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ABSTRACT

The Distributed Logistic Model and the Adaptive Logistic Model of epi-

demics are formulated and used to study the course of cases and deaths during

the COVID-19 pandemic. The distributed model is designed to account for a

spread of initiation times of hot spots across a country; it does especially well

at capturing the initial and linear phases of epidemics. The adaptive model

accounts for the development of social mitigation factors, and does especially

well at capturing the declining phases of epidemics. The historical data for the

U.S., Italy, and the U.K. are analyzed in detail. The parameters of the fits

to the two models provide complementary information about the pandemic.

The initial infection rate constant was r0 ≃ 0.29 day−1 for each country, and

the effective infection rate constants evolved with time in essentially the same

way for each. This suggests that mitigation effects were equally effective in

all three countries. Analysis with the distributed model suggests that it took

somewhat different times T for the epidemic to spread across each country,

with T (US)≃ 50 days significantly greater than the T ’s of Italy or the U.K.

The mortality ratio in the U.S. was about 0.061 while in Italy and U.K. it was

much larger at about 0.15.
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1. Introduction

Currently a pandemic of the novel coronavirus (SARS-CoV-2) is overspreading the

world. The United States has been particularly impacted by the disease it causes, COVID-

19. Epidemiologists have worked to describe adequately this pandemic and to predict its

future course. This is a complex undertaking, involving the mathematics of epidemiology

and a vast amount of uncertain data that serve as input to the models (see, for example,

CCD 2020; Fivethirtyeight 2020).

This paper derives two new epidemiological models, the Distributed Logistic Model and

the Adaptive Logistic Model, and uses them to study the course of the COVID-19 pandemic

in the U.S., Italy, and the U.K. The goal of each model is to extract different information

about the progress of each epidemic; they are not merely ad hoc parameterizations designed

to fit the data.

The plan of this paper is as follows: Section 2 reviews standard epidemiological ap-

proaches to the study of the COVID-19 pandemic, section 3 introduces the basic logistic

model, section 4 derives the Distributed Logistic Model, section 5 derives the Adaptive

Logistic Model, section 6 uses these two models to extract new information about each

epidemic, and section 7 discusses the results.

2. Approaches to the Study of Epidemics

2.1. The SIR and Other Models for Epidemics

The study of the spread of disease through a population is a highly mathematical en-

terprise involving the solution of multiple coupled ordinary differential equations (see, for

example, Hethcote 2000). The fundamental set of equations are the Susceptible-Infected-

Recovered/Removed (“SIR”) equations (Kermack & McKendrick 1927) and their exten-

sions and generalizations (Hethcote 2000 and references therein). These equations describe

the flow of individuals among three or more classes using a series of coupled rate equations.

In some cases (Lavrova et al. 2017) they can be reduced to the single logistic differential

equation (Verhulst (1838), Equation 1 below).
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2.2. Applications of the SIR Equations to the 2020 COVID-19 Pandemic

Numerous authors have applied the SIR equations or their generalizations to the study

of the 2020 COVID-19 pandemic. Huang et al. (2020) used the standard SIR model to

examine the COVID-19 pandemic in China, Bulgaria, Costa Rica, Faroe Islands, French

Guiana, Maldives, Malta, Martinique, and Republic of Moldova. Chen et al. (2020) used a

time-dependent SIR model to study the outbreaks in China, South Korea, Italy, and Iran.

They concluded that various approaches to social distancing could lead to a reduction

in the basic reproductive number R0. Zhao and Chen (2020) applied a Susceptible, Un-

quarantined infected, Quarantined infected, Confirmed infected (SUQC) model to study

several cities and regions of China. They extracted the reproductive numbers R and other

parameters, and predicted the course of the epidemics. Wangping et al. (2020) used an

extended susceptible-infected-removed (eSIR) model to study the epidemic in Italy and

compare it to that in China.

The American Hospital Association keeps an updated compendium of the models

being used to track the COVID-19 pandemic (AHA 2020), as does the Centers for Disease

Control and Prevention (CDC 2020). Among the goals of these studies has been to predict

the future course of the pandemic. The results have varied widely, and have not engendered

a great deal of confidence in this enterprise (e.g., Best & Boice (2020), CDC (2020)).

2.3. Applications of the Logistic Equation and Its Generalizations

Other authors have used the logistic equation (Equation 1 below) or its generalizations

to analyze the epidemics in various countries. Shen (2020) used the logistic equation

to study the outbreaks in ten Chinese municipalities and nine western countries. They

concluded that there is potential for this model to contribute to better public health policy

in combatting COVID-19. This study also outlined certain challenges in modeling and

their implications for the results. Chen, Chen, & Chen (2020) studied the epidemic in the

United States using a five-parameter logistic model,

C(t) = Cmin +
Cmax − Cmin

[

1 + e−r(t−tmin)
]α ,

where C(t) is the population of infected individuals. This is a generalization of the solution

to the logistic equation given in Equation 2 below. Here tmin and α are ad hoc parameters.

These authors demonstrated the ability of this model to fit the U.S data. Wu et al. (2020)
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studied China and eight European countries using either a generalized logistic model

dC(t)

dt
= rC(t)p

(

1−
C(t)

K

)

or a generalized Richards model

dC(t)

dt
= rC(t)p

(

1−

(

C(t)

K

)α)

.

Here p and α are again ad hoc parameters; while they can be optimized to produce excellent

fits to the data, and thus to forecast the future, they cannot be interpreted physically.

Batista (2020) used the logistic growth model for estimation of the final sizes and peak

times of the coronavirus epidemic in China, South Korea, and the rest of the world.

Except for Wu et al. (2020), these models provided only modestly good fits to the

data. In no case could the added parameters be interpreted physically. The sections below

show how this situation can be improved by two well motivated modifications of the logistic

equation.

2.4. Approach in This Paper

The current paper takes a different tack toward providing a mathematical description

of epidemics. The procedure will be to make two separate modifications to the logistic

equation, changes that represent two effects that are neglected in derivation of the basic

logistic equation. The goal is to use the data to determine the values of the new parameters

that are introduced, and then to interpret them in terms of the course of the spread of the

disease and of the response of humanity to the pandemic.

The history of the epidemic in each country is encapsulated in a time series of cases

of infections and a time series of deaths. The sections below analyze these data using

the basic logistic equation and the two modifications. The reader should note that the

author is a physicist not an epidemiologist, and that his approach will be intrinsically that

of his discipline. However, the results of the analyses will be connected to the real world

environment of the pandemic.
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3. Basic Logistic Model

3.1. Derivation

The simplest model for the evolution of an epidemic is based on the logistic differential

equation. This describes an epidemic that begins with a small number f0 of infected

individuals at a single time and place, and subsequently spreads through a population.

The motivation for this model is as follows. If the population of infected individuals (i.e.,

the total number of cases of disease) as a function of time is f(t), simple exponential growth

with growth rate constant r is determined by the differential equation

df

dt
= rf,

with the growing exponential solution

f(t) = f0e
rt,

where f0 = f(0). That is what happens with an unlimited pool of subjects. However, for

a finite number of subjects K, as the population of infected individuals grows the number

of subjects available to be infected is reduced by the factor (1 − f/K); taking this into

account leads to the logistic differential equation,2

df

dt
= r

(

1−
f

K

)

f. (1)

The solution of this equation is well known to be

f(t) =
Kf0e

rt

K + f0(ert − 1)
, (2)

which satisfies the conditions f(0) = f0 and f(∞) = K. The time course described by

Eqn. 2 is the familiar S curve used to describe bacterial growth and other rate limited

phenomena (see Fig. 1 for examples). The history of the total number of cases of disease

can be fitted by this equation to determine the parameters r and K, each of which has

a well-defined meaning. In particular, K represents a prediction of the endpoint of the

epidemic.

An analysis of the total number of cases as a function of time with f(t) is not the only

way to compare model and data. Instead one can examine the number of new cases per

2This is a version of the Bernoulli differential equation f ′ = f(1− f).
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day as a function of time;3 in the model this is the time derivative of f(t). This is found

as a function of time by substituting Eqn. 2 into Eqn. 1, giving

df

dt
= f0Krert

[

K − f0
((ert − 1)f0 +K)2

]

. (3)

In either case, for the logistic model the three parameters to be adjusted are f0, K, and

r. For this basic logistic model the total counts and the daily counts are fit independently.

The fits to the U.S. data on number of cases and number of deaths4 are shown in Fig. 1.

The basic logistic model will be referred to as the BLM.

Fig. 1.— BLM fits to (A) total cases, (B) daily cases, (C) total deaths, and (D) daily

deaths in the U.S. The points are the data and the curves are the fits to Eqns. 2 & 3

3Fitting the daily numbers is statistically the preferred procedure as the data points are independent,

unlike those for daily totals. Where there are results from fitting total data and from fitting daily data, the

latter will be adopted.

4The use of the logistic equation to fit the data on deaths is justified in below.
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4. The Distributed Logistic Model

4.1. Derivation

In reality the COVID-19 epidemic in the US is a series of epidemics centered at various

places distributed across the country and beginning over a range of times. This can be

accounted for this by averaging a series of logistic distributions over a range of starting

times ti spanning a total time T ; the appropriate function to be averaged is

f(t, ti) =
Kf0e

r(t−ti)

K + f0(er(t−ti) − 1)
. (4)

To account for a total range of time T over which the various hot spots of the epidemic

are distributed, one integrates Eqn. 4 over 0 ≤ ti ≤ T and divides by T . The result is the

distributed logistic function

g(t) =
K

rT
ln

[

(ert − 1)f0 +K

(er(t−T ) − 1)f0 +K

]

. (5)

Note that

g(∞) = K.

The differential distribution is derived from Eqn. 5,

dg

dt
=

f0(K − f0)K

T

(

ert − er(t−T )
)

(−f0 + ertf0 +K)
(

−f0 + er(t−T )f0 +K
) , (6)

and is used to model the daily data. For the Distributed Logistic Model the four parameters

to be adjusted are f0, K, r, and T ; the total number and the daily numbers are fit

independently. The fits to the U.S. data on cases of disease and on deaths are shown in

Fig. 3 below. The Distributed Logistic Model will be referred to as the DLM.5

5. The Adaptive Logistic Model

5.1. Derivation

During the course of the COVID-19 pandemic, countries across the world introduced a

number of measures to reduce the spread of the disease, including quarantining, masking,

5The DLM was introduced by Roberts (2020) who analyzed only U.S. cases.
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social distancing, and contact tracing and isolating. As the pandemic progressed these

measures tended to become more effective. Their effect was to make the average infected

individual progressively less likely to infect another person. A factor that reduces the

probability of transmission as the pandemic progresses can be introduced into Eqn. 1 to

account for this effect. A simple way to do this is to modify the infection rate constant r by a

function that decreases as the infected population increases. After some experimentation,6

the function S/(S+g) = 1/(1+g/S), where S is a dimensionless parameter to be determined

from the data, was chosen, leading to the adaptive logistic equation7

dg

dt
=

(

r0
1 + g/S

)

g
(

1−
g

K

)

. (7)

Here r0 is the infection rate constant at the beginning of the epidemic (g ≪ S). When g

reaches S the initial infection rate constant is halved, so in that sense S is its half-life. The

function

reff =
r0

1 + g/S
(8)

will be referred to as the effective infection rate constant; as the population g increases reff
decreases, so reff is a function of time. The Adaptive Logistic Model fits to the U.S. data

are shown in Fig. 4. The Adaptive Logistic Model will be referred to as the ALM.

5.2. Method of Solution

For the BLM and the DLM the parameters were estimated from the data by use of

non-linear least squares minimization of the differences between the data and the prediction

of Eq. 1, 3, 5, or 6 using the NMinimize function in MathematicaTM. A closed form

solution to Eqn. 7 could not be found, so it was solved and fit to the data numerically.

This was done with MathematicaTM code whose key parts are shown in Fig. 2. In this

example, the matrix CovidTotalCases contains the data.8 To determine the predicted

distributions of the number of daily cases or deaths one takes the numerical derivatives

of the fits to g(t). It must be emphasized that this does not fit the daily numbers, it

6Models where the function is of the form e−g/S or e−t/τ , where τ is a characteristic time, were also

explored, as were hybrid models that included both factors. None of these provided fits to the data as close

as the choice 1/(1 + g/S), so it was used in Eqn. 7.

7Eqn. 7 is so named because it models a population’s adaptation to the disease.

8A complete Mathematica
TM notebook that performs the solution is available from the author.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.13.20152686doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.13.20152686
http://creativecommons.org/licenses/by-nc-nd/4.0/


– 9 –

merely compares them with the expectations derived from the fits to the total numbers.9

The Adaptive Logistic Model fits to the U.S. data are shown in Figure 4. The Adaptive

Logistic Model will be referred to as the ALM.

Fig. 2.— MathematicaTM code for optimization of a theoretical expression that can only

be determined by numerical solution of a differential equation.

6. The Analyses of the Pandemic

The logistic equations are intended to describe the time behavior of the number of

cases of disease. However, if the mortality ratio is roughly time independent for a given

country, the same functions will describe the history of deaths;10 thus both cases and deaths

are analyzed using Equations 2, 3, 5, 6, & 7. The BLM was applied only to the U.S. data.

The data were taken from ECDPC (2020); they span January 31, 2019 through June

22, 2020 (174 days).

6.1. The Epidemic in the United States

Figures 1, 3, & 4 shows the fits of the BLM, the DLM, and the ALM to the histories

of cases and deaths in the U.S. The parameters of the fits to the DLM and the ALM are

displayed in Tables 1 & 2.

9Eqn. 7 cannot be used to fit directly the daily numbers.

10Section 7.2 below shows that the mortality ratio evolves only slightly through each epidemic.
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Fig. 3.— DLM fits to (A) total cases, (B) daily cases, (C) total deaths, and (D) daily

deaths in U.S. The points are the data and the curves are the fits to Eqns. 5 & 6.
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Fig. 4.— ALM fits to (A) total cases, (B) daily cases, (C) total deaths, and (D) daily

deaths in the U.S. The points are the data, the total numbers curves are the fits to Eqn. 7,

whereas the daily numbers curves are their derivatives.
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6.2. Comparison of the Models

Figures 1, 3, & 4 show the fits of the three logistic models to the same four U.S. data

sets. It is apparent from these figures that the BLM does poorly at fitting any of the data

sets, and it will not be considered further.11 It is for this reason that the other two models

were derived; the motivations for their specific forms are given with their derivations. Now

the question is, which of these two new models provides a superior representative of the

data? Figure 5 is a comparison of the DLM and ALM fits to the daily U.S. cases data. Both

models are successful at fitting the exponential rise and subsequent linear phase, while the

ADM is more successful at fitting the declining phase of the epidemic. The parameter T

in the DLM tells us the length of time it has taken the epidemic to spread across each

country, while the parameter S in the ALM contains information on the time history of

the effective infection rate constant.

Two measures of the qualities of the fits are shown in Tables 1 & 2, the scaled12 root-

mean-squared deviation for the daily data (RMSdaily) and the scaled chi-squared per degree

of freedom13 for the daily data (χ2/d.o.f.). Which model provides us with better under-

standing of epidemics? Overall, the values of the scaled RMS’s and the scaled (χ2/d.o.f)’s

in Tables 1 & 2 suggest that the ALM is superior. However, examination of the figures

shows that these differences are largely due to the declining phases of the daily curves, and

that the DLM provides a good fit to the initial rises and the linear phases of the curves.

Thus the DLM will be used to estimate the parameter T and the ALM to determine the

parameter S (see §7).

The next two sections show the cases and deaths data for Italy and the U.K., and

display the best fits to the DLM and the ALM for each data set.

11The values of the infection rate constant r derived from the BLM will be used to compare to the results

from the DLM and the ALM.

12To account for the larger numbers of cases than deaths, the values for the cases data were scaled by

the mean mortality ratio to compare them with the results for the death data.

13Poisson statistics were used for the uncertainties of each datum, where σ2

i = gi, where gi is the model

prediction for the ith datum. This leads to χ2 per degree of freedom greatly in excess of unity, suggesting

that this estimate for σi is significantly too small. Although these statistics cannot be used to determine a

goodness of fit, they can be used to compare qualitatively the fits for different models and data sets.
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Fig. 5.— Comparison of the DLM & ALM fits to daily cases data in the U.S. The points

are the data, the fit to the DLM is the dashed blue curve, and the fit to the ALM is the

black curve.
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6.3. The Epidemic in Italy

Figures 6 & 7 show the fits of the DLM and the ALM to the histories of cases and

deaths in Italy. The parameters of the fits are displayed in Tables 1 & 2.

Fig. 6.— DLM fits to (A) total cases, (B) daily cases, (C) total deaths, and (D) daily

deaths in Italy. The points are the data and the curves are the fits to Eqns. 5 & 6.
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Fig. 7.— ALM fits to (A) total cases, (B) daily cases, (C) total deaths, and (D) daily

deaths in Italy. The points are the data, the total numbers curves are the fits to Eqn. 7,

whereas the daily numbers curves are their derivatives.
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6.4. The Epidemic in the United Kingdom

Figures 8 & 9 show the fits of the DLM and the ALM to the histories of cases and

deaths in the U.K. The parameters of the fits are displayed in Tables 1 & 2.

Fig. 8.— DLM fits to (A) total cases, (B) daily cases, (C) total deaths, and (D) daily

deaths in the U.K. The points are the data and the curves are the fits to Eqns. 5 & 6.
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Fig. 9.— ALM fits to (A) total cases, (B) daily cases, (C) total deaths, and (D) daily

deaths in the U.K. The points are the data, the total numbers curves are the fits to Eqn. 7,

whereas the daily numbers curves are their derivatives.
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Table 1. Parameters of the Distributed Logistic Model Fits

Parameter U.S. Cases U.S. Deaths Italy Cases Italy Deaths U.K. Cases U.K. Deaths

Ndata points 174 174 174 174 174 174

Ntot 2,255,119 119,719 238,275 34,610 303,110 42,589

Ka 2.6× 106 1.2× 105 2.3× 105 3.3× 104 3.0× 105 4.0× 104

r (day−1)a 0.278 0.106 0.101 0.116 0.113 0.100

T (days)a 103. 51. 35. 37. 53. 29.

M (Mortality Ratio)b . . . 0.0531 . . . 0.145 . . . 0.141

RMSdaily 4600. 430. 590. 85. 680. 150.

RMSdaily ×M c 240. . . . 41. . . . 96. . . .

χ2
daily/d.o.f. 1300. 230. 4450. 170. 370. 130.

χ2
daily/d.o.f.×M c 73. . . . 65. . . . 14. . . .

aThese entries were determined from the daily distributions.

bTotal deaths divided by total cases.

cScaled by mean mortality ratio to compare cases data with deaths data.

Table 2. Parameters of the Adaptive Logistic Model Fits

Parameter U.S. Cases U.S. Deaths Italy Cases Italy Deaths U.K. Cases U.K. Deaths

Ndata points 174 174 174 174 174 174

Ntot 2,255,119 119,719 238,275 34,610 303,110 42,589

K 4.47× 106 1.40× 105 2.42× 104 3.56× 104 3.34× 105 4.53× 104

r0 (day−1) 0.391 0.287 0.232 0.284 0.178 0.288

S 9.69× 104 1.53× 104 6.11× 104 6.04× 103 8.05× 104 6.65× 103

M (Mortality Ratio)a . . . 0.0531 . . . 0.145 . . . 0.141

RMSdaily 3500. 340. 330. 1900. 560. 190.

RMSdaily ×M b 180. . . . 48. . . . 79. . . .

χ2
daily/d.o.f. 2.0× 104 69. 46. 8300. 91. 28.

χ2
daily/d.o.f.)×M b 1.0× 103 . . . 7.0 . . . 13. . . .

aTotal deaths divided by total cases.

bScaled by mean mortality ratio to compare cases data with deaths data.
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7. Discussion

7.1. The History of Cases Versus that of Deaths

The history of testing in the U.S. is such that early on in the epidemic cases were

recognized only when people exhibiting symptoms were tested, but as testing became more

widespread, cases were discovered in asymptomatic individuals. This has the effect of

increasing the number of cases as the epidemic proceeds. The same is not true for deaths,

so one expects deaths to provide a more accurate measure of the history of the epidemic.

Indeed, examination of Figures 4, 7 & 9 shows a faster decline in the number of deaths

than in the number of cases, as expected from this argument. The parameters derived from

the deaths data will be adopted in the analysis below.

7.2. The Mortality Ratios and Infection Delays

It is interesting to learn if and how the mortality ratio M evolved during the epidemics

in each country. One analysis found the best single M and time shift ∆t for each country

by shifting and scaling the raw daily cases and comparing the results to the deaths data; it

found M and ∆t by minimizing the summed squares of their differences. Fig. 10 shows the

shifted and scaled data, and the best fit parameters M and ∆t are in Table 3. The ratio

M was found to be significantly lower in the U.S. than in Italy or the U.K. The delays

between the cases and deaths curves were about 6 days for the U.S. and Italy, but zero

for the U.K. (which we do not understand). The delays presumably represents the average

course of the disease for each fatality, confounded by differences in reporting of the two

phenomena.

Second, Fig. 11 shows the instantaneous mortality ratios calculated by dividing the

deaths by cases (shifted by ∆t); it also shows the mean mortality ratios M just determined.

A general trend is that the mortality ratios vary slowly with time in each country.

7.3. Comparison of Parameters in Common in DLM and ALM

1. For Italy and the U.K., in both the DLM and the ALM the K’s closely equal the

total numbers Ntot (sizes of the data sets). However for the U.S. K is significantly

larger than Ntot, suggesting that the epidemic has more time to run.

2. For each model the initial infection rate constants are comparable in the three coun-
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Fig. 10.— Deaths (black circles) and scaled cases (red squares) in (A) the U.S., (C) Italy,

and (E) the U.K. Deaths (black circles) and scaled and shifted cases (red squares) in (B)

the U.S., (D) Italy, and (F) the U.K. These should be compared with Figs. 4, 7, & 9.
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Fig. 11.— Day by day mortality ratios (points) and mean mortality ratio (black line) in

(A) the U.S., (B) Italy, and (C) the U.K. (using seven day running means).
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tries, and they are different for the DLM (0.11) and ALM (0.29). This difference is

because r and r0 have different meanings in the DLM and the ALM.

3. It is important to realize that the parameter r, the infection rate constant in the

BLM and DLM, is distinct from the initial infection rate constant r0 of the ALM.

While r is truly a constant, r0 is the infection rate constant only at the outset of

the epidemic; it is the effective infection rate constant reff that determines the rate

dg/dt at any later time. Eqn. 8 shows how this goes, and it’s illustrated in Fig. 12,

which compares the effective values reff(t) along with the values of r from the BLM

(Table 4) for each country. Since the way reff varies with time depends on the value

of S, which is different for each country, a simple comparison of r0’s across countries

would be misleading. The correct treatment is to compare plots of reff(t) as each

epidemic unfolds, as shown in Fig. 12. From these plots one can conclude that the

effective infection rate constants for all three countries are essentially identical for

given times after the onset of each epidemic.

4. As discussed above, one expects the behavior of the numbers of deaths with time to

more accurately reflect the course of the epidemics than does the behavior of cases.

Because the fits to the ALM are systematically superior to those to the DLM, the

ALM values were adopted in each case when they were available. With these things

in mind, Table 4 presents the best estimates of the properties of the epidemics, listed

by country.

8. Results

A summary of the results of this paper is:

1. Models with fixed infection rate constants r (the BLM and DLM) do not provide

Table 3. Mortality Ratios and Time Delays

Parameter U.S. Italy U.K.

Ndeaths/Ncases 0.0531 0.145 0.141

Mortality ratio M 0.061 0.15 0.15

Delay ∆t (days) 7 6 0
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Fig. 12.— Time behavior for the effective infection rate constant in the ALM as a function

of the number of days since the onset of each epidemic, for the U.S (red curves), Italy

(black curves), and the U.K. (dashed blue curves). The horizontal lines are r’s derived

using the BLM and the daily deaths data.
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good representations of the full course of the epidemic in any country.

2. Comparing Figs. 1 and 2, one can see the effect of adding the time smoothing param-

eter T on the DLM curves. The result fits much better the widths of the data history,

and better fits the rise of the epidemics. The result is T (US) > T (Italy) > T (UK).

This is what is expected given the geographical sizes of the three countries. The

value T (US) ≃ 50 days is comparable to the interval over which hot spots developed

across the U.S. during the spring of 2020 (New York Times, 2020). One expects that

subsequent analysis with the DLM will find T to have increased as more and more

hot spots arise due to the easing of mitigating factors across the countries, especially

in the U.S.

3. The ALM can well describe the epidemics, and its best estimates of the effective

infection rate constants reff as a function of time show them to be essentially identical

for all three countries.

4. For each model separately the initial infection rate constants are essentially identical

in the three countries.

5. The fact that the effective infection rate constant declines with time is likely the

product of increasing mitigation efforts and improving medical treatments.

6. The time-averaged mortality ratio in the U.S. was about 0.061, while in Italy and

U.K. it was much higher at about 0.14. In all three countries it tended to vary slowly

through each epidemic.
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Table 4. Adopted Parameters (from Deaths Data)

Parameter Model. U.S. Italy U.K. Mean

Ndata . . . 174 174 174 . . .

Ncases . . . 2,255,119 238,275 303,310 . . .

Ndeaths . . . 119,719 34,610 42,589 . . .

r (days−1) BLMa 0.070 0.085 0.088 0.081± 0.008

r (days−1) DLMa 0.106 0.116 0.100 0.107± 0.08

r0 (days−1) ALMb 0.287 0.284 0.288 0.286± 0.002

T (days) DLMa 51. 37. 29. 39.± 11

S ALMb 15,300 6,040 6,650 . . .

aEstimated from daily data.

bEstimated from total data.
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9. Concluding Remarks

This paper has presented two new versions of the logistic model that describe the

evolution of the number of infections in an epidemic as a function of time. The first

modification, the Distributed Logistic Model (DLM), approximates the spread of disease

centers across a large country like the United States; this introduces a single new parameter

T that measures the time span over which different hotspots appear. It is successful in

capturing the initial and linear phases of the epidemics in each country. However, it is

intrinsically time-symmetric, with the rising and declining phases of the daily curves being

mirror images, which does not match the data. The basis of the second modification, the

Adaptive Logistic Model (ALM), is an infection rate constant that declines with time as

public health and social mitigation measures are introduced; this requires a single new

parameter S that parameterizes the point at which social mitigation efforts take effect.

This model, which is intrinsically asymmetric across an epidemic, is especially successful

at capturing the declining phases of epidemics. When fit to all of the data for number of

cases and number of deaths, the results for both models are good, especially for the ALM.

The results of the fitting show (1) that it took about two months for the epidemic to spread

across the U.S., and somewhat less time for Italy and the U.K, and (2) that mitigation

efforts have been equally successful in the three countries.

These new approaches are useful ways to understand the histories of epidemics. In

particular, each provides a quantitative measure of a parameter that helps to control the

evolution of an epidemic. However, they neither are intended to replace traditional epi-

demiological analysis, nor are they suitable for predicting the future, for example, in the

event that mitigation efforts are significantly modified.
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