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Abstract 23 

Children are less susceptible to COVID-19 and manifests lower morbidity and mortality after 24 

infection, for which a multitude of mechanisms may be proposed. Whether the normal development 25 

of gut-airway microbiome is affected by COVID-19 has not been evaluated. We demonstrate that 26 

COVID-19 alters the respiratory and gut microbiome of children. Alteration of the microbiome was 27 

divergent between the respiratory tract and gut, albeit the dysbiosis was dominated by genus 28 

Pseudomonas and sustained for up to 25-58 days in different individuals. The respiratory microbiome 29 

distortion persisted in 7/8 children for at least 19-24 days after discharge from the hospital. The gut 30 

microbiota showed early dysbiosis towards later restoration in some children, but not others. 31 

Disturbed development of both gut and respiratory microbiomes, and prolonged respiratory dysbiosis 32 

in children imply possible long-term complications after clinical recovery from COVID-19, such as 33 

predisposition to an increased health risk in the post-COVID-19 era.  34 

 35 
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Introduction 37 

COVID-19 caused by SARS-CoV-2 has impacted millions of peoples in more than 200 countries 38 

around the world1,2. Compared with adults, children appear to be less susceptible to COVID-19 with 39 

extremely low morbidity and mortality3-5; and children with COVID-19 often have mild symptoms 40 

with a faster recovery, and better prognosis. The reasons for these are not entirely clear. Early-life 41 

development and maturation of human microbiomes shape health status in later life6-9, and delayed 42 

development or dysbiosis of the microbiomes during childhood has been linked to predisposition to 43 

various diseases in adulthood7-12. The effect of COVID-19 on the gut microbiome had just began to 44 

be evaluated in adults13,14, but never in children. We recently evaluated the longitudinal effects of 45 

COVID-19 on both the respiratory and gut microbiome in adults, and revealed that the respiratory 46 

and gut microbiome presented a contemporaneous change from early dysbiosis towards late 47 

incomplete restoration during the course of disease (Xu et al., unpublished observation). How 48 

COVID-19 impacts on the respiratory and gut microbiomes of children is not known. Here, we report 49 

temporal dynamics of respiratory and gut microbiome in children with COVID-19.   50 
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Results 51 

Study cohort 52 

Nine COVID-19 children between 7-139 months old were enrolled in this study together with 53 

14 age-matched healthy control children. A total of 103 specimens including 27 sets of paired 54 

specimens (at least two of throat swab, nasal swab and feces) were collected from children with 55 

COVID-19 (Supplementary Fig. 1). The children were being followed between 25-58 days after 56 

symptom onset. All samples were subjected to high-throughput sequencing of the V4-region of 57 

bacterial 16S rRNA gene (Methods).  58 

 59 

Respiratory and gut microbiome dynamics in COVID-19 60 

We analyzed the 16S-rRNA gene sequences of all specimens from three body sites, and obtained 61 

2,187 sub-OTUs (sOTUs) that represent 15 known phyla including 200 known genera 62 

(Supplementary Table 1). Using the DMM method (Supplementary method), we identified 8 63 

community types (Fig.1a). The specimens from healthy children clustered into two community types, 64 

one bears the signature of stool samples (H-GUT), and another represents the collection of all three 65 

kinds of samples (throat swab, nasal swab and feces) (H-MIX). H-GUT is significantly separated 66 

from H-MIX (Fig. 1b), with significantly lower richness and evenness (Fig.1c). H-GUT was featured 67 

by Moraxella, a commensal in nasal passages of infants, implying that it might not represent a normal 68 

gut microbiome status. Because the development of infant microbiome is influenced by maternal 69 

materials from multiple sites (stool, vaginal, oral and skin) among which bacteria from maternal gut 70 

being the most important contributor15, infants and children may share the same or very similar 71 

microbial community structures of the nasal cavity, throat and gut16,17. Therefore, H-MIX represents 72 
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the gut and respiratory tract microbiomes of healthy children. In fact, the nasal cavity, throat and gut 73 

still maintain similar microbial structures in adulthood. 74 

Bacteria from stool specimens of COVID-19 children fell into three distinct community types 75 

(COVID-GUT I-III), and those from nasal and throat swabs formed another three distinct types 76 

(COVID-TN I-III) (Fig. 1a). All COVID-19-related types are significantly separated from the type 77 

H-MIX except COVID-TN-I that overlaps with H-MIX (Fig. 1b). In particular, three respiratory tract-78 

related types and three GUT-related types of COVID-19 children are also significantly separated from 79 

each other, and distinctly different from healthy children. These results indicated that SARS-CoV-2 80 

infection significantly changed the gut and respiratory tract microbiota of children, and the separation 81 

of bacterial community structures between the gut and respiratory tracts suggested that the normal 82 

development of the microbiota may be impaired.   83 

All COVID-19-related types showed lower richness and evenness than H-MIX, except for 84 

COVID-GUT-I that has the most similarity to H-MIX and relatively normal microbiome structure. 85 

There was a gradual decrease from community type I to III for both gut and respiratory tract (Fig. 1c), 86 

indicating a progressive deterioration (dysbiosis) of the microbiome. Overall, the dysbiosis appeared 87 

to be more severe in the respiratory tract than in the gut.  88 

 89 

Indicator genera of eight DMM clusters 90 

To characterize eight microbial community types, we identified 35 indicator genera (Fig. 2a). 91 

The H-MIX type was characterized by 11 genera, and the predominant commensal bacteria contained 92 

Prevotella, Streptococcus, unclassified Pasteurellaceae, and Actinomyces (Fig. 2b). Some of the 93 

indicator bacteria in H-MIX were shared by the community types COVID-GUT-I (e.g. Prevotella, 94 
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Porphyromonas, Finegoldia, Anaerococcus, etc.) and COVID-TN-I (e.g. Prevotella, Neisseria, 95 

Fusobacterium, unclassified Pasteurellaceae, Leptotrichia etc.). As a dysbiosis status, community 96 

type COVID-GUT-III was dominated by Bacteroides, as well as Parasutterella that is associated with 97 

irritable bowel syndrome and other intestinal chronic inflammation18. Community type COVID-TN-98 

III was dominated by highly abundant Pseudomonas and Herbaspirillum, and it had higher levels of 99 

genera of Corynebacterium, Comamonadaceae, Burkholderia, Achromobacter, Brevundimonas, 100 

Ralstonia, Phyllobacterium, and Burkholderiales than other community types (Fig. 2b). Genus 101 

Pseudomonas is a notorious human pathogen associated with various diseases (e.g. pneumonia), and 102 

the samples were overwhelmed by the dominant species Pseudomonas veronii (100% sequence 103 

identity)19. Apart from COVID-TN-III, genus Pseudomonas also dominated community type 104 

COVID-TN-II with Streptococcus, and COVID-GUT-II with Bacteroides. Furthermore, 105 

Achromobacter and Burkholderia are associated with cystic fibrosis20,21, and most other genera are 106 

environmental bacteria. The predominance of Pseudomonas together with the colonization of various 107 

environmental bacteria in type COVID-TN-III imply an extreme dysbiosis in upper respiratory tract.  108 

 109 

The dynamic change of children during COVID-19  110 

Recently, we observed synchronous restoration of the microbiomes of both respiratory tract and 111 

the gut towards normal structure in COVID-19 adults within a short time (6-17 days) after symptom 112 

onset (Xu et al., unpublished observation). Distinct from adults, the microbiome community 113 

compositions were extremely dynamic in children during COVID-19, and the changes of the 114 

community types in the respiratory tract and gut were divergent (Fig. 3a). The respiratory (especially 115 

nasopharyngeal) microbiome of 7/8 children (except CV05) appeared to evolve from early healthy 116 
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(H-MIX) or high-diversity community structures (COVID-TN-I) to late low-diversity dysbiosis 117 

structure (COVID-TN-III), indicating a steady deterioration in composition and function of the 118 

respiratory microbiome despite a fast clinical recovery (Fig. 3a). Surprisingly, the respiratory 119 

dysbiosis was sustained at least 19-24 days after discharge (i.e., 42-58 days after symptom onset) in 120 

three children (CV01, CV02 and CV09). 121 

In contrast, the gut microbiome alternation varied greatly among these COVID-19 children.  122 

Improvement or restoration was observed in three children (CV01, CV02 and CV05), but a worsening 123 

trend of unstable bacterial genera occurred in another three children (CV03, CV04 and CV09) (Fig. 124 

3a). For example, the community type of CV09 improved from COVID-GUT-II to COVID-GUT-I 125 

on day 7 after symptom onset, but deteriorated to COVID-GUT-III on day 37. For CV03, whose 126 

microbiome got worse from a gut community type COVID-GUT-II on day 19 to a respiratory 127 

community type COVID-TN-III on day 27, and returned to COVID-GUT-II on day 43. The shift from 128 

a slightly dysbiosis gut community type to a severely dysbiosis respiratory community type implies 129 

microbial translocations from respiratory tract to gut. The restoration or worsening of the gut 130 

microbiome showed no association with clinical recovery (discharge from the hospital) or the 131 

presence or absence of SARS-CoV-2 RNA in the gut (Fig.3a).  132 

Our data clearly demonstrate a progressively worsening of microbiome in both the respiratory 133 

tract and gut of children during the course of COVID-19. The worsening was predominantly driven 134 

by Pseudomonas species P.veronii (Fig. 3b and Supplementary Fig. 2), which was the most prevalent 135 

Pseudomonas species identified, and had a relative abundance of over 20% in most COVID-19 136 

children. Genus Streptococcus (mainly S.mitis) also contributed to the worsening of the microbiome22. 137 

On the other hand, the presence of probiotic Bifidobacterium and the most important butyrate-138 
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producing bacteria Faecalibacterium were inversely correlated with the existence of Pseudomonas 139 

(Fig. 3b and Supplementary Fig. 2), despite these beneficial bacteria presented at a very low relative 140 

abundance and often decreased in late disease stage.  141 

 142 

Bacteria–bacteria co-occurrence networks 143 

The co-occurrence network analysis revealed significant microbial cross-talk among different 144 

body sites of children with COVID-19 (Fig. 4). There were three main co-occurrence networks 145 

identified. Positive co-occurrence relationships were observed within and between bacteria from the 146 

respiratory tract and the gut (FDR-adjusted P<0.001, Pearson correlation r > 0.4), indicating the 147 

presence of frequent bacterial cross-talk between different body sites. Similar to our observation in 148 

adults, the co-occurrence networks were relatively separated by different diversity-levels of 149 

community types, but not by body sites. For example, bacteria from the community type COVID-150 

TN-III are closely associated with those from COVID-TN-II and COVID-GUT-II (Fig. 4). In this 151 

network, Pseudomonas was positively correlated with some environmental bacteria. In another two 152 

networks, probiotic (e.g. Bifidobacterium and Faecalibacterium) were mainly correlated with 153 

commensals and community types H-MIX, COVID-GUT-I, COVID-TN-I and COVID-TN-II (Fig. 154 

4). Therefore, the community types are more representative of microbiome status.   155 
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Discussion 156 

SARS-CoV-2 infection causes damage to multiple organs either through direct infection, or 157 

indirectly disrupt host homeostasis, including perturbation of gut and respiratory microbiota in adults. 158 

Here, we report the first longitudinal investigation of microbiome with sampling from multiple 159 

anatomical sites of children with COVID-19, and present evidence that children have distinct 160 

differences compared to adults (Xu, unpublished observations), with respect to the dynamic changes 161 

of microbiota during the course of disease. The study of children is a significant feature because early-162 

life microbiome plays important roles in the development of host immunity, metabolism, and neural 163 

systems, affecting profoundly health status in later life7. The microbiome attains a relatively stable 164 

adult-like structure at the age 3 after a highly dynamic initial developmental (months 3-14) phase, a 165 

transitional (months 15-30) phase, and finally a stable phase (months 31-46)16. The development of 166 

infants’ microbiomes is more easily influenced by various internal (genetic) and external factors (e.g. 167 

birth mode, feeding type, siblings, antibiotics, and infection)7,9, and maternal gut strains provide the 168 

largest contribution to the microbiome composition15. Early-life microbiome disruption caused by 169 

antibiotics and malnutrition is associated with increased risk of health problems later in childhood 170 

and even adulthood, such as developmental retardation, allergic diseases, obesity, diabetes and 171 

immune dysfunction3-5,23,24.  172 

SARS-CoV-2 infection impaired the respiratory and gut microbiota in both adults and children, 173 

but the respiratory and gut microbiome of children and adults faced diverging fates (Supplementary 174 

Fig. 3). In some mild adult cases, the respiratory and gut microbiomes showed a synchronous 175 

restoration from early dysbiosis towards later near-normal structure within a short period (6-17 days), 176 

substantially earlier than their clinical recovery (Xu et al. unpublished observation). In children, 177 
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however, the dynamic changes of the microbiome were divergent between respiratory tract and gut, 178 

and the microbiome appeared to be progressively worsening, especially in the respiratory tract for a 179 

long period (25-52 days), substantially later than their clinical recovery (12-37 days) (Supplementary 180 

Fig. 3). In this cohort, six children were older than 3 years of age, and should have relatively stable 181 

adult-like microbiome. The dynamic characteristics of the microbiome during COVID-19 implied 182 

that children’s microbiome is still particularly vulnerable and less resilient than that of the adults even 183 

after attaining a stable phase7,9,16. Importantly, the persistent worsening of the microbiomes caused 184 

by COVID-19 might impart potential short-term and long-term health problems during childhood and 185 

adulthood.  186 

We and other have reported that altered respiratory microbiome with reduced bacterial diversity 187 

increased the susceptibility of children to acute respiratory tract infections (ARTIs)6,8,25-27. The 188 

impaired microbiome in children with COVID-19 is characterized by Pseudomonas-dominated 189 

community types that favor the colonization and growth of pathogenic and environmental bacteria, 190 

and a reduction of some beneficial commensals (Fig. 4). Probiotic (e.g. Bifidobacterium) and 191 

butyrate-producing bacteria (e.g. Faecalibacterium) that have anti-inflammatory ability were 192 

extensively depleted from the gut and respiratory microbiomes of the children especially at late stage 193 

of COVID-19 (Fig. 3b)28,29. Low abundance or lack of butyrate-producing bacteria might tolerate 194 

low-level inflammation induced by SARS-CoV-2, rendering children more vulnerable to ARTIs and 195 

diarrheal diseases8,9,30. In particular, the enrichment of genera Moraxella and Streptococcus in these 196 

COVID-19 children might predispose them to an increased risk of recurrent ARTIs6.  197 

To the best of our knowledge, this is the first report on the complex dynamics of the gut and 198 

respiratory microbiota in children with COVID-19. Disturbed development of both gut and 199 
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respiratory microbiomes, and prolonged respiratory dysbiosis caused by SARS-CoV-2 infection 200 

imply possible short-term and long-term complications after they have recovered from COVID-19, 201 

and predispose afflicted children to an increased health risk in later life. Although the long-term 202 

outcomes of COVID-19 on children need to be further studied with more extended follow-up and 203 

larger cohort, our data suggest that early implementation of various intervention strategies to 204 

modulate the microbiome development may provide clinical benefit to children in the post COVID-205 

19 era.  206 
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Figure legends 276 

Fig. 1. Dirichlet multinomial mixtures (DMM) clustering analyses of 16S rRNA data separate 277 

COVID-19 children into groups with distinctive features (N = 128). a. Eight distinct clusters were 278 

identified based on lowest Laplace approximation for control and patient samples from gut or nasal 279 

and throat cavities. Heat map showing the relative abundance of 40 most dominant bacterial genera 280 

per DMM cluster. The stars represent unclassified genera. H-GUT indicates abnormal gut microbial 281 

community structure of healthy children. H-MIX represents normal microbial community structure 282 

of a mixture of fecal, nasal and throat samples of healthy individuals. COVID-GUT Ⅰ-Ⅲ enriched in 283 

fecal samples of COVID-19 children; COVID-TN Ⅰ-Ⅲ enriched in both nasal and throat samples of 284 

COVID-19 children. b. Nonmetric multidimensional scaling (NMDS) visualization of DMM clusters 285 

using Bray-Curtis distance of bacterial genera. Significant separation of microbial community 286 

structures was implicated by the ANOSIM statistic R closer to 1 with < 0.05 P value. The stress value 287 

lower than 0.2 provides a good representation in reduced dimensions. c. Box plots showing the alpha 288 

diversity (richness and evenness) per each DMM cluster. Wilcoxon test was used to compare 289 

difference of H-MIX cluster and others under three significance levels of * P < 0.05, **P<0.01, and 290 

***P<0.001. 291 

 292 

Fig. 2. Identification (a) and relative abundance distribution (b) of indicator genera of eight 293 

DMM clusters. Indicators of eight microbial community types (DMM clusters) were identified from 294 

top 40 genus contributing to DMM clustering in Fig.1a (See Supplementary Methods). Twenty-one 295 

indicator genera are shared by two or more community types with similar diversity levels (e.g. II-III, 296 

or I-H-MIX). Significance levels of indicators are as follows: * P <0.05, ** P <0.01, and *** P < 297 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.13.20152181doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.13.20152181
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

0.001. 298 

 299 

Fig. 3. Dynamic change of both DMM clusters (a) and six key taxa (b) in three body sites of 300 

COVID-19 children. Age (months) of each COVID-19 child was shown in brackets. The community 301 

type levels were divergent between respiratory tract and gut (e.g. on days 11, 15 and 23 in CV04, and 302 

days 16 and 42 in CV09). The respiratory microbiome appeared to be progressively worsening in 303 

seven children (CV01-CV04 and CV07-CV09) for 25-42 days after symptom onset. The worsening 304 

of the gut microbiome appeared in four children (CV03, CV04, CV07 and CV09), and sustained for 305 

25-52 days. b, key taxa of DMM clusters were shown in eight COVID-19 children with at least two 306 

time points of sampling. Linked to Supplementary Fig.2.  307 

 308 

Fig. 4. Co-occurrence network of gut, nasal and throat microbiotas in the progression of 309 

COVID-19 children. Positively correlated microbial pairs with both Pearson correlation r values 310 

higher than 0.4 and FDR-adjusted P values lower than 0.001 were shown.  311 
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Method 312 

Study population 313 

Nine children were diagnosed as COVID-19 patients by Children's Hospital of Fudan University 314 

according to the National Guidelines for Diagnosis and Treatment of COVID-19. A total of 103 315 

samples, including 31 nasal swabs, 28 throat swabs and 44 feces, were collected from these patients 316 

(Supplementary Fig. S1). Twenty-five samples from 14 age-matched healthy children were used as 317 

controls. The respiratory samples were collected using flexible, sterile, dry swabs, which can reach 318 

the posterior nasopharynx and oropharynx easily (approximately 2 inches). About 2 ml spontaneous, 319 

unstimulated fecal specimen (300 mg/tube) was collected into a sterile cryogenic vial (Corning, NY, 320 

USA), divided into aliquots and stored at –80 °C until use. The sampling was performed by the 321 

professionals at the hospital.  322 

The study was approved by Children’s Hospital of Fudan University (2020-27). Informed consents 323 

were obtained from involved patients or their guardians.  324 

 325 

Confirmation of COVID-19 children 326 

The clinical and epidemiological characteristics, and SARS-CoV-2 RNA shedding patterns of these 327 

patients were previously reported31,32. All nine COVID-19 children had mild symptoms. The virus 328 

RNA was extracted from all samples using a Mag-Bind RNA Extraction Kit (MACCURA, Sichuan, 329 

China) according to the manufacturer’s instructions. The ORFlab and N genes of SARS-CoV-2 was 330 

detected using a Novel Coronavirus (2019-nCoV) RNA detection Kit (PCR-Fluorescence Probing) 331 

(DAAN gene, Guangzhou, China) according to the manufacturer’s instructions. 332 

 333 
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16S rRNA gene sequencing 334 

All samples including nasal swabs, throat swabs and stool samples were subjected to the DNA 335 

extraction using a QIAamp DNA Microbiome Kit (QIAGEN, Düsseldorf, Germany). A novel triple-336 

index amplicon sequencing strategy was used for 16S rRNA gene sequencing33. In brief, a set of 337 

universal bacterial primers was used to amplify the V4 hypervariable region (515-806 nt) of the 16S 338 

rRNA gene. Two rounds of PCR amplifications were performed 34. A reaction mixture containing 8 339 

μL Nuclease-free water, 0.5 μL KOD-Plus-Neo (TOYOBO, Osaka Boseki, Japan), 2.5 μL of 1 μM 340 

PCR1 forward primer, 2.5 μL of 1 μM PCR1 reverse primer, and 5 μL DNA template was prepared 341 

for the first round of the PCR (PCR1) amplification. PCR1 products were purified using Monarch 342 

DNA Gel Extraction Kit (New England Biolabs, Ipswich, MA, USA), and quantified by a Qubit® 343 

4.0 Fluorometer (Invitrogen, Carlsbad, CA, USA). Purified PCR1 products were pooled with equal 344 

amounts, and then subjected to the secondary round of PCR (PCR2) amplification. The PCR2 mix 345 

contains 21 μL Nuclease-free water, 1 μL KOD-Plus-Neo (TOYOBO, Osaka Boseki, Japan), 5 μL of 346 

1 μM PCR2 forward primer, 5 μL of 1 μM PCR2 reverse primer, and 5 μL pooled PCR1 products. 347 

The PCR2 products were purified using the same Gel Extraction Kit and qualified using the Qubit® 348 

4.0 Fluorometer. The specific products were further qualified using Agilent 2100 Bioanalyzer 349 

(Agilent, Santa Clara, CA, USA). The PCR2 products with equal moles of specific products were 350 

pooled and mixed them with AMPure XP beads (Beckman Coulter, Pasadena, CA, USA) in a ratio of 351 

0.8:1. After purification, the amplicons were paired-end sequenced (2x250) using Illumina-P250 352 

sequencer. 353 

 354 

Bioinformatic analysis of 16S rRNA gene sequence data  355 
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Using USEARCH11 software35 and FASTX-Toolkit36, sequenced reads were merged, de-multiplexed 356 

and filtered. After trimming barcode, adapter and primer sequences using USEARCH11, 14,702, 896 357 

sequences were retained with an average of 100019 sequences per sample. Based on the Qiime2 358 

platform37, the Deblur38 was used to cluster sequence data into sub-OTUs (operational taxonomic 359 

units), better than traditional OTU picking usually according to 97% sequence similarity threshold 360 

which may miss subtle and real biological sequence variation39. In particular, we used the Deblur to 361 

perform quality control, dereplicate, chimeras remove on with default settings except for truncating 362 

sequence length to 250bp. A sub-OTU (sOTU) count table, equivalent to OTU table, was generated 363 

(2187 sOTUs). The taxonomic classification of sOTU representative sequences was assigned by using 364 

the RDP Naive Bayesian Classifier algorithm40 based on the Ribosomal Database project (RDP) 16S 365 

rRNA training set (v16) database41. Finally, the sOTU table were subsampled at an even depth of 366 

3600 sequences per sample to eliminate the bias led by different sequencing depths among samples. 367 

The sOTU coverage of 87% was sufficient to capture microbial diversity. 368 

 369 

Identification and characteristics of microbial community types   370 

Based on the bacterial genus abundance, we used the Dirichlet multinomial mixtures (DMM)42 371 

algorithm introduced by mothur43 v1.44.1 to identify microbial community types because the DMM 372 

algorithm could efficiently cluster samples based on microbial composition, whose sensitivity, 373 

reliability and accuracy were widely confirmed in many microbiome studies16,44,45. Based on the 374 

lowest Laplace approximation index, the appropriate microbial community type numbers (DMM 375 

clusters) were determined. Conjugated with the Analysis of Similarities (ANOSIM), the reliability of 376 

DMM clustering was further validated and then visualized by the Non-metric multidimensional 377 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.13.20152181doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.13.20152181
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

scaling (NMDS) based on the Bray-Curtis distance under bacterial genus level. “The ANOSIM 378 

statistic “R” compares the mean of ranked dissimilarities between groups to the mean of ranked 379 

dissimilarities within groups. An R value close to “1.0” suggests dissimilarity between groups while 380 

an R value close to “0” suggests an even distribution of high and low ranks within and between 381 

groups46. ANOSIM p values lower than 0.05 suggest the higher similarity within sites. Richness 382 

(Observed sOTUs) and Pielou's or Species evenness for each community type were calculated for 383 

estimating the difference of alpha diversity. Those analyses described above were performed using R 384 

package “vegan” v2.5-6. Using R package ‘Pheatmap’, the dynamic change of microbial community 385 

types and compositions were visualized. Alpha diversity difference between groups were measured 386 

using the Wilcoxon Rank Sum Test in R. 387 

 388 

Identification of indicator taxa contributing to microbial community typing 389 

To get the reliable indicator genus for community typing, we performed the Indicator Species 390 

Analysis using the indicspecies package (ver.1.7.8) 47 in R platform with top 40 genus contributing 391 

to DMM clustering that accounted for 71% cumulative difference. Dynamic changes of indicator 392 

genera corresponding to each community type were showed in all COVID-19 children using the 393 

pheatmap package in R. 394 

 395 

Co-occurrence network analysis of microbiomes among gut, nasal, and throat of COVID-19 396 

children 397 

Based on microbial genus abundances of gut, nasal, and throat samples collected from 8 COVID-19 398 

children, we calculated the Pearson Correlation Coefficient (Pearson’s r) among bacterial genera of 399 
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three body sites. The Pearson’s r higher than 0.4 or lower than -0.4 with P values that were below 400 

0.05 after the FDR adjustment were considered significant correlation. Co-occurrence network of 401 

significantly correlated bacterial genus pairs was visualized using Cytoscape v3.8.048. 402 

 403 

Data availability 404 

The raw data of 16S rRNA gene sequences are available at NCBI Sequence Read Archive (SRA) 405 

(https://www.ncbi.nlm.nih.gov/sra/) at BioProject ID PRJNA642019. 406 
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Supplementary Table S1. Fecal, nasal, and throat microbial abundances (phyla and genera). 463 

The stars represent unclassified genera. 464 

Supplementary Fig. S1. COIVD-19 patient admission and discharge times as well as the 465 

detection of SARS-CoV-2. DAY 1 was the day of symptom onset. 466 

Supplementary Fig. S2. Dynamic change of 26 indicator genera in three body sites of nine 467 

COVID-19 children. Linked to Fig.2a and Fig.3b. The stars represent unclassified genera. 468 

Supplementary Fig. S3. Distinct gut and respiratory microbiome mechanisms associated with 469 

the progress of COVID-19 in adults and children. The dynamic mechanism of the microbiome in 470 

adults was interpreted from our recent observation based on the longitudinal throat and anal swabs 471 

from 35 adults with COVID-19 (Xu et al. unpublished data). Similar community types from I to III/IV 472 

indicate a progressive dysbiosis of the microbiome. In mild adults with COVID-19, a synchronous 473 

shift of community type from early dysbiosis towards late incomplete restoration was found in both 474 

respiratory and gut microbiomes within a short time. In children, however, the changes of the 475 

community types were divergent between the respiratory tract and gut, possibly implying that the 476 

“airway-gut axis” is still not established during the childhood. Moreover, children’s respiratory 477 

microbiome appeared to be progressively worsening for a long period despite a fast clinical recovery.  478 
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Fig.4

COVID−GUT−I COVID−GUT−II
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