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 63 

Summary 64 

System-wide molecular characteristics of COVID-19, especially in those patients 65 

without comorbidities, have not been fully investigated. We compared extensive 66 

molecular profiles of blood samples from 231 COVID-19 patients, ranging from 67 

asymptomatic to critically ill, importantly excluding those with any comorbidities. 68 

Amongst the major findings, asymptomatic patients were characterized by highly 69 

activated anti-virus interferon, T/natural killer (NK) cell activation, and transcriptional 70 

upregulation of inflammatory cytokine mRNAs. However, given very abundant RNA 71 

binding proteins (RBPs), these cytokine mRNAs could be effectively destabilized 72 

hence preserving normal cytokine levels. In contrast, in critically ill patients, cytokine 73 

storm due to RBPs inhibition and tryptophan metabolites accumulation contributed to 74 

T/NK cell dysfunction. A machine-learning model was constructed which accurately 75 

stratified the COVID-19 severities based on their multi-omics features. Overall, our 76 

analysis provides insights into COVID-19 pathogenesis and identifies targets for 77 

intervening in treatment. 78 

 79 
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Introduction 80 

Coronavirus disease 2019 (COVID-19), a newly emerged respiratory disease caused by 81 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently become 82 

a pandemic (WHO, 2020). COVID-19 is now found in almost all countries, totaling 11 83 

327 790 confirmed cases and 532 340 deaths worldwide as of July 6th, 2020 84 

(Worldometers, 2020). 85 

 86 

The symptoms of COVID-19 vary dramatically ranging from asymptomatic to critical. 87 

Several studies have reported on confirmed patients who exhibit no symptoms (i.e., 88 

asymptomatic) (Bai et al., 2020; Chan et al., 2020; Lu et al., 2020b; Pan et al., 2020). Since 89 

such individuals are not routinely tested, the proportion of asymptomatic patients is not 90 

precisely known, but appears to range from 13% in children (Dong et al., 2020) to 50% 91 

in the testing of contact tracing evaluation(Kimball et al., 2020). Of COVID-19 patients 92 

with symptoms, 80% are mild to moderate, 13.8% are severe, and 6.2% are classified 93 

as critical (WHO, 2020; Wu and McGoogan, 2020). Furthermore, although the overall 94 

mortality rate of diagnosed cases was estimated to be ~3.4% (Worldometers, 2020), the 95 

rate varied from 0.2% to 22.7% depending on the age group and other health issue 96 

(Novel Coronavirus Pneumonia Emergency Response Epidemiology, 2020; Onder et al., 97 

2020). Some confounding factors appear to be associated with COVID-19 progress and 98 

prognosis. For example, preliminary evidence suggests that comorbidities such as, 99 

hypertension, diabetes, cardiovascular disease, and respiratory disease results in a 100 

worse prognosis of COVID-19 (Zheng et al., 2020), and dramatically increase mortality 101 

(Novel Coronavirus Pneumonia Emergency Response Epidemiology, 2020). Therefore, the 102 

pathogenesis and mortality caused by SARS-CoV-2 infection in otherwise healthy 103 

individuals are not clear. Death due to COVID-19 is significantly more likely in older 104 

patients (i.e.,≥65 years old), possibly due to the decline in immune response with age 105 

(Wu et al., 2020a; Zheng et al., 2020).  106 

 107 

So far, most studies have focused on the relationship between the disease and clinical 108 
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characteristics, sequencing of virus genomes (Lu et al., 2020a) and identifying the 109 

structure of the SARS-CoV-2 spike glycoprotein (Lan et al., 2020; Walls et al., 2020). 110 

There has been some work on integrated multi-omics signatures. For example, meta-111 

transcriptome sequencing was conducted on the bronchoalveolar lavage fluid of SARS-112 

CoV-2 infected patients (Xiong et al., 2020). Proteomic and metabolomic analyses of the 113 

serum from COVID-19 patients have also been investigated (Bojkova et al., 2020; Shen 114 

et al., 2020; Wu et al., 2020b). However, systematic study of COVID-19 remains lacking. 115 

From data so far, it is difficult to determine which parameters are due to the infection 116 

and which to the comorbidities. 117 

 118 

Here, to focus on the sole effect of SARS-CoV-2 infection on disease severity, 231 119 

COVID-19 cases with different clinical severity and without comorbidities were 120 

selected. We performed trans-omics analysis, which included genomic, transcriptomic, 121 

proteomic, metabolomic, and lipidomic analytes of blood samples from COVID-19 122 

patients, to better understand the associations among genetics and molecular 123 

mechanisms of consecutively severe COVID-19. We proposed a novel mechanism for 124 

inflammatory cytokine regulation at the post-transcriptional level. Cytokine storm, 125 

tryptophan metabolites, and T/NK cell dysfunction cooperatively contribute to the 126 

severity of COVID-19.  127 

 128 

Results 129 

Patient Enrollment and Trans-omics Profiling for COVID-19  130 

To gain a comprehensive insight into the molecular characteristics of COVID-19 in 131 

patients characterized with different disease severity, a cohort of 231 out of 1432 132 

COVID-19 patients were selected based on stringent criteria for the trans-omics study 133 

(Figure S1). Given that older age and comorbidities appear to have effects on disease 134 

progression and prognosis (Guan et al., 2020; Zhang et al., 2020; Zhou et al., 2020), 135 

participants aged between 20 and 70 years old (mean±SD, 46.7±13.5) without 136 

comorbidities were selected, to minimize the impact of confounding factors. Detailed 137 

information about the enrolled patients, including sampling date and basic clinical 138 
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information, was shown in Figure S2, and Table S1 and S2, Among the enrolled 231 139 

COVID-19 patients, 64 were asymptomatic, 90 were mild, 55 were severe, and 22 were 140 

critical. In-depth multi-omics profiling was performed, including whole-genome 141 

sequencing (203 samples) and transcriptome sequencing (RNA-seq and miRNA-seq of 142 

178 samples) of whole blood. Concurrently, liquid chromatography–mass spectrometry 143 

(LC-MS) was performed to capture the proteomic, metabolomic, and lipidomic features 144 

of COVID-19 patient sera (161 samples) (Figure 1A). After data pre-processing and 145 

annotation, the final dataset contained a total of 25882 analytes including 18245 146 

mRNAs, 240 miRNAs, 5207 lncRNAs, 634 proteins, 814 metabolites, and 742 complex 147 

lipids (Figure 1B, Figure S3 and Table S3.1). To quantify the molecular profiles in 148 

relation to disease severity, we conducted pairwise comparisons between the four 149 

severity groups for each omics-level (see Methods). Results indicated extensive 150 

changes across all omics levels (Figure 1B, Figure S4 and Table S3.2-3.5). The 151 

percentage of analytes that changed dramatically in at least two comparisons ranged 152 

from 24.18% (mRNAs) to 54.57% (proteins) (Figure 1B). Generally, we first found 153 

profound differences between asymptomatic and symptomatic patients at all omics 154 

levels, suggesting a specific molecular feature in this particular population. Second, the 155 

changes in analytes between mild and severe were subtle at all omics levels except for 156 

protein, indicating marked molecular similarities between these two severities, even in 157 

the presence of differences in clinical manifestations. Third, the differences between 158 

the critical group and other groups were extremely high, implying a sudden and 159 

dramatic change from severe to critical disease. 160 

 161 

Genomic Architecture of COVID-19 Patients 162 

Based on whole-genome sequencing of 203 unrelated patients, we obtained a total of 163 

18.9 million high quality variants, in which 15.3 million bi-allelic single nucleotide 164 

polymorphisms (SNPs) were used in the following analyses (Figures S5A-H and Table 165 

S4.1). Principal component analysis showed no obvious population stratification within 166 

the study and the patients were grouped together with East Asian and Han Chinese when 167 

compared to 1000GP (Auton et al., 2015) phase 3 released data (Figures S5I-J). Single-168 
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variant based association tests were performed to investigate the connections among 169 

common variants (MAF>0.05) and the diversity of clinical manifestations. We first 170 

compared the generalized severe group (severe and critical, n=65) with the mild group 171 

(asymptomatic and mild, n=138) (Figures S6A-B), then compared the asymptomatic 172 

group (n=63) with all other symptomatic patients (n=140) (Figures S6C-D, Table S4.2). 173 

Gender, age, and top 10 principal components were included as covariates. In general, 174 

no signal showed genome-wide significance (P <5e-8) in these comparisons. A 175 

suggestive signal (P <1e-6) associated with the absence of symptoms was found on 176 

chromosome 20q13.13, which comprised six SNPs, the most significant being SNP 177 

rs235001 (Table S4.3). Locus zoom identified two protein coding genes B4GALT5 and 178 

PTGIS in the region spanning ±50k of the SNP (Figure S6E). Considering the small 179 

sample size of this study, the associated SNPs still need to be confirmed by further 180 

investigations. We also assessed two loci, rs657152 at locus 9q34.2 and rs11385942 at 181 

locus 3p21.31, which have been found to be associated with severe COVID-19 with 182 

respiratory failure in Spanish and Italian populations (Ellinghaus et al., 2020). For 183 

rs657152, the overall frequency of the protective allele C was 0.5468 (222/406) in our 184 

data, which decreased in the critical group (AF=0.382, 13/34, Fisher’s exact test P 185 

=0.04896). For rs11385942, the risk allele GA was not detected in any patient in our 186 

study, as this variant was rare in Chinese people (Liu et al., 2018) (Table S4.4), 187 

consistent with previously reported global distribution (Ellinghaus et al., 2020).  188 

 189 

Quantitative trait locus (QTL) analysis has been widely applied to infer the contribution 190 

of genetic variations to complex phenotypes (Fagny et al., 2017). Here, QTL analysis 191 

was performed to explore the correlations of proteomic, metabolomic and lipidomic 192 

features with genetic variations, resulting in 1328 mRNAs, 76 proteins, 195 metabolites 193 

and 4 lipids significantly associated with a variety of QTL (P≤5e-8) (Table S5). Taken 194 

together, we revealed the overall contribution of genetic variations to the output at 195 

different omics levels in COVID-19 patients. 196 

 197 
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Changing Patterns of Transcriptome in Relation to COVID-19 Severity 198 

Overall, 1302, 1862 and 2678 differentially expressed genes (DEGs) were identified in 199 

mild, severe and critical groups, compared to the asymptomatic group, among which 200 

578 DGEs were shared by symptomatic groups. Within symptomatic groups, only 66 201 

DEGs between severe and mild groups were identified while over 2000 DEGs were 202 

detected in critical compared to severe or mild, indicating a similar molecular feature 203 

between mild and severe and extremely distinct features between critical and the 204 

mild/severe groups at transcriptome level (Figure 2A, Table S3.2). To characterize 205 

progressive changes through the four disease severities of COVID-19, we conducted 206 

unsupervised clustering of mRNAs that were differentially expressed in at least three 207 

of the six comparison groups. At the mRNA level, we classified genes into three clusters 208 

according to their expression patterns across different disease severities (Figure 2B, 209 

Table S6.1). Intriguingly, the expression levels of genes in cluster 1 were increased 210 

both in asymptomatic and critically ill patients as compared to mild/severe patients, 211 

while the extend of upregulation was more profound in asymptomatic cases. GO 212 

analysis showed these genes were related to neutrophil activation, inflammatory 213 

response, granulocyte chemotaxis, and IL2, IL-6, IL-8 production (Figure 2B, Table 214 

S6.2). Key chemokines (CXCL8, CXCR1, CXCR2) for neutrophil activation and 215 

accumulation, as well as inflammatory responses genes (TLR4 and TLR6) associated 216 

with toll-like receptors, and several key inflammatory response genes (MMP8, MMP9, 217 

S100A12, S100A8, UBE2E3) shared this expression pattern (Figure 2C), suggesting a 218 

highly activated innate immune and pro-inflammatory response both in asymptomatic 219 

and critically ill patients than that in mild and severe patients at transcriptomic level.  220 

 221 

Genes in cluster 2 were enriched in T cell activation, leukocyte-mediated cytotoxicity, 222 

NK cell-mediated immunity, and interferon-gamma production. The expression levels 223 

of these genes were specifically decreased in critical patients compared to the other 224 

three severities. Important genes for T cell activation, such as CD28, LCK, and ZAP70, 225 

as well as key transcript factors for interferon-gamma production (GATA3, EOMES 226 

and IL23A), showed this expression pattern across the different disease severities 227 
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(Figure 2C). Thus, although innate immune was activated in both asymptomatic and 228 

critically ill patients, T cell mediated adaptive immune response was specifically 229 

suppressed in critical COVID-19 patients. 230 

 231 

Cluster 3 contained genes primarily involved in protein polyubiquitination and 232 

autophagy. The expression of genes in this cluster gradually increased from the 233 

asymptomatic to mild/severe and then peaked at the critical (Figure 2B). An important 234 

transcript factor for autophagy, FOXO3, showed this expression pattern (Figure 2C). 235 

Genes in this cluster reflected the increasing tissue damage and cell death along with 236 

disease severity.  237 

 238 

Post-transcriptional Regulation by Non-coding RNAs in Relation to COVID-19 239 

Severity 240 

Next, we investigated the post-transcriptional regulatory network associated with the 241 

genes in Figure 2C. From 240 high abundant miRNAs, 625 pairs of mRNA-miRNA 242 

were selected, of which 16 pairs were with coefficients < -0.5 (Table S7). The 243 

expression of three miRNAs (miR-25-3p, miR-486-5p and miR-93-5p) was uncovered 244 

to be negatively correlated with that of eleven genes including eight inflammatory 245 

response genes, and three neutrophil activation genes (Figure 2D). Meanwhile, 5207 246 

lncRNAs were identified from the NCBI database, and 3084 pairs of mRNA-lncRNA 247 

connection were tested (Table S8). After removing low correlation coefficients, 233 248 

pairs of mRNA-lncRNA connection with coefficients ≤-0.6 were left, and we found 249 

many lncRNAs to be strongly and negatively correlated with FOXO3 which plays a 250 

critical role in autophagy (Figure 2D) (Mammucari et al., 2007). In addition, two 251 

autophagic genes, PINK1 and GABARAPL2, were found to be correlated with 252 

expression level of lncRNA as well. In view of the fact that the expression of FOXO3, 253 

a negative regulator of the antiviral response, elevated along with the aggravation of 254 

the patient's condition, lncRNA differential accumulation might play a role in 255 

autophagy and antiviral response dysregulation in critically ill COVID-19 patients 256 
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(Figure 2C) (Litvak et al., 2012). 257 

 258 

Changing Patterns of Proteins, Metabolites and Lipids in Relation to COVID-19 259 

Severity 260 

Generally, all proteins, metabolites and lipids were classified into seven clusters with 261 

four progressive severities: increasing patterns, decreasing patterns, U-shaped patterns 262 

and stage specific patterns. Increasing patterns include the gradually increasing cluster 263 

C2 and the sharply increasing cluster C3. Decreasing patterns were composed of 264 

gradually decreasing cluster C6 and sharply decreasing cluster C1. Additionally, C4, 265 

C5 and C7 belonged to the U-shaped patterns, mild specific and critical specific patterns 266 

respectively (Figure 3A, Figure S7 and Table S9.1). To systematically characterize the 267 

interaction networks among proteins, metabolites and lipids within each cluster, we 268 

conducted co-expression network analysis using ranked spearman correlation 269 

coefficient (see Methods), resulting in a systematic multi-omics network for each 270 

cluster (Figure S8, Tables S10.1-10.2). Overall, we revealed putative dynamic 271 

interactions within each network, connecting immunity proteins (CSF1, C1S etc.) to 272 

specific groups of metabolites (phenylalanine, tryptophan etc.) and lipids 273 

(phosphatidylethanolamine, triglyceride etc.). 274 

 275 

Notably, a variety of biological pathways found to be specifically enriched in the 276 

different clusters (Figure 3B, Table S9.2). We were particularly interested in proteins 277 

showing high expression levels in the two extreme severities (i.e., asymptomatic, and 278 

critical patients). Consistent with transcription analysis (Figure 2B), a variety of 279 

proteins (BID, ILK, ADAMTSL4 etc.) related to the positive regulation of apoptotic 280 

processes were preferentially present in critical COVID-19 patients. However, 281 

inconsistent with mRNA expression patterns, proteins associated with positive 282 

regulation of inflammatory response and macrophage migration (S100A8, S100A12, 283 

C5, LBP, DDT etc.) were only activated in critically ill patients but not asymptomatic 284 

patients (Figure 3C). Proteins associated with platelet and blood coagulation (F2, 285 

HPSE, PF4 etc.) showed a decreasing pattern from asymptomatic to severe patients. 286 
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(Figure 3C), supporting the observed thrombocytopenia and coagulopathy in critically 287 

ill patients. 288 

 289 

Metabolites also showed distinct profiles in the different clusters. In particular, 290 

compared to other severities, increase in phenylalanine and tryptophan biosynthesis 291 

was observed in critical COVID-19 patients (Figures 3D-E, Table S9.3). Tryptophan 292 

metabolism was considered a biomarker and therapeutic target of inflammation 293 

(Sorgdrager et al., 2019) and changes in tryptophan metabolism were reported to be 294 

correlated with serum interleukin-6 (IL-6) levels (Moffett and Namboodiri, 2003). 295 

Consistently, we detected enrichment of IL-6 in critical patients using enzyme-linked 296 

immunosorbent assay (ELISA) (Figure 3E, Table S2).  297 

 298 

We also investigated the dynamics of lipids among the different severities. Alterations 299 

in several major lipid groups and bioactive molecules were revealed in the symptomatic 300 

patients, especially in the critical group. Phosphatidylethanolamine (PE) including 301 

dimethyl-phosphatidylethanolamine (dMePE), sphingomyelin (SM), 302 

Lysophosphatidylinositol (LPI), Monoglyceride (MG), Sphingomyelin 303 

phytosphingosine (phSM), Phosphatidylserine (PS) were elevated (Figure S9). Notably, 304 

we found two groups of lipids showing specific expression patterns, the 305 

phosphatidylethanolamine lipids belonging to the gradually increasing cluster (cluster 306 

1), and triglyceride lipids presented in the U-shaped cluster with elevated levels in the 307 

asymptomatic and critical patients. Consistent with previous findings that RNA virus 308 

replication is dependent on the enrichment of phosphatidylethanolamine distributed at 309 

the replication sites of subcellular membranes (Xu and Nagy, 2015), we observed that 310 

the expression patterns for a cohort of 16 phosphatidylethanolamine lipids positively 311 

correlated with COVID-19 severities (Figure 3F). Furthermore, we identified that a 312 

repertoire of 36 triglyceride lipids were relatively low in both mild and severe COVID-313 

19 patients (Figure 3G). In addition to the above abundant structural lipid classes, 314 

several bioactive lipids also changed significantly in the symptomatic groups, including 315 

lysophosphatidylcholine (inhibiting endotoxin-induced release of late proinflammatory 316 
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cytokine) (Yan et al., 2004) and lysophosphatidyliositol (an endogenous agonist for 317 

GPR55 whose activation regulates several pro-inflammatory cytokines) (Marichal-318 

Cancino et al., 2017), suggesting that lipidome changes that interfere with cell 319 

membrane integrity and normal functions or disturb inflammatory and immune states 320 

may play important and complex roles in COVID-19 disease development (Figure S9).  321 

 322 

Prediction of COVID-19 Severity Using Machine Learning Model 323 

Based on multi-omics analysis, we found that the mild and severe groups shared many 324 

similar characteristics. However, it is important to predict these two groups, which is 325 

important for early intervention and then preventing disease progress. We therefore 326 

developed an XGBoost (extreme gradient boosting) machine learning model by 327 

leveraging multi-omics data. We randomly stratified samples for the training set (80%) 328 

and the independent testing set (20%) (Figure 4A, see Methods). After normalization, 329 

a total of 297 multi-omics features were preliminarily selected by applying a hybrid 330 

method (see Methods). The XGBoost model trained based on these selected features 331 

achieved a mean micro-average AUROC (area under the receiver operating 332 

characteristic curve) and mean micro-average AUPR (area under the precision-recall 333 

curve) of 0.9715 (95% CI, 0.9497–0.9932) and 0.9495 (95% CI, 0.9086–0.9904) in the 334 

training set, respectively (Figures 4B-C). This showed strong generalizable 335 

discrimination among four severities based on 5-fold cross validation over 100 336 

iterations. 337 

 338 

The multi-omics features were prioritized and ranked by the XGBoost model and the 339 

SHAP (SHapley Additive exPlanations, see Methods) value and top 60 important 340 

features were selected, composed of 19 proteins, 11 metabolites, 7 lipids, and 23 341 

mRNAs (Figures 4D, S10-S13). With the top 60 important features, XGBoost model 342 

was re-trained and validated, resulting in a micro-average AUROC and micro-average 343 

AUPR of 0.9941 and 0.9837 in the independent testing set, respectively (Figures 4E-344 

F). The confusion matrix (Figure 4G) showed that all patients in the independent 345 

testing set were correctly identified, except for two mild patients who were predicted 346 
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as severe. For further validation, we trained different XGBoost models through the 347 

same training protocol with each single-omics data. Results demonstrated that the 348 

XGBoost model outperformed that trained using single-omics features (Figures 4I-J, 349 

S14). Furthermore, we trained an additional XGBoost model based on the 24 features 350 

identified in Guo’s method (Shen et al., 2020) (two proteins and three metabolites were 351 

not detected in our experiment) , leading to micro-average AUROC and micro-average 352 

AUPR in independent testing set are 0.9305 and 0.8300, respectively (Figure S14), 353 

which may be partially due to the different purposes for model construction, whereby 354 

Guo sought to distinguish severe patients from non-severe patients, whereas we 355 

attempted to identify four groups of COVID-19 patient severity. The UMAP (uniform 356 

manifold approximation and projection) plot showed distinct separation of disease 357 

severity groups, namely, asymptomatic, mild, severe, and critical (Figure 4H). Together, 358 

our results implied that the XGBoost model based on the top 60 multi-omics features 359 

could precisely differentiate COVID-19 patient severity status. 360 

 361 

Notably, two transcription factor encoding genes (ZNF831 and RORC) closely 362 

associated with immune response (da Silveira et al., 2017; He et al., 2018) were 363 

identified by our model as important discriminative features. Besides, inflammatory 364 

response molecular (ALOX15, C5AR1 etc.), cytokine-mediated signaling pathway 365 

components (PTGS2, OSM etc.), leukocyte activation genes (CPPED1, GMFG etc.), 366 

apoptotic genes (BCL2A1, IFIT2, GADD45B etc.), a variety of anti-inflammatory 367 

factors (such as lipids of phosphatidylcholine, lysophosphatidylcholine etc.) were 368 

included in the selected 60 discriminative features. Moreover, most mRNAs were 369 

expressed highly in asymptomatic patients, lipids such as phosphatidylcholine and 370 

lysophosphatidylcholine decreased considerably in critical group. Most proteins among 371 

the 60 features such as C-reactive protein (CRP) and EEF1A1 were expressed highly 372 

in critical patients (Figure 4K). These results demonstrated that our model could not 373 

only be employed to stratify COVID-19 patients, but also discover molecular associated 374 

with pathogenesis of COVID-19. 375 

 376 
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Discussion 377 

With the global outbreak of SARS-CoV-2, COVID-19 has become a serious, worldwide 378 

and public health concern. However, comprehensive analysis of multi-omics data 379 

within a large cohort remains lacking, especially for patients with various severity 380 

grades, i.e., asymptomatic across the course of the disease to critically ill. To the best 381 

of our knowledge, this is the first trial designed to systematically analyze trans-omics 382 

data of COVID-19 patients with grade of clinical severity. Furthermore, it is worth 383 

emphasizing that we excluded all patients of extreme age or with comorbidities, to 384 

minimize bias due to confounding factors related to severity. 385 

 386 

Asymptomatic patients have drawn great attention as these silent spreaders are hard to 387 

identify and cause difficulties in epidemic control (Long et al., 2020). Here, we 388 

demonstrated an unexpected transcriptional activation of the pro-inflammatory 389 

pathway and inflammatory cytokines (Figure 2B and 5A). However, consistent with a 390 

recent report (Long et al., 2020), secretion of inflammatory cytokines such as IL-6 and 391 

IL-8 was extremely low in sera from the asymptomatic population (Table S2). In 392 

contrast, critically ill patients were characterized with excessive inflammatory cytokine 393 

production (Figure 3C, Table S2), whereas their transcription levels were only 394 

modestly elevated (Figures 2B, 5A).  395 

 396 

Typically, inflammatory cytokine production is tightly regulated both transcriptionally 397 

and post-transcriptionally (Mino and Takeuchi, 2018; Tanaka et al., 2014). Post-398 

transcription of inflammation-related mRNAs is mainly regulated by RNA-binding 399 

proteins (RBPs), including ARE/poly-(U) binding degradation factor 1 (AUF1, 400 

HNRNPD), tristetraprolin (TTP, ZFP36), Regnase-1 (ZC3H12A), ILF3, ZNF692, 401 

ZCCHC11, FXR1, ELAVL1, and BRF1/2 (Carpenter et al., 2014). Interestingly, these 402 

RBPs involved in the degradation and destabilization of inflammatory cytokines were 403 

highly expressed in asymptomatic patients but showed extremely low expression in 404 

critical patients (Figure 5B). By recognizing inflammatory cytokine mRNA with stem-405 

loop structures, RBPs can degrade or decay inflammatory cytokine mRNA. The balance 406 

of these actions elegantly controls inflammation intensity (Carpenter et al., 2014). 407 
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AUF1 attenuates inflammation by destabilizing mRNAs encoding inflammatory 408 

cytokines, including IL-2, IL-6, TNF and IL-1β (Cathcart et al., 2013; Sadri and 409 

Schneider, 2009). As an anti‐inflammatory protein, TTP destabilizes inflammatory 410 

mRNAs, such as GM-CSF, IL-2, and IL-6 (Taylor et al., 1996). Regnase-1 has a wide 411 

antiviral spectrum and efficiently inhibits the influenza A virus. Furthermore, Regnase-412 

1 restrains inflammation by negatively regulating IL6 and IL17 mRNA stabilization 413 

(Garg et al., 2015; Omiya et al., 2020). Thus, Regnase-1 depletion facilitates severe 414 

systemic inflammation and virus replication. Accordingly, we propose that the observed 415 

discrepancy between cytokine mRNA and protein levels could be attributed to post-416 

transcriptional mRNA stabilization mediated by RBPs (Figure 5C). Our data suggests 417 

a novel mechanism for inflammatory cytokine regulation at the post-transcriptional 418 

level, which explains the molecular mechanism of various clinical symptoms and 419 

suggests that RBPs could be a potential therapeutic target in COVID-19. However, 420 

additional functional researches will be required to ascertain their contribution toward 421 

the development of COVID-19. 422 

An effective interferon (IFN) response can eliminate viral infection including that 423 

of SARS-CoV-2 (Bost et al., 2020). Insufficient activation of IFN signaling may 424 

contribute to severe cases of COVID-19 (Blanco-Melo et al., 2020; Broggi et al., 2020). 425 

As such, we compared the pathways of anti-viral IFN responses in the different 426 

severities of COVID-19 patients. Intriguingly, we found that critically ill patients failed 427 

to launch a robust IFN response compared with the highly activated IFN response 428 

observed in asymptomatic patients (Figure 5D). The impaired IFN response could be 429 

responsible for the loss of viral replication control in critically ill patients (Diao et al., 430 

2020). Moreover, highly accumulated PE lipids (Figure 3F), which are important for 431 

RNA virus replication (Xu and Nagy, 2015), further enhanced SARS-CoV-2 replication. 432 

Consequently, uncontrolled viral replication could result in the orchestration of a much 433 

stronger immune response in critically ill patients, characterized by cytokine storms 434 

and immunopathogenesis. Conversely, the sufficient IFN response in asymptomatic 435 

patients could help to defend against viral infections. 436 

Another feature of critically ill patients was defects in the T/NK cell- mediated 437 

adaptive immune response (Figure 2B), and accelerated tryptophan (Trp) metabolism 438 
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(Figure 5E). In addition to the dramatically decreased T cell markers expression in 439 

critically ill patients (Figure 2C), we noticed a significant upregulation in exhaustion 440 

markers: e.g., PD-1, CTLA4, TIM3, ICOS, and BTLA in T cells (Figure 5F). T cell 441 

depletion is in line with the clinically observed T cell lymphopenia, which was also 442 

negatively correlated with COVID-19 severity. T cells play a critical role in antiviral 443 

immunity against SARS-CoV-2 (Grifoni et al., 2020), but their functional state and 444 

contribution to COVID-19 severity remain largely unknown. Recent research has 445 

demonstrated that SARS-CoV-2 dramatically reduces T cells, and up-regulates 446 

exhaustion markers PD-1, and Tim-3, especially in critically ill patients (Diao et al., 447 

2020). Mechanistically, uncontrolled cytokine release may prompt the depletion and 448 

exhaustion of T cells. Clinically, T-cell counts are negatively associated with serum IL-449 

6, IL-10 and TNF-alpha concentrations (Table S2) (Zhou et al., 2020). Also, it is well 450 

known that accelerated Trp metabolism by rate-limiting enzymes, i.e., indoleamine 2,3-451 

dioxygenases (IDO1 and IDO2), mediates T cell dysfunction (Cronin et al., 2018). 452 

Tryptophan degradation products, such as L-kynurenine (Kyn), have an 453 

immunosuppressive function by depleting T cells and increasing apoptosis of T-helper 454 

1 lymphocytes and NK cells (Mullard, 2018; Munn et al., 2005). Thus, we proposed 455 

that T cells also become metabolically exhausted and dysfunctional in critical patients 456 

due to the accelerated tryptophan (Trp) metabolism (Figure 5E).  457 

It is possible that biological crosstalk exists among the cytokine storm, Trp 458 

metabolism, and T cell dysfunction processes. First, considering the essential role of 459 

Trp metabolism in blocking expansion and proliferation of conventional CD4+ helper 460 

T cells and effector CD8+ T cells and in potentiating CD4+ regulatory T (Treg) cell 461 

function(Cronin et al., 2018), accumulated Trp catabolite production, KYN, 3-HAA 462 

and Quin, inhibits adaptive T cell immunity. Second, Trp directly stimulates immune 463 

checkpoint expression levels, such as CTLA4 and PD-1 (Opitz et al., 2020). Third, in 464 

addition to the direct effects on T cell dysfunction, proinflammatory cytokines, e.g., 465 

IL-1β, IFN-γ, and IL-6, can lead to a robust elevation in circulating Kyn levels by up 466 

regulation of IDO/TDO (Wang et al., 2017), which synergistically worsen T cell 467 

dysfunction. Fourth, adaptive T cell immunity plays an unexpected role in tempering 468 
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the initial innate response (Kim et al., 2007), T cells defection in critically ill patients 469 

could in turn exacerbate an uncontrolled innate immune response. 470 

Therapeutically, considering the essential effects of tryptophan, IDO, and T cell 471 

function on COVID-19 severity, bolstering the immune system by restoring exhausted 472 

T cells may be a promising strategy for disease treatment. Targeting Trp catabolism by 473 

indoximod, or targeting IDO1/TDO2 by navoximod (NLG919) (Ricciuti et al., 2019), 474 

BMS-986205 (Gunther et al., 2019), or PF-06840003 (Crosignani et al., 2017) could 475 

metabolically restore T cell function. Furthermore, immune checkpoint blockage with 476 

PD1/PD-L1 or CTLA4 antibody increased T cell numbers and restore T cell function 477 

(Waldman et al., 2020), may be a potential strategy for treatment of critically ill patients. 478 

It may therefore be worthwhile to test if immune-boosting strategies are effective in 479 

COVID-19 clinical trials. 480 

 481 

In this study, mild and severe groups shared common multi-omics features, with the 482 

exception of protein expression. However, it is crucial to distinguish mild and severe 483 

COVID-19 in clinical practice. For severe patients, oxygen facilities should be applied 484 

in the early stages to prevent progression to critical illness, who carries a much higher 485 

risk of death. Based on clinical needs, we applied a machine-learning prediction model 486 

in this study. Many prediction models have been used to assist medical staff to predict 487 

disease progression and outcome in patients with COVID-19, with most based on 488 

artificial intelligence and machine learning from computed tomography images and 489 

several diagnostic predictors such as age, body temperature, clinical signs and 490 

symptoms, complications, epidemiological contact history, pneumonia signs, 491 

neutrophils, lymphocytes, and CRP levels (Li et al., 2020; Lopez-Rincon et al., 2020). 492 

Recently, by applying a proteomic and metabolomic measurement prediction model, 493 

COVID-19 patients that may become severe cases were identified (Shen et al., 2020). 494 

Although these models all report promising predictive performance with high C-indices 495 

(Wynants et al., 2020), they also carry a high risk of bias according to the PROBAST 496 

bias assessment tool (Moons et al., 2019). This is because most prediction models have 497 

not excluded patients with severe comorbidities and had a high risk of bias for the 498 
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participant group or used non-representative controls, making the prediction results 499 

unreliable. Here, using strict inclusion and exclusion criteria, we minimized selection 500 

bias. According to the results of the prediction model, most mRNAs were highly 501 

correlated with asymptomatic patients (Figures 4K, S10). Multi-omics features such as 502 

TBXA2R, ALOX15, IL1B, IFIT2, BCL2A1, LSP1, glycyl-L-leucine and l-aspartate were 503 

highly expressed in the asymptomatic group, and thus may potentially yield crucial 504 

diagnostic biomarkers for identifying asymptomatic COVID-19 patients. In the critical 505 

illness group, beside CRP which has already been used to monitor the severity of 506 

COVID-19, some immune-related features, such as EEF1A1, FGL1, LRG1, CD99, 507 

COL1A1, cholinesterase(18:3), monoacylglyceride(18:1), Cannabidiolic acid and beta-508 

asarone were found to be highly expressed in the critical group. Using these features, 509 

we could optimize existing approaches to improve the accuracy and sensitivity of 510 

detection based on nucleic acid testing and predict asymptomatic patient prognosis 511 

more accurately. With the assistance of this machine learning model, we could help 512 

identify individuals with a high risk of poor prognosis in advance, and prevent 513 

progression in time to minimize individual, medical and social costs. 514 

 515 

Study Limitations 516 

The limitations of this research are as follows: (1) We did not enroll a healthy population 517 

as a control group, so conclusions made in this study are only limited to differences in 518 

COVID-19 severity. However, it is worth emphasizing that our research focused on the 519 

diversities and similarities in consecutively severe COVID-19. All stages of COVID-520 

19 were included in our study design, in an attempt to identify key clues or biomarkers 521 

to distinguish disease severity and help prevent disease progression. (2) We excluded 522 

patients with comorbidities. As aforementioned, comorbidities including cancer history, 523 

hypertension, diabetes, cardiovascular disease, and respiratory diseases can affect 524 

COVID-19 progression. However, it remains unclear how these comorbidities affect 525 

COVID-19 progression and the relative weight of these comorbidities to progression. 526 

Thus, it would be risky to apply a specific prediction model to all COVID-19 patients. 527 

 528 
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In conclusion, our study presented a panoramic landscape of blood samples within a 529 

large cohort of COVID-19 patients with various severities from asymptomatic to 530 

critically ill. Through trans-omics analyzing, we uncovered multiple novel insights, 531 

biomarkers and therapeutic targets relevant to COVID-19. Our data provided valuable 532 

clues for deciphering COVID-19, and the underlying mechanism warrant further 533 

pursuits. 534 
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Materials and Methods 568 

Ethics Statement 569 

This study was reviewed and approved by the Institutional Review Board of Tongji 570 

Hospital, Tongji Medical College, Huazhong University of Science and Technology 571 

(TJ-IRB20200405). All the enrolled patients signed an informed consent form, and all 572 

the blood samples were collected using the rest of the standard diagnostic tests, with no 573 

burden to the patients. 574 

 575 

Patients Enrollment and Sample Preparation 576 

Blood samples for 231 COVID-19 patients without any comorbidities were collected 577 

from Tongji Hospital and Union Hospital of Huazhong University of Science and 578 

Technology, Xiangyang Central Hospital, Hubei University of Arts and Science and 579 

Hubei Dazhong Hospital of Chinese Traditional Medicine from 19th February, 2020 to 580 

26th April, 2020. Flowchart of patient selection for this study were shown in Figure 581 

S1. The demographic data and laboratory indicators were shown in Table S1 and S2. 582 

The mean age of the patients was 46.7 years old (Standard Deviation=13.5), and the 583 

ratio of male to female was 1.12:1. All these patients were diagnosed following the 584 

guidelines for COVID-19 diagnosis and treatment (Trial Version 7) released by the 585 

National Health Commission of the People’s Republic of China. The patients were 586 

classified into four groups according to their disease severity: critical, severe, mild, and 587 

asymptomatic. The critical disease was defined as fulfilling at least one of the following 588 
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conditions: (1) acute respiratory distress syndrome (ARDS) requiring mechanical 589 

ventilation, (2) shock, (3) combining with other organ failure requiring ICU admission. 590 

Severe disease met at least one of the following conditions: (1) respiratory rate ≥ 30 591 

times/min, (2) oxygen saturation ≤93% at resting state, (3) arterial partial pressure of 592 

oxygen (PaO2)/fraction of inspired oxygen (FiO2) ≤300 mmHg, (4) pulmonary 593 

imaging examination showed that the lesions significantly progressed by more than 50% 594 

within 24-48 hours. Mild patients were defined as having fever, respiratory symptoms, 595 

lung imaging evidence of pneumonia. The patients with normal body temperature, 596 

without any respiratory symptoms were defined as asymptomatic. The definition of 597 

each severity was consistent with the previous article (Zhang et al., 2020). All 598 

Ethylenediaminetetraacetic acid disodium salt (EDTA-2Na)-anticoagulated venous 599 

blood samples were separated by centrifuge at 3,000 rpm, room temperature for 7min 600 

after standard diagnostic tests, the whole blood cells were stored at -80°C, 200 μL 601 

aliquot of  serum were added 800μL ice-cold methanol, mixed well and stored at -80°C, 602 

another 200 μL aliquot of serum were added 800μL ice-cold isopropanol, mixed well 603 

and stored at -80°C. 604 

 605 

Nucleic Acid Extraction 606 

A 200 μL aliquot of each thawed whole blood cells was used to extract DNA using 607 

QIAamp DNA Blood Mini Kit (51304, Qiagen), following the manufacturer’s 608 

instructions. Total RNA was extracted from another 200 μL aliquot of blood cells using 609 

QIAGEN miRNeasy Mini Kit (217004，Qiagen) according to the manufacturer’s 610 

protocol. All the extraction was performed under Level III protection in the biosafety 611 

III laboratory.  612 

 613 

Sequencing Library Construction and Data Generation 614 

The whole genome data was generated through the following steps: 1) DNA was 615 

randomly fragmented by Covaris. The fragmented genomic DNA were selected by 616 

Magnetic beads to an average size of 200-400bp. 2) Fragments were end repaired and 617 

then 3’ adenylated. Adaptors were ligated to the ends of these 3’ adenylated fragments. 618 
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3) PCR and Circularization. 4) After library construction and sample quality control, 619 

whole genome sequencing was conducted on MGI2000 PE100 platform with 100bp 620 

paired end reads. 621 

Transcriptome RNA data was generated through the following steps: 1) rRNA was 622 

removed by using RNase H method, 2) QAIseq FastSelect RNA Removal Kit was used 623 

to remove the Globin RNA, 3) The purified fragmented cDNA was combined with End 624 

Repair Mix, then add A-Tailing Mix, mix well by pipetting, incubation, 4) PCR 625 

amplification, 5) Library quality control and pooling cyclization, 6) The RNA library 626 

was sequenced by MGI2000 PE100 platform with 100bp paired-end reads.  627 

Small RNA data was generated through the following steps: 1) Small RNA 628 

enrichment and purification, 2) Adaptor ligation and Unique molecular identifiers 629 

(UMI) labeled Primer addition, 3) RT-PCR, Library quantitation and pooling 630 

cyclization, 4) Library quality control, 5) Small RNAs were sequenced by BGI500 631 

platform with 50bp single-end reads resulting in at least 20M reads for each sample. 632 

 633 

WGS Data Analysis and Joint Variant Calling 634 

Whole genome sequencing data was processed using the Sentieon Genomics software 635 

(version: sentieon-genomics-201911) (Freed et al., 2017). Pipeline was built according 636 

to the best practice’s workflows for germline short variant discovery described in 637 

https://gatk.broadinstitute.org/. Sequencing reads were mapped to hg38 reference 638 

genome using BWA algorithm (Li and Durbin, 2009). After duplicates marking, InDel 639 

realignment and base quality score recalibration (BQSR), per-sample variants were 640 

called using the Haplotyper algorithm in the GVCF mode. Then the GVCFtyper 641 

algorithm was used to perform joint-calling and generate cohort VCF. Variant Quality 642 

Score Recalibration was performed using Genome Analysis Toolkit (GATK version 643 

4.1.2) (Van der Auwera et al., 2013). The truth-sensitivity-filter-level were set as 99.0 644 

for both the SNPs and the Indels. Finally, variants with PASS flag and quality score ≥ 645 

100 were selected for further analysis. 646 

 647 
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Genotype-Phenotype Association Analysis 648 

PCA was performed using PLINK (v1.9) (Chang et al., 2015). Bi-allelic SNPs were 649 

selected based on the following criteria: minor allele frequency (MAF) ≥ 5%; 650 

genotyping rate ≥ 90%; LD prune (window = 50, step = 5 and r2 ≥ 0.5). A subset of 651 

605,867 SNPs was used to perform PCA on the 203 unrelated individuals. We used 652 

rvtest (Zhan et al., 2016) to perform genotype-phenotype association analysis for 653 

5,082,104 bi-allelic common SNPs with MAF > 5%. Gender, age and top 10 principal 654 

components were used as covariates for all the association tests. The qqman (Turner, 655 

2014) and CMplot R packages (Yin, 2020) were applied to generate the Manhattan plot 656 

and quantile-quantile plot. We defined genome-wide significance for single variant 657 

association test as 5e-8, suggestive significance as 1e-6. 658 

 659 

QTL Analysis 660 

We obtained matched proteomics, lipidomics, metabolomics, gene expression and SNP 661 

genotyping data for COVID-19 patients (n = 132). For the genotyping data, we removed 662 

outlier SNPs with MAF < 0.05. The QTL analysis (cis-eQTL analysis [local, distance 663 

< 10kb] for gene expression data, QTL analysis for proteomics, lipidomics, 664 

metabolomics data) was conducted using linear regression as implemented in 665 

MatrixEQTL (Shabalin, 2012). In this analysis, age and gender (1 for male and 2 for 666 

female) were considered as covariates. Associations with a p value less than 0.001 were 667 

kept, followed by FDR estimation using the Benjamini-Hochberg procedure as 668 

implemented in Matrix-QTL. QTL associations with an FDR-corrected p value < 5e-8 669 

were considered significant (Frochaux et al., 2020).  670 

 671 

Gene Expression Analysis 672 

RNA-seq raw sequencing reads were filtered by SOAPnuke (Li et al., 2008) to remove 673 

reads with sequencing adapter, with low-quality base ratio (base quality < 5) > 20%, 674 

and with unknown base ('N' base) ratio > 5%. Reads aligned to rRNA by Bowtie2 675 

(v2.2.5) (Langmead and Salzberg, 2012) were removed. Then, the clean reads were 676 

mapped to the reference genome using HISAT2 (Kim et al., 2015). Bowtie2 (v2.2.5) 677 
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was applied to align the clean reads to the transcriptome. Then the gene expression level 678 

(FPKM) was determined by RSEM (Li and Dewey, 2011). Genes with FPKM > 0.1 in 679 

at least one sample were retained. Differential expression analysis was performed using 680 

DESeq2 (v1.4.5) with gender and age as confounders. Differential expressed genes 681 

were defined as those with Benjamini Hochberg adjusted p value < 0.05 and fold 682 

change > 2. GO enrichment analysis was performed using clusterProfiler (Yu et al., 683 

2012). GO BP terms with an FDR adjusted p value threshold of 0.05 were considered 684 

as significant (Abdi, 2007).  685 

Small RNA raw sequencing reads with low quality tags (which have more than 686 

four bases whose quality is less than ten, or have more than six bases with a quality less 687 

than thirteen.), the reads with poly A tags, and the tags without 3' primer or tags shorter 688 

than 18nt were removed. After data filtering, the clean reads were mapped to the 689 

reference genome and other sRNA database including miRbase, siRNA, piRNA and 690 

snoRNA using Bowtie2 (Langmead and Salzberg, 2012). Particularly, cmsearch 691 

(Nawrocki and Eddy, 2013) was performed for Rfam mapping. The small RNA 692 

expression level was calculated by counting absolute numbers of molecules using 693 

unique molecular identifiers (UMI, 8-10nt). MiRNA with UMI count lager than 1 in at 694 

least one sample were considered as expressed. Differential expression analysis was 695 

performed using DESeq2 (v1.4.5) (Love et al., 2014) with gender and age as 696 

confounders to control for the additional variation and the detection cutoff was set as 697 

adjusted P < 0.05 and log2 of fold change ≥ 1. 698 

 699 

Construction of mRNA-miRNA and mRNA-lncRNA Network 700 

To investigate the post-transcriptional regulation, spearman correlation coefficients of 701 

mRNA-miRNA (Table S7) and mRNA-lncRNA were calculated (Table S8). 702 

Correlation pairs with coefficients < -0.5 in mRNA-miRNA or < -0.6 in mRNA-703 

lncRNA were retained. MultiMiR was used to confirm the top pairs of mRNA-miRNA 704 

by performing miRNA target prediction (Ru et al., 2014). The mRNA-miRNA and 705 

mRNA-lncRNA networks were visualized using Cytoscape (Figure 2D) (Shannon et 706 

al., 2003).  707 
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 708 

Proteomics Analysis 709 

The sera samples were inactivated at 56°C water bath for 30min and followed by 710 

processing with the Cleanert PEP 96-well plate (Agela, China). According to the 711 

manufacturer’s instructions, high-abundance proteins under a denaturing condition 712 

were removed (Lin et al., 2020). The Bradford protein assay kit (Bio-Rad, USA) was 713 

used to determine the final protein concentration. The proteins were extracted by the 714 

8M urea and subsequently reduced by a final concentration of 10mM Dithiothreitol at 715 

37°C water bath for 30min and alkylated to a final concentration of 55mM 716 

iodoacetamide at room temperature for 30min in the darkroom. The extracted proteins 717 

were digested by trypsin (Promega, USA) in 10 KD FASP filter (Sartorious, U.K.) with 718 

a protein-to-enzyme ratio of 50:1 and eluded with 70% acetonitrile (ACN), dried in the 719 

freeze dryer. 720 

DIA (Data Independent Acquisition) strategy was performed by Q Exactive HF 721 

mass spectrometer (Thermo Scientific, San Jose, USA) coupled with an UltiMate 3000 722 

UHPLC liquid chromatography (Thermo Scientific, San Jose, USA). The 1μg peptides 723 

mixed with iRT (Biognosys, Schlieren, Switzerland) were injected into the liquid 724 

chromatography (LC) and enriched and desalted in trap column. Then peptides were 725 

separated by self-packed analytical column (150μm internal diameter, 1.8μm particle 726 

size, 35cm column length) at the flowrate of 500 nL/min. The mobile phases consisted 727 

of (A) H2O/ACN (98/2,v/v) (0.1% formic acid); and (B) ACN/H2O (98/2,v/v) (0.1% 728 

formic acid) with 120 min elution gradient (min, %B): 0, 5; 5, 5; 45, 25; 50, 35; 52, 80; 729 

55, 80; 55.5, 5; 65, 5. For HF settings, the ion source voltage was 1.9kV; MS1 range 730 

was 400-1250m/z at the resolution of 120,000 with the 50 ms max injection time(MIT). 731 

400-1250 m/z was equally divided into 45 continuous windows MS2 scans at 30,000 732 

resolution with the automatic MIT and automatic gain control (AGC) of 1E6. MS2 733 

normalized collision energy was distributed to 22.5, 25, 27.5. 734 

The raw data was analyzed by Spectronaut software (12.0.20491.14.21367) with 735 

the default settings against the self-built plasma spectral library which achieved deeper 736 

proteome quantification. The FDR cutoff for both peptide and protein level were set as 737 
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1%. Next, the R package MSstats (Choi et al., 2014) finished log2 transformation, 738 

normalization, and p-value calculation. 739 

Metabolomics Analysis 740 

The 100μl sera of each sample were transferred into the 96-well plate and mixed with 741 

10μl SPLASH LipidoMixTM Internal Standard (Avanti Polar Lipids, USA) and 10μl 742 

home-made Internal Standard mixture containing D3-L-Methionine (100 ppm, TRC, 743 

Canada), 13C9-Phenylalanine (100ppm, CIL, USA), D6-L-2-Aminobutyric 744 

Acid(100ppm, TRC, Canada), D4-L-Alanine (100ppm, TRC, Canada), 13C4-L-745 

Threonine (100ppm, CIL, USA), D3-L-Aspartic Acid (100ppm, TRC, Canada), and 746 

13C6-L-Arginine (100ppm, CIL, USA). The 300μl pre-chilled extraction buffer of 747 

methanol/ACN (67/33, v/v) was added to the plasma sample then vortexed for 1 min 748 

and incubated at -20°C for 2 hours. After centrifugation at 4000 RPM for 20 min, 300ul 749 

supernatants were taken and dried in the freeze dryer. The metabolites were dissolved 750 

in 150μl buffer of methanol/ACN (50/50, v/v) and centrifuged at 4000 RPM for 30min. 751 

Supernatants were injected into mass spectrometer. 752 

Metabolomics data acquisition was completed using a same spectrometer, LC, and 753 

settings were set as lipidomics except for following parameters: the mobile phases of 754 

positive mode were (A) H2O (0.1% formic acid) and (B) methanol (0.1% formic acid). 755 

The mobile phases of negative mode were (A) H2O (10mM NH4HCO2) and (B) 756 

methanol /H2O (95/5, v/v) (10 mM NH4HCO2). Both positive and negative models 757 

used the same gradient (min, %B): 0, 2; 1, 2; 9, 98; 12, 98; 12.1, 2; 15, 2. The 758 

temperature of column was set at 45°C. MS1 range set as 70-1050m/z. MS2 stepped 759 

normalized collision energy was distributed to 20, 40, 60.  760 

The raw data was searched by Compound Discoverer 3.1 software (Thermo Fisher 761 

Scientific, USA) with different libraries including our self-built BGI library containing 762 

more than 3000 metabolites with corresponding detailed mass spectrum data. After 763 

quantification, subsequent processing steps were finished by metaX as same as 764 

lipidomics analysis. 765 

 766 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.07.17.20155150doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20155150


Lipidomics Analysis 767 

The 100 μl sera of each sample was transferred into the 96-well plate and mixed with 768 

10 μl SPLASH LipidoMixTM Internal Standard (Avanti Polar Lipids, USA). The 300μl 769 

pre-chilled Isopropanol (IPA) was added to the plasma sample and vortex for 1 min and 770 

incubated at -20°C overnight. Then samples were centrifuged at 4000 RPM for 20min 771 

while proteins precipitated. The supernatants were used for MS analysis. 772 

Lipidomics analysis was performed using Q Exactive mass spectrometer (Thermo 773 

Scientific, San Jose, USA) coupled with Waters 2D UPLC (waters, USA). The CSH 774 

C18 column (1.7μm 2.1*100mm, Waters, USA) was used for separation with following 775 

elution gradient (min, %B) consisted of (A) ACN/H2O (60/40, v/v) (10 mM NH4HCO2 776 

and 0.1% formic acid) and (B) IPA/ACN (90/10, v/v) (10 mM NH4HCO2 and 0.1% 777 

formic acid): 0, 40; 2, 43; 2.1, 50; 7, 54; 7.1, 70; 13, 99; 13.1, 40; 15, 40. The 778 

temperature of column was set as 55°C, the injection value was set as 5μL, and the 779 

flowrate was set as 0.35mL/min. For HF settings, the samples were scanned twice in 780 

both positive and negative modes. The positive spray voltage was set as 3.80 kV and 781 

negative spray voltage was set as 3.20 kV. MS1 range was 200-2000m/z at the 782 

resolution of 70,000 with the 100ms MIT and AGC of 3e6. The top3 precursors were 783 

set as trigger MS2 scans at the resolution of 17,500 with the 50ms MIT and AGC of 784 

1E5. MS2 stepped normalized collision energy was distributed to 15, 30, 45. The sheath 785 

gas flow rate was set as 40 and the aux gas flow rate was set as 10. 786 

The raw data was analyzed by Lipidsearch software Version 4.1 (Thermo Fisher 787 

Scientific, USA) which finished feature detection, identification and alignment. The 788 

following settings were applied: tolerance of mass shift, 5ppm; identification grade, A-789 

D; filters, top rank; all isomer peak, FA priority, M-score, 5; c-score, 2.0; The export 790 

quantitative data from Lipidsearch was analyzed by R package metaX (Wen et al., 2017) 791 

which finished the normalization, correction of batch effect, and imputation of missing 792 

value. 793 

For each patient in the cohort, we computed intensity for a given lipid complex 794 

class by summing up intensity of each lipid in the class. For each lipid complex class, 795 

the intensity value of each patient was further scaled by median value of intensity from 796 
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mild patient group. We applied Mann-Whitney U-test (multiple comparisons correction 797 

with Bonferroni) to test statistically significant difference of scaled intensity of each 798 

lipid complex class between severity groups (Figure S9). 799 

 800 

Differential Expression of Proteins, Metabolites and Lipids 801 

Expression data was first adjusted using robust linear model (RLM) for gender and age. 802 

The residuals following RLM were analyzed by Two-sided Mann-Whitney rank test 803 

for each pair of comparing group and p values were adjusted using Benjamini & 804 

Hochberg. Differentially expressed proteins, metabolites or lipids were defined using 805 

the criteria of adjust p value < 0.05 and fold change > 1.5. 806 

 807 

Clustering 808 

Clustering was performed using the R package ‘Mfuzz’ after log2-transformation and 809 

Z-score scaling of the data. For mRNA from whole blood, genes differentially 810 

expressed in at least three out of the six comparison groups were clustered. For proteins, 811 

metabolites, lipids from sera, all the three analytes were clustered together. 812 

 813 

Pathway analysis 814 

To annotate the proteins and metabolites in 7 clusters, gene ontology (GO) enrichment 815 

analysis were performed to obtain the enriched GO Biological Process terms of proteins 816 

in different clusters by clusterProfiler (Yu et al., 2012). And the 7 lists of metabolites 817 

in KEGG ID were classified into pathways by the Kyoto encyclopedia of genes and 818 

genomes (KEGG) database. The KEGG annotation was finished using in-house 819 

software. 820 

 821 

Correlation Network Analysis  822 

Pairwise Spearman’s rank correlations were calculated using the r package ‘Hmisc’ and 823 

weighted, undirected networks were plotted with Cytoscape. Correlations with 824 

Bonferroni adjusted P values < 0.05 and absolute correlation coefficient >0.4 (Figure 825 

S8) were included and displayed via the Fruchterman-Reingold method. Nodes color 826 
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indicate analytes type and their size represent the degree of the node. 827 

 828 

 829 

Data Preprocessing for Machine Learning 830 

Extreme gradient boosting (XGBoost) (Chen and Guestrin, 2016), an ensemble 831 

algorithm of decision trees, was developed to predict patient severity status based on 832 

multi-omics data of mRNA transcripts (n=13323, mRNAs with FPKM >1 in at least 833 

one sample were retained), proteins (n=634), metabolites (n=814), lipids (n=742) from 834 

135 patients (asymptomatic n=53, mild n=39, severe n=27, and critical n=16)using the 835 

open-sourced Python package (https://xgboost.readthedocs.io/en/latest/, version=1.0.0). 836 

We employed random stratified sampling to select 108 patients (80% of patient cohort) 837 

as the training set (asymptomatic n = 42, mild n = 31, severe n = 22, and critical n = 838 

13), while the remaining 27 patients were used as the independent testing set (Figure 839 

4A). A fixed random number seed was used to ensure reproducibility of the results. 840 

The multi-omics data in training set was first normalized by centering and scaling for 841 

each sample to have mean zero and unit standard deviation. The estimated mean value 842 

and standard deviation for each feature from the training set were applied to the 843 

corresponding features in the testing phase afterwards. 844 

 845 

Feature Selection 846 

Due to high dimensional multi-omics data and thus may decrease model’s performance 847 

if irrelevant features were included, we proposed a hybrid feature selection method to 848 

remove redundant and noise features. In this method, both mutual information (MI)-849 

based technique and Boruta (Kursa and Rudnicki, 2010) algorithm were employed to 850 

obtain relevant subset of raw features. The MI-based technique was one of filter 851 

methods to select relevant features. It calculated weight by taking into account the 852 

relationship between features based on mutual information, and assigned the weight to 853 

each feature based on degree of relevance of features to class labels. We then selected 854 

30% of features with the highest weights (Scikit-learn, version=0.23.1). The Boruta 855 

algorithm was one of wrapper methods to select subset of features based on a random 856 
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forest machine learning algorithm that was used to measure feature importance. One 857 

feature was selected by Boruta only if its importance was greater than a threshold that 858 

was defined as the highest feature importance recorded among shadow features. The 859 

shadow features were obtained by permuting a copy of the real features across samples 860 

to destroy the relationship with the outcome. In Boruta, we applied random forest 861 

classifier with default parameters from Scikit-learn library except that class weight was 862 

specified due to imbalanced training set for each group of COVID-19 patent severity 863 

status. Python library BorutaPy (https://github.com/scikit-learn-contrib/boruta_py) was 864 

used to conduct Boruta algorithm using default parameters and a fixed random number 865 

seed. The final subset of relevant features was determined by computing intersection of 866 

subset features resulting from MI-based technique and Boruta algorithm. This 867 

procedure was repeated for each single-omics data and the final subset of relevant 868 

features was aggregated together for each sample. 869 

 870 

Model Training and Top Important Feature Identification 871 

We performed a basic grid search algorithm with 5-fold cross validation to optimize 872 

XGBoost parameters while maximizing weighted F1 score because of the imbalanced 873 

training set (that is, the various number of samples in different patient group of COVID-874 

19 severity). Consequently, the favorable values for the tuned XGBoost parameters 875 

were identified as follows: the maximum depth of trees was 8, number of decision trees 876 

was 55, minimum sum of instance weight needed in a child of a tree was 1, partitioning-877 

leaf-node parameter was 0.4, subsample ratios of training instances for constructing 878 

each tree was 0.7, subsample ratios of columns was 0.9, learning rate was 0.05 and L1 879 

regularization parameter was 0.005. We used softmax as learning objective function 880 

with predicted probability output per class due to the multi-class identification. The 881 

metrics of mean micro-average ROC curve with AUROC value and a mean micro-882 

average PR curve with AUPR value were evaluated as the overall classifier 883 

performance when comparing one class to all others during the 5-fold cross validation 884 

for 100 iterations. In case of class imbalance, we calculated weight for each class and 885 

assigned each sample with corresponding class weight in the training set. After 886 
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obtaining the favorable parameter values, the XGBoost model was trained using the 887 

entire training set. 888 

We applied the SHAP (SHapley Additive exPlanations) (Lundberg and Lee, 2017; 889 

Lundberg et al., 2020) approach to measure feature importance for the XGBoost model. 890 

SHAP was a unified method to explain machine learning prediction based on game 891 

theoretically optimal Shapley values. To explain the prediction of a sample by the ML 892 

model, SHAP computed the contribution of each feature to the prediction, which was 893 

quantified using Shapley values from coalitional game theory. The Shapley value was 894 

represented as an additive feature attribution method, providing the average of the 895 

marginal contributions across all permutations of features and distribution of model 896 

prediction among features. As an alternative to permutation feature importance, SHAP 897 

feature importance was based on magnitude of feature attributions. The absolute 898 

Shapley values per feature across the data was further averaged as the global importance 899 

was needed. We ranked the features importance in descending order and picked the top 900 

60 most important features. The stacked bar indicated the average impact of the feature 901 

on model output magnitude for different classes. We used the Python library to 902 

implement the SHAP algorithm (https://github.com/slundberg/shap). We re-trained the 903 

final XGBoost model based on the top 60 important features with the favorable model 904 

parameters using the entire training set. 905 

 906 

Machine Learning Model Evaluation  907 

We evaluated the performance of the final XGBoost model as follows. We first 908 

normalized multi-omics data from the unseen 20% independent testing set using the 909 

mean value and standard deviation obtained during the training phase. Subsequently, 910 

features were screened based on the top 60 important features, followed by 911 

classification process using the final XGBoost model. The performance metrics 912 

included ROC curves with AUROC values, PR curves with AUPR values for each class, 913 

while micro-average ROC curves with AUROC values and micro-average PR curves 914 

with AUPR values for overall. In addition, confusion matrices (predicted label as the 915 

index of maximum value of the predicted probability vector) and UMAP plots (with 916 
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parameters of the number of neighbors being 10, the minimum distance between points 917 

being 0.5 and the distance metric being Manhattan) were also generated for evaluating 918 

the performance. 919 

To compare the performance of model based on multi-omics data to that based on 920 

single-omics data, we trained XGBoost model for single-omics data using the same 921 

training protocol as multi-omics data, except that we only empirically picked top 30 922 

important features to train the final single-omics based XGBoost model. Moreover, we 923 

selected 20 proteins and 4 metabolites mentioned in Guo’s method (Shen et al., 2020), 924 

where 2 proteins and 1 metabolite were not found in our data set while 2 metabolites 925 

were greater than level 3 that were removed from our analysis. We trained XGBoost 926 

model using these 24 features with the same training protocol. Those models were 927 

evaluated on the unseen 20% independent testing set and calculated the same the 928 

performance matrices as mentioned above (Figure S14). 929 

To further investigate the top 60 important features, we applied Mann-Whitney U-test 930 

(multiple comparisons correction with Bonferroni) to test statistically significant 931 

difference of each normalized features between severity groups (Figure S10-S13). 932 

 933 

Data Availability 934 

The data that support the findings of this study, including the genome-wide association 935 

test summary statistics, expression matrices for multi-omics have been deposited in 936 

CNSA (China National GeneBank Sequence Archive) in Shenzhen, China with 937 

accession number CNP0001126 (https://db.cngb.org/cnsa/).  938 
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 1188 

 1189 
Figure 1. Patient Enrollment, Study Design and Trans-omics Profile of COVID-19 1190 

Severity 1191 
(A) Overview of patient enrollment criteria and the study design including multi-omics profiling from 1192 
blood samples of COVID-19 patients spanning four disease severities including Asym (short for 1193 
asymptomatic), Mild, Severe and Critical. Venn diagram showing the overlapping of final samples pass 1194 
QC for each high throughput method. Classifier showing machine learning prediction model construction 1195 
(B) Multi-omics changes among each disease severity group. 1196 
See also Figures S1-S2 and Tables S1-S2. 1197 
 1198 
 1199 
Figure 2. Gene Expression Changes through Disease Severity 1200 
(A) Venn diagram showing the overlapping of genes that are significantly altered in three symptomatic 1201 
groups (mild, severe and critical) compared to asymptomatic group, and genes that are altered between 1202 
each pairwise comparison of the three symptomatic groups. 1203 
(B) GO enrichment analysis using genes in each cluster showing different changing patterns through 1204 
progressive disease severity. GO direction is the median log2 fold change relative to mild of significant 1205 
genes in each GO term (blue, downregulated; red, upregulated). The dot size represents GO significance. 1206 
(C) Gene expression changes across four severity groups showing dynamic genes in T cell activation, 1207 
interferon-gamma production, regulation of inflammatory response, regulation of inflammatory response 1208 
and protein K48-linked ubiquitination. 1209 
(D) miRNA-mRNA and lncRNA-mRNA interaction networks showed regulations of miRNAs and 1210 
lncRNAs of the dynamic genes.  1211 
See also Figures S1-S2 and Tables S3.2, S6.1-S6.2, S7-S8. 1212 
 1213 
Figure 3. Multi-omic Changes in Proteins, Metabolites and Lipids across Four 1214 

Severity Groups. 1215 
(A) Clustering of longitudinal trajectories using circulating plasma analytes including proteins, 1216 
metabolites and lipids (FDR <0.05). 1217 
(B) Enriched GO Biological Process (BP) terms for proteins in seven clusters. 1218 
(C) Heatmap of representing protein expression in three functional categories. Each column indicates a 1219 
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patient sample and row representes proteins. Color of each cell shows Z-score of log2 protein abundance 1220 
in that sample. 1221 
(D) Enriched KEGG pathway for metabolites in seven clusters. 1222 
(E) Heatmap of representing metabolites expression in Phenylalanine and Tryptophan metabolism.  1223 
(F) Dynamic expression changes in Phosphatidylethanolamine lipids across four disease severity groups. 1224 
The dots represent the log2 fold change relative to asymptomatic for each lipid in the group. 1225 
(G) Dynamic expression changes in Triglyceride lipids across four disease severity groups.  1226 
See also Figures S7-S9 and Table S2, S9.1-S9.3 and S10.1-10.2. 1227 
 1228 

Figure 4. Performance of Machine Learning Model to Predict COVID-19 Patient 1229 

Severity of Asymptomatic, Mild, Severe and Critical using Multi-omics Data. 1230 
(A) Flowchart of developing XGBoost machine learning model. The model was trained with cross 1231 
validation using training set (n=108) after normalization and feature selection, and re-trained with the 1232 
identified top 60 important features. The re-trained model was further applied to assess generalization 1233 
and performance using independent testing set (n=27). 1234 
(B-C) Performance of the model learned in training set in terms of mean micro-average AUROC (B) and 1235 
mean micro-average AUPR (C). Rasterized density plot of ROC (B) and PR (C) curve data from 5-fold 1236 
cross validation for 100 iterations. 1237 
(D) Top 60 important features (mRNA, n=23; protein, n=19; metabolite, n=11; lipid, n=7) ranked by 1238 
SHAP value. The stacked bar indicated the average impact of the feature on the model output magnitude 1239 
for different classes. 1240 
(E-F) Performance of XGBoost model based on the top 60 features for distinguishing the 4 groups of 1241 
COVID-19 severity in independent testing set in terms of AUROC (E) and A UPR (F). 1242 
(G) Confusion matrix for predicting COVID-19 severity in independent testing set(n=27). 1243 
(H) UMAP plot based on the top 60 features showing the distinct separation among the 4 types of 1244 
COVID-19 severity in the whole data set (patients n=135). 1245 
(I-J) Comparison of performance of models learned by each single-omics data with that of multi-omics 1246 
data in independent testing set in terms of AUROC (I) and AUPR (J). 1247 
(K) Heatmap of demonstrating the top 60 features profiles of the 4 groups of COVID-19 severity in the 1248 
whole dataset (patients n=135). 1249 
2-*-carbothioamide: 2-(1-adamantylcarbonyl)hydrazine-1-carbothioamide, 3-(*)cyclohex-2-en-1-one: 1250 
3-(benzylamino)-5-(4-chlorophenyl)cyclohex-2-en-1-one 1251 
See also Figures S10~S14 1252 
 1253 
Figure 5. The novel insight of COVID-19 through Progressive Disease Severity 1254 
(A) Heatmap of demonstrating cytokines and chemokines DEGs expression across four disease 1255 
severity.  1256 
(B) Heatmap of demonstrating the expression levels of DEGs involved in RNA-binding proteins 1257 
(RBP) across four disease severity. 1258 
(C) The variation patterns of gene expression of cytokines and RBP, and immunological parameters 1259 
across four disease severity.  1260 
(D) Heatmap of demonstrating the expression levels of DEGs involved in IFN-1 responses across 1261 
four disease severity.  1262 
(E) Relative expression abundance of exhaustion marker genes CTLA4, BTLA, HAVCR2, ICOS and 1263 
PDCD1 in T cells. The relative expression abundance of the exhaustion marker genes was defined 1264 
as their expression level dividing the expression level of T cell marker gene CD3E. 1265 
(F) Summary of the pathways of tryptophan metabolism. IDO, indoleamine 2,3-dioxygenase; KAT, 1266 
kynurenine aminotransferase; MAO, monoamine oxidase; TDO, tryptophan 2,3-dioxygenase. Box 1267 
plots in this panel showed the expression level change (log2-scaled original value) of selected 1268 
regulated metabolites across four disease severity. 1269 
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