated the 
approaches under the LOOCV condition (Fig. 1), mimicking 
real-world clinical decision-making (Fig. 3). We found that, 
despite the extreme missingness introduced, the AUC results 
from our proposed workflows were comparable to those 
produced using the original complete dataset (see 
Supplementary Table I).  
Overall, we found that various strategies for imputation and 
classification in these conditions were able to maximise the 
classification AUC but these methods varied widely in 
computation time (Figs. 5 and 6), and this might likely be an 
important factor when developing or maintaining a clinical 
decision support system. In addition, an interesting finding 
from our feature selection was that partner evaluation was more 
informative regarding AD severity than self-evaluation, which 
may inform future design of dementia assessments.  

In particular, reduced-feature methods for dealing with 
missing test datasets performed equally well to methods that 
involved imputing the test dataset, although this was sensitive 
to the imputation method. Reduced-feature methods might be 
the best solution for building a clinical decision support tool 
with large data as they did not involve real-time imputation of 
the test dataset. Specifically, we found RF imputation of the 
training dataset combined with a reduced-feature SVM 
classification (workflow L in Table II) was the best performing 
workflow and was also the fastest classifier to build. However, 
a drawback for reduced-feature methods is that either a large 
number of models must be stored, one for each possible 
combination of columns, or the classification model must be 
trained on-the-fly, and this will constitute part of the cost-
benefit analysis when choosing a workflow for practical 
applications.  

Mean imputation by class performed surprisingly well in our 
testing. This was despite the relatively low accuracy of mean 
imputation (Fig. 4) and was consistent with previous work 
suggesting that imputation accuracy did not always have a large 
effect on classification performance [76]. It could be argued 
that mean imputation is a form of missing-indicator imputation, 
as any missing value in a given column will have the same 
imputed value. Thus, the classification model receives a signal 
that the value was missing, which may improve classification 
in some circumstances – this will be explored in future work. 
When real-time computational speed is at a premium and the 
dataset has large number of features, mean imputation by class 
combined with a reduced-feature classifier (workflow B) may 
be worth investigating. However, the naïve Bayes classifier 
without imputation (workflow H) performed better than 

workflow B and had remarkably fast computation times. It may 
be the case that variants on the naïve Bayes approach, such as 
model averaged naïve Bayes [77], can provide an optimal 
solution in terms of both classification performance and 
computation time, especially when the number of features is 
large, and this will be investigated in future work.  

Our present study has several limitations and could be 
extended in several ways. So far, we have only used one dataset 
from a memory clinic. In future studies, different clinical 
datasets with different types of clinical features will need to be 
explored to validate our results. Moreover, we have only 
investigated limited types of extreme missingness. Future work 
will investigate cases with less, and different types of 
missingness. This may involve more sophisticated models to 
generate complex missingness structures (e.g. column-wise 
missingness relationships). We have also not completely 
evaluated other imputation methods, such as those using 
unsupervised learning with autoencoders [31]. Their 
performance should be compared with the methods used in our 
current study. Further, this work has not completely explored 
the impact of relationships between features on the imputation 
process, which we have examined in more detail in [78].  

In conclusion, we have suggested data imputation strategies 
for handling extreme missingness in both training and test data. 
Importantly, the strategies were proposed with practical 
applications in mind, especially for clinical decision support 
systems in dementia diagnosis. In terms of practical evaluation, 
we found that more complex and computationally costly 
methods did not offer significant advantage over more efficient 
methods.  
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