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Abstract 
 
The risk of severe disease and death from COVID-19 is not uniformly distributed across all age classes, with                  
the bulk of deaths occurring among older ages and those with comorbidities. Evidence is also mounting that                 
some individuals have pre-existing immune responses to SARS-CoV-2 which may confer resistance to             
infection. We present a general mathematical framework which can be used to systematically explore the               
impact of variation in resistance to severe disease and infection by SARS-CoV-2 on its epidemiology. We                
find that the herd immunity threshold (HIT) can be lowered by the existence of a fraction of the population                   
who are unable to transmit the virus, whether they are effectively segregated from the general population or                 
mix randomly. These results help to explain the wide variation observed globally in seroprevalence and               
cumulative deaths and raise the possibility that the proportion exposed may have already exceeded HIT in                
certain regions.  
 

Introduction 

The spread of a novel infectious agent eliciting protective immunity is typically characterised by three distinct                
phases: (I) an initial phase of slow accumulation of new infections (often undetectable), (II) a second phase                 
of rapid growth in cases of infection, disease and death, and (III) an eventual slow down of transmission due                   
to the depletion of susceptible individuals, typically leading to the termination of the first epidemic wave. The                 
point of transition between phases I and II is known as the herd immunity threshold (HIT), which is defined                   
as the level of exposure at which an epidemic growth rate becomes negative and incidence starts to                 
decrease. Subsequent epidemics will only occur when the susceptible population is replenished sufficiently             
through births and/or loss of immunity. Such susceptible-infected-recovered (SIR) systems eventually settle            
to an endemic equilibrium where the proportion immune is maintained at the HIT with no net change in                  
numbers infected. In practice, most SIR systems tend to exhibit small oscillations around this equilibrium               
(e.g. due to seasonal effects), leading to regular annual or extra-annual peaks, possibly accompanied by an                
increase in deaths among those who are naive to infection or experiencing immune senescence. In this                
endemic state, those who are naive to infection typically comprise young children who have been born                
subsequent to the last epidemic.  
 
Prior to the first epidemic wave, however, the entire population is expected to be naive to infection. Yet the                   
bulk of deaths from COVID-19 has occurred among older age classes and those with comorbidities 1,2 ,                
indicating that some level of pre-existing resistance to severe disease may be lost through immune               
senescence or in association with certain clinical conditions. T-cell and IgG antibody activity have been               
reported in non-exposed individuals to SARS-CoV-2, suggesting that resistance to disease, and even             
infection, may accrue from previous exposure to endemic corona viruses 3–6 . A fraction of the population may                 
also already be intrinsically resistant to infection as a consequence of high functioning innate immunity and                
such mechanistic reasons as reduced expression of Angiotensin Converting Enzyme 2 (ACE2) 3,7–11. Here              
we present a general framework to assess whether these observations have a significant impact on the                
epidemiology of SARS-CoV-2 and on our interpretation of mortality, infection and seroprevalence data             
pertaining to the ongoing pandemic.  
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Results  
Our model (see Supplementary Text File 1) links two subpopulations (groups 1 and 2) by means of an                  
interaction matrix in which ( ) specifies the degree of within-group mixing in a subpopulation of    δ  0 < δ < 1            
proportion (group 1). Thus, all contacts are within the respective groups (i.e. mixing is fully assortative) ρ                 
when , and between-group mixing is maximised at . Random or proportionate mixing occurs δ = 1        δ = 0       
when . We define the basic reproduction number ( ) for each group as the fundamental transmission δ = ρ        R0         
potential of the virus within a homogenous population consisting of members of that group. Rates of loss of                  
infection and immunity are given respectively as  and .σ γ  
 

 
Figure 1 - Herd immunity threshold under proportionate and assortative mixing. Herd immunity threshold (HIT) when                
varying proportion of the population fully resistant ( ) under (A) assortative mixing ( ), (B) proportionate mixing ( ). (C)        ρ       δ = 1      δ = ρ   
Proportion exposed (z’, i.e. final exposed at the end of simulation) under proportionate mixing, (D) same as panel C but for                     
assortative mixing. (A-D) Each color band equates to a ~0.125 change, and black covers the range 0-0.01. (E) HIT overshoot (i.e.                     
final exposed at the end of simulation z’ minus HIT), under proportionate mixing, (F) same as in panel E but for assortative                      
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mixing. (E-F) Each color band equates to a ~0.05 change, and black covers the range ~0-0.01. (A-F) , ,                  R01
= 0   R0 = R02

 /σ  1 = 5  
days, . γ = 0   

 
If a fraction of the population is resistant to infection ( , the herd immunity threshold (HIT) is given   ρ         )R01

= 0         

as , for all possible rates of loss of immunity . This suggests that a wide 1 )(1 [1/(1 )])( − ρ − 1
R0

− (1−ρ) 

(1−δ)ρ          γ       
variation in HIT can be observed depending on the proportion resistant , the within the non-resistant           ρ   R0     
group and the degree of mixing between the resistant (group 1) and non-resistant (group 2). When mixing is                  
fully assortative ( ), HIT . In other words, the HIT declines in proportion to the size of  δ = 1   1 )(1 /R )= ( − ρ − 1 0              
the resistant group (Figure 1A ). For example, when , HIT will be reached at 25% if half the population        R0 = 2            
is resistant. By contrast, under proportionate mixing ( , i.e. random mixing), HIT (Figure       δ = ρ      /R= 1 − 1 0 − ρ   
1B). This implies that the pathogen will not spread unless the proportion immune is below . Thus,               /R1 − 1 0   
under the same condition of half the population being resistant, no major epidemic is expected unless                

. The HIT determines the level of exposure at which an epidemic growth rate becomes negative andR0 > 2                  
incidence starts to decrease. However, dependent on the level of infection when growth becomes negative,               
final exposure (Figures 1 C & D ) is always expected to overshoot the HIT (Figures 1 E & F ). 
 
The dependence of HIT on the degree of within-group mixing ( ) increases with the proportion resistant          δ       ρ  
(Figures 2 A & C), exhibiting their lowest values in a disassortative extreme ( ). Substantial reductions             δ = 0    
in cumulative mortality can thus be obtained as the resistant proportion increases (Figures 2 B & D) which                  
could provide a simple explanation for the wide variation in death rates reported across various regions.                
Incomplete resistance can be implemented within this framework by allowing where          ×R01

= F R02
  0 < F < 1  

(Figure S1 ). Our simulations indicate that under incomplete resistance, the reduction in HIT is roughly               
proportional to (for example, 50% of the population being 50% resistant is roughly equivalent 25% with  F                
complete resistance, under proportionate mixing, when )..5R0 = 1  
 

 
Figure 2 - Herd immunity threshold and associated percentage decrease in mortality. Herd immunity threshold (A) and                 
percent decrease in mortality (B) for under different combinations of proportion resistant ( ) and levels of within-group      .5  R0 = 1        ρ      
mixing ( ). (C-D) The same output as in panels A and B but for . Simulations ran for 365 days with = 5 days, ,  δ              .5  R0 = 2       /σ  1     γ = 0  

and . Color bands in the color scales equate to ~0.125 (A-C) or 12.5 (B-D) change, and black covers the range R01
= 0    R0 = R02
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~0-0.01 (A-C) or ~99-100 (B-D). For visualisation purposes the percent decrease in mortality is , where is the              00 1 /z )  1 × ( − zp ρ=0   z    
proportion exposed at the end of the simulations with a fraction resistant to infection ( ) and without ( ). The white line              zρ    zρ=0     
designates proportionate mixing ( separating an area of assortative (higher within group) mixing above from disassortative   )  ρ = δ              
(higher between groups) mixing in the area below.  

 
Reductions in cumulative mortality as presented in Figures 2 B & D rest on the relative difference (ratio)                  
between the final epidemic sizes of simulated outbreaks with ( ) and without ( ) a resistant fraction to         zρ    zρ=0      
infection. However, cumulative mortality can be precisely derived within this general framework by assigning              
appropriate infection fatality rates to the two subpopulations. For SARS-CoV-2, this can be achieved by               
factoring in a delay between infection and death, and defining the groups as being resistant and vulnerable                 
to death rather than infection. By fitting cumulative mortality to observed counts and applying estimates of                
the infection fatality rate to the vulnerable fraction, it is then possible to derive early estimations of                 
epidemiological parameters such as the doubling time, , observation rate and proportion exposed (see       R0        
Supplementary Text File 1 ).  
 

Discussion 

The risk of infection with any pathogen depends crucially on the proportion of the population currently                
immune. Non-pharmaceutical interventions preventing the proportion exposed from exceeding HIT will leave            
the population open to further growth in infections once these measures are eased. However, if the                
proportion of the population exposed is in excess of the HIT, any subsequent epidemic growth will be                 
mitigated until the susceptible population is replenished through births and / or loss of immunity.  
 
Determining the proportion exposed for SARS-CoV-2 is not possible through tracking clinical cases since the               
majority of infections are likely to be asymptomatic 12 , although symptom tracking and other proxies such as                 
excess influenza-like-illness provide a promising alternative route 13,14 . Obtaining these data through            
serological surveys has proved to be a challenge, principally due to the variability in both antibody and                 
cellular immune responses among exposed individuals and their kinetics 15,16 . Reported levels of             
seroprevalence have not come close to what is believed to be necessary for herd immunity 16–20. Our results                  
indicate that a wide variation in reported levels of exposure to SARS-CoV-2 can arise as a result of                  
differences in the proportion of the population resistant to infection ( ) and mixing between groups.          ρ      
Determining whether HIT has been attained is compromised by the tendency of host-pathogen systems to               
overshoot HIT (Figures 1C, D, E, F) . High levels of seropositivity can arise under a reasonable range of the                   
fraction resistant and where HIT is nonetheless lower than the proportion of the population already  ρ   R0              
exposed (Figures 1 E & F). Equally, seropositivity measures of 10-20% are entirely compatible with local                
levels of immunity having approached or even exceeded the HIT, in which case the risk and scale of future                   
resurgence is lower than currently perceived.  
 
Several other approaches for estimating SARS-CoV-2 HIT have recently been put forward 21–26, all indicating               
that it is below the classic expectation of . Those that have taken account of the effect of        /R1 − 1 0           
non-pharmaceutical interventions (e.g. 22 ) typically return values of HIT which are compatible with current              
seroprevalence estimates and with an endemic state where the risk of death to those vulnerable is on a par                   
with other major respiratory illnesses. The exercises presented in this article do not offer a means to                 
precisely determine the HIT of SARS-CoV-2. Our purpose here is simply to explore the possible impact of                 
pre-existing resistance to infection, for which evidence is steadily mounting 3–6,8–11. 
 
It is important to note that HIT is independent of the rate of loss of immunity ( ) although the latter will affect                 γ       
the timing and magnitude of the subsequent epidemic peaks (Figure S2 ). Moreover, the public health impact                
of subsequent peaks will depend on the degree to which previous exposure reduces severity of disease                
upon reinfection, and not just whether infection-blocking immunity is lost. Given the considerable body of               
evidence that exposure to seasonal coronaviruses offers homologous protection against clinical symptoms            
(e.g. 11 ), it would be reasonable to expect that second and subsequent epidemic waves will result in far                  
fewer deaths than the first wave. 
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