
Smart Pooling: AI-powered COVID-19 testing
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Summary

Background COVID-19 is an acute respiratory illness caused by the novel coronavirus

SARS-CoV-2. The disease has rapidly spread to most countries and territories and has

caused 14·2 million confirmed infections and 602,037 deaths as of July 19th 2020.

Massive molecular testing for COVID-19 has been pointed as fundamental to moderate

the spread of the disease. Pooling methods can enhance testing efficiency, but they are

viable only at very low incidences of the disease. We propose Smart Pooling, a machine

learning method that uses clinical and sociodemographic data from patients to increase

the efficiency of pooled molecular testing for COVID-19 by arranging samples into

all-negative pools.

Methods We developed machine learning methods that estimate the probability

that a sample will test positive for SARS-Cov-2 based on complementary information

from the sample. We use these predictions to exclude samples predicted as positive from

pools. We trained our machine learning methods on samples from more than 8,000

patients tested for SARS-Cov-2 from April to July in Bogotá, Colombia.
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Fig 1. Efficiency of Smart Pooling compared to standard testing methods
on Patient Dataset. Smart pooling achieves higher efficiencies than two-stage
pooling and individual testing for prevalences of the disease of up to 50% on the Patient
Dataset. The average efficiency measures the overall efficiency of each method in the
complete prevalence range.

Findings Our method, Smart Pooling, shows efficiency of 306% at a disease

prevalence of 5% and efficiency of 107% at disease a prevalence of up to 50%, a regime

in which two-stage pooling offers marginal efficiency gains compared to individual

testing (see Figure 1). Additionally, we calculate the possible efficiency gains of one-

and two-dimensional two-stage pooling strategies, and present the optimal strategies for

disease prevalences up to 25%. We discuss practical limitations to conduct pooling in

the laboratory.

Interpretation Pooled testing has been a theoretically alluring option to increase

the coverage of diagnostics since its proposition by Dorfmann during World War II.

Although there are examples of successfully using pooled testing to reduce the cost of

diagnostics, its applicability has remained limited because efficiency drops rapidly as

prevalence increases. Not only does our method provide a cost-effective solution to

increase the coverage of testing amid the COVID-19 pandemic, but it also demonstrates

that artificial intelligence can be used complementary with well-established techniques

in the medical praxis.
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1 Research in context

Evidence before this study The acute respiratory illness COVID-19 is caused by

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The World Health

Organization (WHO) labeled COVID-19 as a pandemic in March 2020. Reports from

February 2020 indicated the possibility of asymptomatic transmission of the virus,

which has called for molecular testing to identify carriers of the disease and prevent

them from spreading it. The dramatic rise in the global need for molecular testing has

made reagents scarce. Pooling strategies for massive diagnostics were initially proposed

to diagnose syphilis during World War II, but have not yet seen widespread use mainly

because their efficiency falls even at modest disease prevalence.

We searched PubMed, BioRxiv, and MedRxiv for articles published in English from

inception to July 15th 2020 for keywords “pooling”, “testing” AND “COVID-19”, AND

“machine learning” OR “artificial intelligence”. Early studies for pooled molecular

testing of SARS-CoV-2 revealed the possibility of detecting single positive samples in

dilutions of samples from up to 32 individuals. The first reports of pooled testing came

in March from Germany and the USA. These works suggested that it was feasible to

conduct pooled testing as long as the prevalence of the disease was low. Numerous

theoretical works have focused only on finding or adapting the ideal pooling strategy to

the prevalence of the disease. Nonetheless, many do not consider other practical

limitations of putting these strategies into practice. Reports from May 2020 indicated

that it was feasible to predict an individual’s status with machine learning methods

based on reported symptoms.

Added value of this study We show how artificial intelligence methods can be

used to enhance, but not replace, existing well-proven methods, such as diagnostics by

qPCR. We show that in this fashion, pooled testing can yield efficiency gains even as

prevalence increases. Our method does not compromise the sensitivity or specificity of

the diagnostics, as these are still given by the molecular test. The artificial intelligence

models are simple, and we make them free to use. Remarkably, artificial intelligence

methods can continuously learn from every set of samples and thus increase their

performance over time.

Implications of all the available evidence Using artificial intelligence to

enhance rather than replace molecular testing can make pooling testing feasible, even as

disease incidence rises. This approach could make pooled testing an effective tool to

tackle the disease’s progression, particularly in territories with limited resources.

2 Introduction

COVID-19 is an acute respiratory illness caused by the novel coronavirus

SARS-CoV-2 [1, 2]. The disease has rapidly spread to most countries and territories and
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has caused 14·2 million confirmed infections and 602,037 deaths as of July 19th 2020 [3].

Clark et al. [4] estimated that 1·7 billion people, which corresponds to 22% of the global

population, are at risk of developing severe COVID-19. This susceptible fraction of the

population have at least an underlying condition related to the increased risk of the

disease.

Countries are rushing to implement massive testing to identify and isolate carriers to

tackle the spread of the disease. Nevertheless, massive testing is costly and has

increased the demand for scarce reagents. However, there is still a global need to make

testing more accessible to larger populations. Thus, strategies to enhance the efficiency

of testing, that is, the number of people that can be tested with the same amount of

test kits, are urgent.

Pooling methods, which were initially proposed by Dorfman to diagnose syphilis

among the US military during World War II [5], allow to test several patients with fewer

reagents by combining their samples in a single test tube. Different pooling strategies,

such as two-stage pooling [5] and matrix pooling [6], offer more significant efficiency

gains for different combinations of test sensitivity and disease prevalence. Pooling has

not only been used for diagnosis but also in genetic sequencing [7].

Empirical tests have confirmed the ability of pooled analysis to reliably detect

SARS-CoV-2 in a pool comprising one positive specimen and up to 31 negative

specimens [8, 9]. Additionally, preliminary trials show that pools of 10 specimens can

increase efficiency without strongly compromising sensitivity [10,11]. Non-adaptive

pooling scheme demonstrates an increase in the efficiency for low prevalences in in-vitro

experiments [12]. Given sufficient sensitivity for the test, pooling methods are effective

when the prevalence of the disease is low so that the probability of all samples in a pool

being negative is high, but fails as the prevalence increases, as shown in Figure 2a.

Here we present Smart Pooling, a machine learning method that enhances the

efficiency of pooling testing strategies. Smart Pooling exploits clinic and

sociodemographic information of samples to estimate their probability of testing

positive for COVID-19. As Figure 2b shows, our method uses these probabilities to

arrange all samples into pools that maximize the probability of yielding a negative

result within the most number of pools. That is, we group samples such that positive

samples are excluded from the pooling process and are evaluated in individual tests,

thus reducing the number of tests used for the same amount of samples.

Machine learning and regression models have been used to classify the novel

pathogen from its genetic sequencing [13], to support diagnosis from CT scans [14], to

assist clinical prognosis of patients [15], and to forecast the evolution of the

pandemic [16]. Regression models trained with patient-reported symptoms and

laboratory test results have been used to predict infection from symptomatology [17].

These strategies risk compromising sensitivity and confidence. In contrast, Smart

Pooling does not seek to replace current molecular testing but assist it by improving its

efficiency.

Complementary information from samples, such as microscopic inspections, has been
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Fig 2. Smart Pooling makes pooling methods efficient even at high disease
prevalences. A In standard two-stage pooling methods, samples are pooled randomly.
When the outcome of a pooled test is negative, all the samples in it are labeled as
negative. When the outcome is positive, all samples are tested individually. As
prevalence increases, the efficiency of pooling without a priori information drops rapidly
and makes the strategy unviable, mainly because the probability of having at least one
positive sample in a pool increases. B Smart Pooling tackles this problem by ordering
samples according to the predicted probability of yielding a positive result in the test. If
the probability of a sample surpasses the defined threshold, this sample goes directly to
individual testing. On the contrary, if a sample has a lower probability, it goes to
pooled testing. We arrange samples into pools with similar probability, maximizing the
probability of being all-negative. C The Smart Pooling pipeline. Samples and data are
collected from patients. The Smart Pooling model processes these data and returns an
arrangement with the probability that each sample tests positive. We compare this
probability to a threshold and, if it is greater than the threshold, we select the sample
for individual testing. In the laboratory, samples are tested individually or pooled based
on the defined arrangement. Subsequently, samples from positive pools are tested
individually. Finally, the diagnostic outcome of each sample is fed to the Smart Pooling
platform. This process enlarges the dataset and allows for continuous learning.
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effectively used to guide pooling methods in detecting malaria [18]. In the

epidemiological context of the COVID-19 pandemic, testing laboratories may have

clinical and sociodemographic data for each individual. These data could be exploited

to estimate the probability of a patient yielding a positive result [19]. Thus, an informed

guess could be made to exclude a sample from a pool. Furthermore, new studies [20]

show that to reduce the transmission of SARS-CoV-2, it is desired to combine isolation

and tracing strategies. The number of tests enhances these tracing strategies as the

exploration of wider contact networks is possible.

Smart Pooling is easily adaptable to any pooling procedure. To use Smart Pooling

as a tool for the desired pooling strategy, we propose a five-step pipeline between the

laboratory procedures and the Smart Pooling analysis. Figure 2c illustrates this process.

First, the laboratory acquires samples and sociodemographic metadata from patients.

Secondly, the Smart Pooling platform processes metadata to provide an ordering of the

patients into pools or send them to individual testing when there is a high probability of

yielding a positive result. Thirdly, samples are pooled according to this ordering in the

laboratory. Then, molecular tests are run individually or on the ordered pools until

there is a diagnosis for each sample. Lastly, the laboratory feeds the results of the

tested samples into the Smart Pooling platform to continuously improve the model.

3 Methods

3.1 Dataset

The data used in our work corresponds to the molecular tests conducted by Universidad

de Los Andes for the Health Authority of the city of Bogotá, Colombia. To construct

the dataset, we tested samples individually following the Berlin Protocol [21] (for dates

before April 18th) and the protocol for the U-TOPTM COVID-19 Detection kit from

Seasun Biomaterials [22]. Our dataset consists of two different groups, representing the

diversity of available data.

3.1.1 Patient Dataset

We organized the first group of data according to the outcome of each molecular test.

We also had access to the patient’s: sex; age; date of onset of symptoms; date of the

medical consultation; initial patient classification; information about the patients’

occupation, specifying if they are health workers; patients’ affiliation to the health

system; data about patients’ travels, pointing if they recently had international or

domestic travels; comorbidities; symptoms; and if they had had contact with a

confirmed or suspected COVID-19 case. Samples were collected from April 18th to July

15th 2020, comprising 2,068 samples. The patients’ median age was 36 years, and the

age range was between 0 and 93 years. 1,142 patients were male (55%) and 926 (45%)

were female. The additional information followed the protocol developed by the

Colombian Public Health Surveillance System - Sistema Nacional de Vigilancia en Salud
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Publica (SIVIGILA).

3.1.2 Test Center Dataset

In the second group of data, we organized data according to the test center that

collected the sample. We had access to metadata from the test centers, such as their

location and name. Samples were collected from April 6th to May 25th 2020, with a

total of 7,162 samples from 101 test centers.

3.2 Training of the predictors

3.2.1 Dataset division

To experimentally validate the performance of our proposed models and descriptors, we

followed a two-fold cross-validation scheme for the Patient Dataset, where we used one

data fold for training and the held-out fold for evaluating the model. We obtained the

final result by evaluating each fold on the corresponding model and then aggregating

the predictions to calculate the performance metrics in the entire dataset. We created

the folds using a stratified strategy, where each fold had the same percentage of positive

and negative samples, as well as a similar distribution of other factors, such as age, sex,

or symptoms. For the Test Center Dataset, we divided the data into a training split

containing all the samples until May 7th, and a held-out test split for evaluating the

performance of the model with the remaining samples. We further divided the training

data into two disjoint subsets: training and validation. We selected the validation

subset such that we predicted as many dates as those in the test set. The maximum

number of dates to predict after May 7th was five.

3.2.2 Evaluation

Quantitative evaluation. We measured the efficiency of our models in silico in

terms of the number of tests used when employing the model’s output as the criterion

for Smart Pooling. We calculated the efficiency as the fraction between the number of

samples and the total amount of tests used, following a two-stage pooling strategy. First,

we sorted the individual tests based on the predicted prevalence by decreasing order.

Then, we grouped the samples following the original order and the pool size. Finally,

the total number of tests corresponds to the number of pools in the first step added to

the individual samples from the second step, that is, samples from the pools that were

positive in the first step. In our experiments we report the efficiency as a percentage.

3.2.3 Model training

We trained a machine learning method independently for each dataset. We used the

AutoML from H2O library [23] to explore multiple machine learning models in the

validation sets. Below we explain the details for training at each dataset.

July 21, 2020 7/21

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 5, 2020. ; https://doi.org/10.1101/2020.07.13.20152983doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.13.20152983
http://creativecommons.org/licenses/by-nc-nd/4.0/


Patient Dataset. In this dataset, we trained our methods to classify the test of a

given patient into a positive or negative sample for COVID-19. Then, we used the

probability of the sample being positive, as predicted by the model, to organize the tests

into pools and calculate the efficiency. For these experiments, we defined a descriptor in

which each feature dimension corresponds to a variable from the patient and location

information, previously defined in section 3.1.1. The best model for this task was a

Gradient Boosting Machine (GBM) [24] with 30 trees, a mean depth of 9, a minimum of

12 leaves, and a maximum of 22 leaves.

Initially, we split the data into two sets to perform cross-validation. To establish

similar conditions between each subset of the dataset, we randomly chose the total

number of positive and negative samples such that the number of data points across each

subset remained similar. Secondly, we trained our model over one subset, say the first

split, and validate over the one leftover, say the second one. We stored the predicted

probabilities for the samples in the second split to use them as the scores. Then, we

performed the same process, but we trained with the second split, validated over the

first one, and stored the first split’s sample predictions. After completing this process,

we organized each sample using the stored probability scores to perform Smart Pooling.

Test Center Dataset. The level of granularity of this dataset allowed us to have

information on the number of positive and total tests per test center on a given date.

However, we do not have daily reports from each test center. Thus, we explicitly

modeled the data as a sparse time series. We trained the machine learning methods to

predict the fraction of positive tests for a center on the current date. Afterward, we

assigned this value as the incidence of each sample from a test center on a given date.

We sorted the tests by decreasing incidence, simulated a two-stage pooling protocol,

computed the number of used tests, and calculated the efficiency of Smart Pooling. The

best model for this task was a Gradient Boosting Machine (GBM) [24] with 50 trees, a

constant depth of 5, a minimum of 12 leaves, and a maximum of 29 leaves.

To predict the incidence for a date in the validation or test set, we defined a

descriptor calculated from the available training data for each testing center. In the

features, we included the cumulative tests of each institution up to every date within

the time series i.e. the institution prevalence, and the total number of tests from all the

institutions at the corresponding date. To include the temporal information, we defined

as features the date in YY-MM-DD format and the relative date in the number of days

since the first date on the time series. Additionally, we created a variable that we

named gap, which encodes the distance between two consecutive entries from the same

test center. In particular, during the testing stage, the gap encodes the distance

between the last training date and the date to predict. The gap provided the model

with an estimate of the analyzed time window.

As such, we compute the descriptor’s features by analyzing the relative differences

between variables on the last known date and those from the training days in the

current gap. These gap features comprise the cumulative number of tests, total tests,
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number of positive samples for each institution at the last available date, and the

corresponding incidences. We complemented the descriptor with features that indicate

the number of days, relative to the current prediction date, from the first n number of

positive tests in each test center. For our experiments we defined

n = 1, 5, 10, 100, 500, 1000. The rationale behind this feature was to provide the model

with a temporal encoding of the incidence’s evolution. We adapted these features from a

public kernel from Kaggle’s COVID-19 Global Forecasting Challenge 1.

We performed the training of our models in two stages. In the first training phase,

we used the validation subset’s performance as the criterion to select the best model.

We removed the test centers that did not have sufficient dates for the validation split

but included them back for the second training phase. Lastly, we obtained our final

model by retraining the best model using all available training data and evaluated it on

the test split.

The key idea of Smart Pooling is maintaining p artificially low, even under scenarios

with a high overall prevalence of COVID-19, by reordering the samples according to a

priori estimates of prevalence, before the pooling takes place. We demonstrate efficiency

gains at simulated prevalences of up to 25% and 50% for the Test Center Dataset and

Patient Dataset, respectively, which are considerably higher than those applicable for

even optimal standard pooling methods.

4 Results

4.1 Smart Pooling increases testing efficiency by excluding

positive samples from pools

We identify that using complementary information to arrange pools can improve the

efficiency of testing. We do this by training a machine learning algorithm to predict the

probability that a sample will test positive for COVID-19 based on clinical and

sociodemographic data. Testing efficiency increases by using individual testing on high

probability samples and arranging the remaining samples into pools simulating a

two-stage pooling protocol. Figures 1 and 3 show that for disease prevalences ranging

from 0% up to 50% and from 0% up to 25%, respectively, Smart Pooling’s efficiency

outperforms the simulated efficiency obtained with Dorfsman’s two-stage pooling and

individual testing.

Our computational experiments show that, regardless of the level of granularity of

the data available for performing Smart Pooling (Figures 1 and 3), efficiency gains are

obtained for all simulated prevalences up to 25% for the Test Center Dataset and for

the Patient Dataset up to 50%. For instance, with Smart Pooling at a prevalence of

10% and an efficiency around 200%, even with coarse data in the test center approach,

the estimated number of patients that could be tested with the same number of tests is

doubled compared to individual testing. This shows that Smart Pooling could be viable

1https://www.kaggle.com/rohanrao/covid-19-w3-lgb-mad/notebook
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Fig 3. Efficiency of Smart Pooling trained with the coarse metadata from
the Test Center Dataset. Despite not having detailed patient metadata, Smart
pooling is still capable of producing higher efficiencies than two-stage pooling for
prevalence of the disease of up to 25%. The average efficiency measures the overall
efficiency of each method in the complete prevalence range.

in various settings and does not depend on the availability of rich complementary data.

Figure 4 depicts the visualized predictions from our machine learning models trained

with the patients’ metadata. We rank samples according to the confidence of the model

for predicting a sample as positive. Compared to the random ordered samples, for

Smart Pooling’s predictions based on the patients’ dataset, most of the positive samples

on top of the arrangement. This figure illustrates the working principle of Smart

Pooling: it enhances efficiency by artificially reducing the incidence in the samples sent

to pools, by sending the samples most likely to test positive to individual testing.

The machine learning model takes advantage of complementary data to compute the

probability that a sample results positive. For the Patient Dataset, this could come

from reported symptoms or the knowledge that the patient belongs to a particular

group (for instance, being a health worker). For the Test Center Dataset, the machine

learning model could be exploiting underlying correlations in the samples [25,26]. In

other words, Smart Pooling could be seen as the assembly of pools with correlated

samples where the independence assumption in the underlying binomial distribution of
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Dorfman’s protocol does not longer hold (within the pool of correlated samples) [26].

Samples in this dataset were acquired during strict measures limiting mobility in the

city of Bogotá. It is likely that people tested at the same center shared epidemiological

factors, like visiting the same markets, sharing public transport, or being in the same

hospital. The model could also be learning the different probability distributions of

samples being positive in different parts of the city.
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Fig 4. Visualization of Smart Pooling model predictions trained with
patient level metadata. Smart Pooling arranges samples by the probability of
testing positive based on the predictions made by each model, and we compare this
proposed order to a random arrangement.

Smart Pooling’s use is not limited to two-stage pooling; it can be coupled with

multiple pooling strategies and improves efficiency regardless of the strategy. Figure S1

shows the effect of using Smart Pooling with a fixed pool size of 10 and an adaptive
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pooling strategy based on the optimal strategies explored in the following section. Both

of these alternatives are more efficient than two-stage pooling and individual testing

when coupled with Smart Pooling. Our simulations show that using adaptive pooling

strategies offers efficiency gains than fixed-size pooling for higher prevalences (p > 15%).

Ultimately, the pooling strategy used in practice should be determined by the resources

available at the testing laboratory.

4.2 Pooling strategies

4.2.1 Two-stage pooling protocols

By a two-stage pooling protocol, we mean a procedure that, given a set of samples, is

combined into pools using specific criteria. Once the pools are defined, we carry out two

stages. In the first stage, we test each pool for disease using qPCR. There are two

possible outcomes: (i) The pooled sample is negative, which implies that all individual

samples within the pool are negative; or (ii) The pooled sample is positive, which

implies that at least one individual sample within the pool is positive. If the test result

of the first stage is positive, then it is necessary to proceed to the second stage. In the

second stage, each sample is individually tested, thereby finding the infected samples.

More importantly, note that if the result of the first stage is negative, by performing a

single pooled test, we save all the PCR kits required to test the samples individually

(except the one used for the pooled test). Crucially, as we will show later, this gain is

obtained without any loss in either test sensitivity or specificity.

We explored the following two kinds of pooling protocols:

1. Dorfman’s pooling protocols [5]: Given m samples, we make a single pool with all

of them. We denote this protocol by Sm

2. Matrix pooling protocols [6]: Given a collection of m× n samples, we place them

into a rectangular m× n array. We create pools by combining samples along the

rows and along the columns of this array (for a total of m+ n pools). In the

second phase, we test each sample at the intersection of the positive columns and

rows individually. We denote this protocol by Sm×n.

4.2.2 Quantifying pooling efficiency

Pooling efficiency will be our main tool to quantitatively compare different pooling

protocols, as it is defined as the number of patients tested per detection kit consumed.

Efficiency depends on the prevalence p of the sample (defined as the probability that an

individual in the population is ill). Assuming independence among patients, pooling

efficiency can be easily computed analytically [5, 6]:

1. For Dorfman’s pooling Sm the efficiency is given by

E(p) =
1

1
m + 1 − (1 − p)2

July 21, 2020 12/21

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 5, 2020. ; https://doi.org/10.1101/2020.07.13.20152983doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.13.20152983
http://creativecommons.org/licenses/by-nc-nd/4.0/


2. For the matrix pooling protocol Sm×n the efficiency is given by

E(p) =
1

1
m + 1

n + p+ (1 − p)(1 − (1 − p)m−1)(1 − (1 − p)n−1)

The efficiency functions above show the key property behind pooling in general, and

Smart Pooling in particular. At low prevalences, the efficiency can be considerably

greater than one. As the prevalence increases, E(p) decreases, and the efficiency gains

become negligible after prevalences around 30%. Figure 5 shows graphically these

efficiency gains (and how they vanish) for two-stage pooling.

4.2.3 Optimal pooling strategies

Fig 5. Efficiency of two-stage Dorfman’s pooling as a function of prevalence p and pool
size n

What are the best pooling protocols that maximize efficiency for a given prevalence

p, assuming a fixed bound c on pool size? The experimental setup unavoidably

constrains the maximum pool size. In the context of COVID-19 we will focus on the

cases c = 5 and c = 10 since these are the most useful in practice (see Section S1.1 for

details). Finding the optimal pooling strategies for a given prevalence equals finding the

pooling protocol of maximum efficiency by comparing the values of E(p) for the

different protocols, as Mutesa et al. also proceed [27]. Figure 6 shows the efficiency

curves of the best pooling protocols of the form Sj and Sm×n with maximum pool size
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c ≤ 10 and c ≤ 5. The optimal two-stage protocols exist (i.e., their efficiencies are the

highest among all two-stage pooling protocols, not only among those of the form Sm

and Sm×n). More precisely, table 1 shows the optimal protocols and their respective

intervals of optimality when c = 10 and c = 5 respectively. Even while using optimal

protocols, it is clear that the efficiency gains quickly disappear as the prevalence

increases (effectively vanishing when p ≥ 30·66%).

Fig 6. Optimal pooling strategies given a maximum pool size of A. 10 and B. 5.

Table 1. Optimal pooling strategies restricted by a maximum pool size c.

c = 10

Pooling
protocol

Prevalence Interval (%)
Lower bound Upper Bound

S10 0·00 1·25
S9 1·25 1·375

S10×10 1·375 4·875
S9×10 4·875 5·25
S9×9 5·25 5·875
S8×9 5·875 6·375
S8×8 6·375 7·375
S7×8 7·375 8·125
S7×7 8·125 9·625
S6×7 9·625 10·875
S6×6 10·875 12·125
S4 12·125 12·375
S3 12·375 25·00

c = 5

Pooling
protocol

Prevalence Interval (%)
Lower bound Upper Bound

S5 0·00 6·625
S4 6·625 12·375
S3 12·375 25·00

Prevalence intervals and their respective optimal pooling strategy. Sm are single pooling
protocols and Sm×n are matrix pooling protocols.

5 Discussion

At the prevalence levels for COVID-19 that many diagnostic laboratories are currently

managing, two-stage pooling efficiency is significantly reduced. Here, we show that it is

possible to increase pooling efficiency by using machine learning to separate likely
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positive cases and then pool the rest of the samples using what we show to be an

optimal strategy.

Smart Pooling enhances but does not replace molecular testing. Smart

Pooling uses artificial intelligence to enhance the performance of well-established

diagnostics. It is an example of how data-driven models can complement, not replace,

high-confidence molecular methods. Its robustness to the variability of the available

data, prevalence, and model performance and its independence of pooling strategy,

make it compelling to apply at large scales. Additionally, its continuous learning should

make it robust to the pandemic’s evolution and our understanding of it.

Smart Pooling could ease access to large scale testing. This pandemic has

presented challenges to all nations, regardless of their income. As the number of

infected people and the risk of contagion increase, more testing is required. However,

the supply of test kits and reagents cannot cope with the demand, with most countries

not being able to perform 0·3 new tests per thousand people [3]. Adopting Smart

Pooling could translate into more accessible and larger-scale massive testing. In the case

of Colombia, this could mean testing 50,000 samples daily, instead of 25,000, in mid-Jul

2020 [28]. If deployed globally, Smart Pooling truly has the potential to empower

humanity to respond to the COVID-19 pandemic. It is an example of how artificial

intelligence can be employed to bring social good.
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Fig S1. Estimated efficiency on the Test Center Dataset of different pooling strategies
enhanced by Smart Pooling.

Supporting information

S1.1 Practical considerations for implementation

Historically, pooling was used extensively during the second world war, but since then,

it has mostly been implemented in specific niches such as testing blood for diseases and

reducing cost in developing countries [18, 29, 30]. In the specific context of SARS-CoV-2,

there are several incentives to implement pooling. Most significantly, the current

shortage of reagents, especially in developing countries that do not produce these and

have limited stocks. Additionally, if implemented correctly, these methods can increase

throughput, another motivation for developing countries and locales with a limited

number of certifiable qPCR machines. Finally, through the reduced use of reagents and

increased throughput, these methods can reduce costs and motivate healthcare

providers.

Here we considered Dorfman and array testing algorithms because they are easily

compatible with a manual implementation of pooling. Although it is possible to find the

optimal algorithm for pooling at a particular prevalence, it may be cumbersome to

implement all the protocols. Fortunately, most of the pooling algorithms are relatively
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robust over a broader range than that in which they are optimal, so implementing some

should increase efficiency without added complexity. Different algorithms will also affect

tip use as well as plating time. Filter tips have been in short supply since the beginning

of the pandemic [31], and some of the pooling protocols increase efficiency at the

expense of increased tip use. Plating time will depend on both the pooling algorithm

and the experience of the personnel doing the pooling. Each lab has to adapt the

specifics of the protocol for their needs.

Successful implementation of PCR-based pooling requires understanding the

limitations of the method and performing viability tests. Although it is possible to pool

reactions that include primers that detect the virus only when it is present, it is not

possible, to our knowledge, to pool the RNAse P positive control. This phenomenon

occurs because the samples are positive unless a problem has occurred with the sample

or the extraction of RNA; it involves finding a negative among positives where samples

have variable RNA content and an exponential amplification step. In our

implementation, the two reactions are separate. The RNAse P control is performed on a

different plate, using a faster PCR protocol (1.5 hours instead of 2.5 hours). In kits for

which the specific primers and the control are multiplexed, for example, it is not

possible to ensure the presence of RNA when pooling.

Sensitivity must also be taken into account when implementing pooling. Each

two-fold dilution results in the increase of the Ct value by 1 unit (1∆Ct), on average.

Some have detected dilutions up to 32-fold [9], but only for samples with average Ct,

not for samples close to the detection limit. It is necessary to calibrate the dilution

process in each lab since it depends on the kit, machine, and operators. Another limit

for the size of the pools is the total reagent volume in each pool. Our plates can handle

10µl of a sample while other plate-kit combinations may handle just 5µl. Depending on

the operators, pipetting volumes under 1µl may cause quality control problems. Since

we rely on volunteers for our testing, we only considered pools of up to 10, which also

keeps the maximum Ct of the first round below 42, the limit of cycles in our machine.

Additionally, we increased the cutoff in Ct for the first round from 38 to 38+ ∆Ct at

this dilution, from the calibrations. This modification may increase the number of false

positives in the first round, but since the second round samples are sampled

individually, the standard cutoff can be used to eliminate potential false positives from

the first round.

Pooling before RNA extraction is an attractive option since it reduces reagent use,

but we did not implement it for several reasons. The first is that the expected increase

in Ct of 5 [32], was above the practical limits for our machine and kit combination.

Secondly, it is not possible to flag poorly taken samples in which there is no RNA, for

the same reasons, it is not possible to pool the RNAse P control. Finally, we received

heterogeneous samples of the upper and lower respiratory tracts and when pooled

together resulted in false negatives. It is likely that implementing pooling before RNA

extraction is possible with other kits or more homogeneous samples.

The long-term management of COVID-19 will likely require the use of
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complementary approaches, including testing for antibodies against the virus. The

methods presented in this paper could increase the measurement of seropositivity in the

population.
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