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Abstract 

New York City’s Health Department developed a SARS-CoV-2 percent test positivity cluster 

detection system using census tract resolution and the SaTScan prospective space-time scan 

statistic. One cluster led to identifying a gathering with inadequate social distancing where viral 

transmission likely occurred, and another cluster prompted targeted community testing and 

outreach. 
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Spatiotemporal analysis of high resolution COVID-19 data can support local health 

officials to monitor disease spread and target interventions (1,2). Publicly available data have 

been used to detect COVID-19 space-time clusters at county and daily resolution across the US 

(3,4) and purely spatial clusters at ZIP code resolution in New York City (NYC) (5). 

For routine public health surveillance, the NYC Department of Health and Mental 

Hygiene (DOHMH) uses the case-only space-time permutation scan statistic (6) in SaTScan1  to 

detect new outbreaks of reportable diseases (7) (e.g., Legionnaires’ disease (8) and salmonellosis 

(9)). Given wide variability in SARS-CoV-2 testing across space and time, case-only analyses 

could be poorly suited for COVID-19 monitoring, as true differences in disease rates would be 

indistinguishable from changes in testing rates across space and time. Moreover, we sought to 

detect newly emerging or re-emerging hotspots during an ongoing epidemic, which is more 

challenging than detecting a newly emerging outbreak in the context of minimal or stable disease 

incidence. 

A new approach was needed to detect areas where COVID-19 diagnoses were increasing 

or not decreasing as quickly relative to other parts of the city. We launched the system on June 

11, 2020 to detect community-based clusters of increased SARS-CoV-2 test positivity in near-

real time at census tract resolution in NYC, accounting for testing variability. 

 

The Study 

Clinical and commercial laboratories are required to report all results (including positive, 

negative, and indeterminate results) for SARS-CoV-2 PCR tests for New York State residents to 

the New York State Electronic Clinical Laboratory Reporting System (ECLRS) (10). For NYC 

 
1Kulldorff M, Information Management Services, Inc. SaTScan v9.6: software for the spatial and space-

time scan statistics (www.satscan.org). 2018. 
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residents, ECLRS transmits reports to DOHMH. Laboratory reports include specimen collection 

date and patient demographics, including residential address. Patient symptoms and illness onset 

date, if any, are obtained through patient interviews, although not all patients are interviewed. 

To detect emerging clusters, the space-time scan statistic uses a cylinder where the 

circular base covers a geographical area and the height corresponds to time (11). This cylinder is 

moved, or “scanned,” over both space and time to cover different areas and time periods. At each 

position, the number of cases inside the cylinder is compared with the expected count under the 

null hypothesis of no clusters using a likelihood function, and the position with the maximum 

likelihood is the primary candidate for a cluster. The statistical significance of this cluster is then 

evaluated, adjusting for the multiple testing inherent in the many cylinder positions evaluated.  

To quickly detect emerging hotspots, prospective analyses are conducted daily (12). To 

adjust for the multiple testing stemming from daily analyses, recurrence intervals are used 

instead of p-values (13). A recurrence interval of D days means that under the null hypothesis, if 

we conduct the analysis repeatedly over D days, then the expected number of clusters of the 

same or larger magnitude is one. 

The space-time scan statistic can be utilized with different probability models. We used 

the Poisson model (11), where the number of cases is distributed according to the Poisson 

probability model, with an expected count proportional to the number of persons tested. 

Analyses were adjusted non-parametrically for purely geographical variations that were 

consistent over time, as the goal was to detect newly emerging hotspots. Fitting a log-linear 

function, we also adjusted for citywide temporal trends in percent positivity, as the goal was to 

detect local hotspots rather than general citywide trends. To prioritize quickly emerging clusters 

to identify epidemiologic linkages, we used a short maximum temporal window of 7 days. As we 
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wished to also detect sustained clusters to inform place-based resource allocation, we 

additionally ran analyses using a maximum temporal window of 21 days. 

We developed SAS code (SAS Institute, Inc., Cary, NC, USA) that generated input and 

parameter files (Table 1, Technical Appendix Table 1), invoked SaTScan in batch mode, read 

analysis results back into SAS for further processing, and output files to secured folders, 

including a patient linelist, visualizations, and investigator notification email. Similar SAS code 

referencing markedly different input parameters is freely available.2 Parameters were adjusted 

during the study period to improve signal prioritization, including increasing the minimum 

number of cases in clusters from 2 to 5 cases.  

Given changing cluster definitions and investigation protocols during the study period, 

instead of summarizing all clusters detected, we present three illustrative examples (Table 2). On 

June 22, in the context of waning case counts citywide, the system detected a not statistically 

significant cluster of 6 patients residing in a 0.6-kilometer radius, all with specimens collected on 

June 17 (Figure 1A). DOHMH staff interviewed patients for common exposures, such as 

attending the same event or visiting the same location. On June 23, a DOHMH surveillance 

investigator (D.B.) determined that two patients in the cluster had attended the same gathering, 

where recommended social distancing practices had not been observed. In response, DOHMH 

launched an effort to limit further transmission, including testing, contact tracing, community 

engagement, and health education emphasizing the importance of isolation and quarantine. 

Investigation of patients in the cluster with the highest recurrence interval (323 days) during the 

study period did not reveal any epidemiologic linkages. Detection of a sustained cluster (lasting 

>1 week) with high percent positivity (8.9%) (Figure 1B) supported the selection of one ZIP 

 
2https://github.com/CityOfNewYork/communicable-disease-surveillance-nycdohmh 
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code for targeted testing and outreach, as part of NYC’s hyper-local plan to prevent COVID-19 

transmission (14). 

 

Conclusions 

 Automated spatiotemporal cluster detection analyses detected emerging, highly focused 

areas to target COVID-19 containment efforts in NYC. For jurisdictions where case investigation 

capacity is limited, interviewing patients in clusters, even if not statistically significant, can help 

identify common exposures for interrupting further transmission. Regardless of whether 

epidemiologic linkages are identified — or whether overall transmission is increasing, 

decreasing, or steady — clusters can be used to prioritize resources and focus interventions such 

as promoting increased testing, public messaging, and community engagement activities. 

Our system is subject to several limitations. First, analyses were based on specimen 

collection date, but given delays in testing availability and care seeking, these dates did not 

necessarily represent recent infections. Timeliness was further limited by delays from specimen 

collection to laboratory testing and reporting. Clusters dominated by asymptomatic patients or 

patients with illness onset >14 days prior to diagnosis may not require intervention, as a positive 

PCR result indicates the presence of viral RNA but not necessarily viable virus (15). Second, 

geocoding is required for precision, and of unique NYC residents with a specimen collected 

during June–July 2020 for a PCR test for SARS-CoV-2 RNA, approximately 3% had a non-

geocodable residential address and were excluded from analyses. Finally, automation coding was 

complex (Technical Appendix). Planned SaTScan software enhancements that will facilitate 

wider adoption by other health departments include: adding a software interface for prospective 

surveillance, enabling temporal and spatial adjustments for the Bernoulli probability model, and 
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enabling the log-linear temporal trend adjustment with automatically calculated trend at a sub-

annual scale. 

Our COVID-19 early detection system has highlighted areas in NYC warranting a rapid 

response. Such local targeted, place-based approaches are necessary to minimize further 

transmission and to better protect people at high risk for severe illness, including older adults and 

people with underlying health conditions. 

 

Acknowledgments 

We thank all staff members of the DOHMH Incident Command System Surveillance and 

Epidemiology Section for processing, cleaning, and managing input data; for conducting patient 

interviews and cluster investigations; and for logistical support. We also thank the NYC Test and 

Trace Corps for their assistance in managing the cases and contacts included in and identified by 

cluster investigations. 

S.K.G. and E.R.P were supported by the Public Health Emergency Preparedness 

Cooperative Agreement (grant NU90TP922035-01), funded by the Centers for Disease Control 

and Prevention. This article’s contents are solely the responsibility of the authors and do not 

necessarily represent the official views of the Centers for Disease Control and Prevention or the 

Department of Health and Human Services. 

 

First author biographical sketch 

Dr. Greene is the director of the Data Analysis Unit at the Bureau of Communicable 

Disease of the New York City Department of Health and Mental Hygiene, Long Island City, 

New York. Her research interests include infectious disease epidemiology and applied 

surveillance methods for outbreak detection.  

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.07.18.20156901doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.18.20156901


7 

 

References 

1. Ridder DD, Sandoval J, Vuilleumier N, Stringhini S, Spechbach H, Joost S, et al. 

Geospatial digital monitoring of COVID-19 cases at high spatiotemporal resolution. 

Lancet Digital Health (in press). 2020. 

2. Furuse Y, Sando E, Tsuchiya N, Miyahara R, Yasuda I, Ko YK, et al. Clusters of 

coronavirus disease in communities, Japan, January-April 2020. Emerg Infect Dis. 

2020;26(9). 

3. Hohl A, Delmelle E, Desjardins M, Lanb Y. Daily surveillance of COVID-19 using the 

prospective space-time scan statistic in the United States. Spat Spatiotemporal Epidemiol. 

2020;100354. 

4. Amin R, Hall T, Church J, Schlierf D, Kulldorff M. Geographical surveillance of 

COVID-19: diagnosed cases and death in the United States. medRxiv preprint 

(doiorg/101101/2020052220110155). 2020. 

5. Cordes J, Castro MC. Spatial analysis of COVID-19 clusters and contextual factors in 

New York City. Spatial and Spatio-temporal Epidemiology (in press). 2020. 

6. Kulldorff M, Heffernan R, Hartman J, Assuncao R, Mostashari F. A space-time 

permutation scan statistic for disease outbreak detection. PLoS Med. 2005;2(3):e59. 

7. Greene SK, Peterson ER, Kapell D, Fine AD, Kulldorff M. Daily reportable disease 

spatiotemporal cluster detection, New York City, New York, USA, 2014-2015. Emerg 

Infect Dis. 2016;22(10):1808-1812. 

8. Weiss D, Boyd C, Rakeman JL, Greene SK, Fitzhenry R, McProud T, et al. A large 

community outbreak of Legionnaires' Disease associated with a cooling tower in New 

York City, 2015. Public Health Rep. 2017;132(2):241-250. 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.07.18.20156901doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.18.20156901


8 

 

9. Latash J, Greene SK, Stavinsky F, Li S, McConnell JA, Novak J, et al. Salmonellosis 

outbreak detected by automated spatiotemporal analysis - New York City, May-June 

2019. MMWR Morb Mortal Wkly Rep. 2020;69(26):815-819. 

10. New York State Department of Health. Health advisory: reporting requirements for all 

laboratory results for SARS-CoV-2, including all molecular, antigen, and serological 

tests (including “rapid” tests) and ensuring complete reporting of patient demographics 

(https://coronavirus.health.ny.gov/system/files/documents/2020/04/doh_covid19_reportin

gtestresults_rev_043020.pdf). 2020. 

11. Kulldorff M, Athas WF, Feurer EJ, Miller BA, Key CR. Evaluating cluster alarms: a 

space-time scan statistic and brain cancer in Los Alamos, New Mexico. Am J Public 

Health. 1998;88(9):1377-1380. 

12. Kulldoff M. Prospective time-periodic geographical disease surveillance using a scan 

statistic. Journal of the Royal Statistical Society. 2001;A164:61-72. 

13. Kleinman K, Lazarus R, Platt R. A generalized linear mixed models approach for 

detecting incident clusters of disease in small areas, with an application to biological 

terrorism. Am J Epidemiol. 2004;159(3):217-224. 

14. NYC Health + Hospitals. More testing, more support: Mayor De Blasio announces 

hyper-local Covid-19 response and community testing partnerships (press release, 

https://www.nychealthandhospitals.org/pressrelease/mayor-de-blasio-announces-hyper-

local-covid-19-response-and-community-testing-partnerships/). 2020. 

15. Sethuraman N, Jeremiah SS, Ryo A. Interpreting diagnostic tests for SARS-CoV-2. 

JAMA. 2020;323(22):2249-2251. 

  

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.07.18.20156901doi: medRxiv preprint 

https://coronavirus.health.ny.gov/system/files/documents/2020/04/doh_covid19_reportingtestresults_rev_043020.pdf
https://coronavirus.health.ny.gov/system/files/documents/2020/04/doh_covid19_reportingtestresults_rev_043020.pdf
https://www.nychealthandhospitals.org/pressrelease/mayor-de-blasio-announces-hyper-local-covid-19-response-and-community-testing-partnerships/
https://www.nychealthandhospitals.org/pressrelease/mayor-de-blasio-announces-hyper-local-covid-19-response-and-community-testing-partnerships/
https://doi.org/10.1101/2020.07.18.20156901


9 

 

Table 1. Input file specifications for SARS-CoV-2 percent positivity analyses in New York City, 

using the prospective Poisson-based space-time scan statistic. 

Feature Selection Notes 

Geographic 

aggregation 

Census tract (defined using US Census 

2010 boundaries) of residential 

address at time of report 

With less aggregated data, the more 

precisely areas with elevated rates can 

be identified. New York City has 

2165 census tracts. If geocoding is 

infeasible, then ZIP Code could be 

used, but with a loss of spatial 

precision. 

Case file Unique persons reported with a 

positive result for a molecular 

amplification detection (PCR) test for 

SARS-CoV-2 RNA in a clinical 

specimen. Retain specimen collection 

date of first positive test. 

Confirmed COVID-19 cases* 

Population 

file 

Unique persons reported with a 

molecular amplification detection 

(PCR) test for SARS-CoV-2 RNA in a 

clinical specimen. For persons who 

ever tested positive, retain specimen 

collection date of first positive test. 

Otherwise, retain most recent 

specimen collection date. For a given 

census tract and date, if no specimens 

were collected, then include in file as 

having zero population. 

Necessary to control for spatial and 

temporal variability to testing access. 

We do not use a Census-based 

population denominator because with 

a numerator of testing positive 

conditional on having been tested and 

a total population denominator 

unconditional on testing, results 

would have been difficult to interpret. 

Omissions 

from input 

files 

Residents of long-term care facilities, 

correctional facilities, facilities 

housing people with developmental 

disabilities, or homeless shelters; 

persons whose home address matches 

a provider or facility; persons 

diagnosed in the 14 days prior to a 

more recent case residing in the same 

building identification number from 

geocoding; persons with COVID-19 

illness onset (where available from 

patient interview) prior to first date of 

study period. 

To focus on detecting recent 

community-based transmission, 

exclude: residents of congregate 

settings, because building-level 

clusters are detected using other 

methods;‡ persons whose listed home 

address is not a residence; >1 case per 

building; patients diagnosed long 

after illness onset. 

Date of 

interest for 

analysis 

Specimen collection date Defining reportable disease clusters 

according to when patients 

became ill is preferred. Specimen 

collection date is the earliest date 
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available for the study population of 

persons tested. 

Study period 21 days† for analysis to support 

prioritization of case investigations; 

since June 1, 2020 for analysis to 

support place-based resource 

allocation 

 

 

Defining a study period at least 3 

times the maximum temporal window 

helps with statistical power. 

Extending the study period further 

may decrease the accuracy of the 

temporal trend adjustment but might 

be of interest to detect more 

prolonged clusters. If citywide 

percent positivity reaches an 

inflection point (e.g., begins to 

increase again after a period of 

decrease), the study period will need 

to be temporarily shortened and reset 

after that inflection point to 

accurately adjust for the temporal 

trend. For longer temporal window, 

selected June 1, 2020 as earliest date 

when citywide percent positivity 

trend appeared stable without an 

inflection point. 

Lag for data 

accrual 

3 days 

 

Given lags between specimen 

collection and report, exclude very 

incomplete data at end of study period 

when estimating the temporal trend. 

Three days is the minimum lag 

possible to preserve a timely analysis 

while allowing for at least some data 

to be reported, geocoded, and 

analyzed prior to open of business. 

 

*Turner K, Davidson SL, Collins J, Park SY, Pedati CS. Council of State and Territorial 

Epidemiologists (CSTE) standardized surveillance case definition and national notification 

for 2019 novel coronavirus disease (COVID-19) 

(https://cdn.ymaws.com/www.cste.org/resource/resmgr/2020ps/Interim-20-ID-01_COVID-

19.pdf). 2020. 

†See Technical Appendix. 

‡Levin-Rector A, Nivin B, Yeung A, Fine AD, Greene SK. Building-level analyses to 

prospectively detect influenza outbreaks in long-term care facilities: New York City, 2013-

2014. Am J Infect Control. 2015;43(8):839-843. 
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Table 2. Selected SARS-CoV-2 percent positivity clusters prospectively detected during June–July 2020, New York City. 

Maximum 

temporal 

window 

applied in 

analysis 

(days) 

Specimen 

collection 

date range 

of cluster,  

2020 

 

Detection 

date,  

2020* 

Radius 

(km) 

Observed 

cases 

 

Relative 

risk 

 

Recurrence 

interval 

(days) 

SARS-CoV-2 

percent positivity 

within cluster (%) 

Median age 

(range, 

years) 

Notes 

7  June 17–19 June 22 0.6 6 4.0 1 2.2 40 (28–58) Low recurrence 

interval; 

epidemiologic 

linkage identified 

of a gathering 

7 July 14–16 July 19 1.0 17 4.3 323 4.9 30 (1–45) High recurrence 

interval; no 

epidemiologic 

linkage identified 

21 July 5–12 July 15 0.6 20 3.4 55 8.9 34 (4–87) Cluster contributed 

to selection of one 

ZIP code for 

targeted testing and 

outreach 

 
*To account for data accrual lags, a 3-day delay was imposed between the end of the SaTScan study period and the detection date. 
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Figure. Cluster case counts and SARS-CoV-2 percent positivity inside and outside cluster area for clusters detected in New York City 

(A) on June 22, 2020 in 5 census tracts, in which patients reported common attendance at a social gathering, and (B) on July 15, 2020, 

in 7 census tracts, contributing to the selection of one ZIP code for targeted testing and outreach. 
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Technical Appendix 

Technical Appendix Table 1. Analysis parameter settings for SARS-CoV-2 percent positivity 

analyses in New York City, using the prospective Poisson-based space-time scan statistic. 

Parameter Parameter setting Notes 

Analysis type Prospective space-time For timely cluster detection, prospective (rather 

than retrospective) analyses are used, 

evaluating only the subset of possible clusters 

that encompass the last day of the study period. 

To detect acute, ongoing, localized disease 

clusters, space-time analyses (rather than purely 

temporal or purely spatial analyses), are used 

Model type Discrete Poisson We apply the discrete Poisson-based scan 

statistic, defining the “population” file as 

persons tested, to scan for clusters of increased 

percent positivity. If SARS-CoV-2 percent 

positivity is high (say, >10%), then the discrete 

Poisson-based scan statistic is a poor 

approximation for Bernoulli-type data of 

persons testing positive and negative. The 

analysis would produce conservative p-values 

(i.e., recurrence intervals biased too low), and 

true clusters might be missed. However, 

SaTScan v9.6 does not include features for 

spatial and temporal adjustments for the 

Bernoulli probability model. 

Maximum 

spatial cluster 

size 

50% of the population 

being tested 

The option that imposes the fewest assumptions 

is to allow the cluster to expand in size to 

include up to 50% of all persons tested during 

the study period. Forcing clusters to be smaller 

than 50%, or restricting in terms of geographic 

size by setting a maximum circle radius, can be 

motivated in geographically larger study 

regions. 

Maximum 

temporal 

cluster size 

7 days* for analysis to 

support prioritization of 

case investigations; 21 

days for analysis to 

support place-based 

resource allocation 

To focus on hotspots emerging during the most 

recent week; to focus on areas with more 

sustained emerging increases. 

Minimum 

temporal 

cluster size 

3 days* for analysis to 

support prioritization of 

case investigations; 7 

days* for analysis to 

Clusters of <3-day duration considered less 

credible for investigation as an emerging 

hotspot; clusters of <7 days considered lower 

priority for resource allocation. 
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support place-based 

resource allocation 

Minimum 

number of 

cases 

5 cases Require a minimum number of cases to 

improve the probability of at least 3 patients 

within a given cluster being reachable for 

interview to support identification of a common 

exposure. 

Temporal trend 

adjustment 

Log-linear with 

automatically calculated 

trend* 

If citywide percent positivity decreasing 

overall, then wish to detect areas where 

decreasing slower than citywide average. If 

citywide percent positivity increasing overall, 

then wish to detect areas where increasing more 

than citywide average. Adjusting for temporal 

trend nonparametrically is not possible if also 

using nonparametric spatial adjustment. 

Spatial 

adjustment 

Nonparametric, with 

spatial stratified 

randomization 

Goal is to detect areas with relative increases 

from baseline, even if still lower than average 

citywide. This method adjusts the expected 

count separately for each location, removing all 

purely spatial clusters. The randomization is 

then stratified by location ID to ensure that each 

location has the same number of events in the 

real and random data sets. 

Scan for areas 

with:  

High rates Interested only in increased disease 

transmission. 

Inference  Default p-value method, 

with maximum number of 

Monte Carlo replications 

= 9999 

A maximum of 9999 replications increases 

power compared with 999 replications and is 

computationally feasible. 

Secondary 

cluster 

reporting 

criteria (output 

parameter) 

No cluster centers in other 

clusters 

Any disease may have multiple active clusters 

at any moment, so secondary clusters should be 

reviewed. By reviewing clusters with no cluster 

centers in other clusters (rather than no, or more 

geographic overlap), secondary clusters with 

some overlap can be detected. 

* See “study period and time precision” section below. 

 

Geocoding 

Patient addresses were geocoded daily using version 20A of the NYC Department of City 

Planning’s Geosupport geocoding software, implemented in R through C++ using the Rcpp 
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package.3 Addresses that failed to geocode were then cleaned using a string searching algorithm 

performed against the Department of City Planning’s Street Name Dictionary and Property 

Address Directory. Addresses that failed to geocode after cleaning were then verified using the 

IBM Infosphere USPS service. 

 

Study period and time precision 

SaTScan v.9.6 can estimate a temporal trend (see below), but only at an annual time 

scale, as this feature was originally developed to accommodate long-term secular trends across 

multiple years, as for cancer incidence. As a workaround to accommodate a rapidly changing 

trend, as for SARS-CoV-2 test positivity, reassign one day as if it were one year in the SaTScan 

case and population input files and conduct analyses at annual resolution. For example, for a 21-

day study period ending June 19, 2020, reassign May 30, 2020 as the year “2000” and June 19, 

2020 as the year “2020,” and indicate a time precision and a time aggregation of “year,” (i.e., 

PrecisionCaseTimes=1 and TimeAggregationUnits=1 in the SaTScan parameter file). The 

minimum and maximum temporal cluster sizes would be input as years instead of days. 

Similarly, with input data expressed in years, nonparametric adjustment for space by day-of-

week interaction was not possible. Note that in calculating the recurrence interval, SaTScan 

assumes that analyses are repeated on a regular basis with a periodicity equal to the specified 

time interval length. Because these daily analyses are specified at annual time intervals, interpret 

recurrence intervals in days, not years; e.g., a recurrence interval of 1.0 years in this context 

should be re-interpreted as 1.0 days, i.e., consistent with chance alone. 

 
3 Eddelbuettel D, Francois R. Rcpp: Seamless R and C++ integration. Journal of Statistical 

Software. 2011;40(8):1–18. 
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Temporal trend adjustment 

As a workaround for a bug in SaTScan v.9.6 in calculating a temporal trend adjustment in 

the prospective setting, first use the case and population files to run a retrospective purely 

temporal Poisson analysis, with the temporal adjustment “Log linear with automatically 

calculated trend” (TimeTrendAdjustmentType=3 in the SaTScan parameter file). Read in this 

automatically calculated temporal trend from the SaTScan text output. Retain the magnitude of 

trend (“X”) and sign of X determined by “increase” or “decrease.” Example SaTScan text output 

excerpt: 

 

                                         SaTScan v9.6 

                                 _____________________________ 

 

 

Program run on: Mon Jun 22 05:17:48 2020 

 

Retrospective Purely Temporal analysis 

scanning for clusters with high rates 

using the Discrete Poisson model. 

Adjusted for time trend with an annual decrease of 6.42984%. 

 

The time trend is the same for retrospective and prospective analyses. Then, run the 

prospective spatio-temporal Poisson analysis, inserting the calculated time trend in the parameter 

file as user-specified (TimeTrendAdjustmentType=2, TimeTrendPercentage=-6.42984 in the 

SaTScan parameter file). Example user interface screenshot: 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.07.18.20156901doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.18.20156901


17 

 

 
 

If unable to enter a negative value for the temporal trend adjustment in the user interface, 

then edit the “TimeTrendPercentage” value in the SaTScan parameter file in a text editor (e.g., 

Notepad), then reopen in SaTScan.  
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