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Abstract 
Background:  

Enterococcus faecium is a commensal of the gastrointestinal tract of animals and humans but 

also a causative agent of hospital-acquired infections. Resistance against glycopeptides and 

especially to vancomycin, a first-line antibiotic to treat infections with multidrug-resistant 

Gram-positive pathogens, has motivated the inclusion of E. faecium in the WHO global priority 

list. Vancomycin resistance can be conferred by the vanA gene cluster on the transposon 

Tn1546, which is frequently present in plasmids. The vanA gene cluster can be disseminated 

clonally but also horizontally either by plasmid dissemination or Tn1546 transposition between 

different genomic locations. Here, we reconstructed all nested genetic elements (clone, plasmid, 

transposon) to study how the dissemination of vanA-type vancomycin resistance occurred in 

Dutch hospitals (2012-2015).  

 

Methods:  

We performed a retrospective study of the genomic epidemiology of 309 vancomycin-resistant 

E. faecium (VRE) isolates across 32 Dutch hospitals (2012-2015). Genomic information 

regarding clonality and Tn1546 characterisation was extracted using hierBAPS sequence 

clusters (SC) and TETyper, respectively.  Plasmids were predicted using gplas in combination 

with a network approach based on shared k-mer content. This allowed determining all nested 

genomic elements (clone, plasmid and transposon) involved in the dissemination of the vanA 

gene cluster. Next, we conducted an  "all vs. all '' pairwise comparison between isolates sharing 
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a potential epidemiological link to elucidate whether clonal, plasmid or Tn1546 spread 

accounted for the dissemination of vanA resistance. 

Results:  

The 309 VRE isolates belonged to 18 different SCs of which SC13 (n = 102, 33%), SC17 (n = 52, 

16.8%) and SC18 (n = 42, 13.6%) were predominant. We identified seven different plasmid 

types bearing the vanA gene cluster, four of which were highly similar (identity ~99%, coverage 

~84%) to previously described complete plasmid sequences. We estimated that clonal 

dissemination contributed most (~45%) to the spread of vancomycin-resistance in Dutch 

hospitals, followed by Tn1546 mobilisation (~12%) and plasmid dissemination (~6%).  

Conclusions:  

The dissemination of the vanA gene cluster in Dutch hospitals between 2012 and 2015 was 

dominated by clonal spread. However, we also identified outbreak settings with high 

frequencies of Tn1546 transposition and/or plasmid dissemination in which the spread of 

resistance was mainly driven by horizontal gene transfer (HGT). This study demonstrates the 

feasibility of distinguishing between modes of dissemination with short-read data and provides 

one of the first quantitative assessments to estimate the relative contribution of nested genomic 

elements in the dissemination of vanA- type vancomycin resistance cluster. 

Keywords 
Enterococcus faecium, genome sequencing, vancomycin resistance, network, clonal 
dissemination, horizontal dissemination, horizontal gene transfer  

Background 
Enterococcus faecium is commonly inhabiting the gut of animals and humans but has also 

emerged as a nosocomial pathogen causing a sizable fraction of healthcare-associated 

infections, specifically device-associated infections like central line-associated bloodstream and 

surgical site infections (1,2).  The intrinsic and acquired multi-drug resistance against 

fluoroquinolones, aminoglycosides and more importantly against glycopeptides motivated the 

inclusion of E. faecium in the WHO global priority list (3).  The number of strains resistant 

against vancomycin, a first-line glycopeptide antibiotic to treat infections with multidrug 

resistant Gram-positive pathogens, dramatically increased first in the US in the 1990s, followed 
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by other parts of the world (4). Resistance against vancomycin can be acquired through eight 

different gene clusters (vanA, vanB, vanD, vanE, vanG, vanL, vanM, and vanN) (5,6) of which vanA 

and vanB, associated to transposon sequences Tn1546 and Tn1549, respectively, are the 

predominant vancomycin-resistance gene clusters (7).  

 

Clonal spread of vancomycin-resistant Enterococcus faecium (VRE) has been extensively 

described using a plethora of molecular typing schemes. They range from fingerprint-based 

methods like pulsed-field gel electrophoresis (8), to PCR-based methods such as multiple-locus 

variable number tandem repeat analysis (9), multilocus sequence typing (10) and whole 

genome sequencing (11). However, due to the fact that vancomycin resistance genes are located 

on mobile genetic elements, vancomycin resistance also has the potential to be transferred 

horizontally. In fact, mobilization of the vanA gene cluster via insertion in different plasmid 

backbones has already been reported (12,13). To identify the dissemination of vanA plasmids 

within hospital settings, whole-genome sequencing (WGS) based on short-read technologies has 

been recently applied to collections of hundred hospitalized patient isolates in Denmark and 

Australia (14,15). These studies undertook a reference-based approach to map short-reads 

against complete plasmids from a selection of isolates. However, this approach can overestimate 

the presence of a reference plasmid by neglecting the mosaicism observed in these types of 

sequences as previously observed for Enterobacteriaceae isolates (16) and Enterococcus 

populations (17).  

 

The dissemination of the vanA gene cluster can occur vertically, in which case the same plasmid 

type and Tn1546 variant are observed in two clonal isolates. However, the vanA gene cluster can 

also be horizontally transferred, by two different processes: i) plasmid dissemination which is 

reflected by observing the same plasmid type and Tn1546 variant in strains that have a different 

clonal background, and ii) transposition of Tn1546 between different plasmid types (18–20). 

This nested nature of these mobile genomic elements resembles the Russian-Doll model which 

has been previously used to describe the transfer of carbapanamese genes, blakpc, in 

Enterobacteriaceae (16). It is important to note that the Tn1546 is a non-conjugative transposon 

but its mobilisation can occur when the element is embedded in another conjugative element. 

Furthermore, the presence of IS elements (e.g. IS1216) surrounding the transposon can mobilise 

the vanA gene cluster to other genomic locations (18–20).  

 

The genomic approach conducted here allowed to fully reconstruct and quantify the most likely  

mode of dissemination by characterizing the clonal background (hierBAPS SC), vanA plasmid 

type (de novo prediction and network assignment) and Tn1546 variants harboring the vanA 
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resistance gene cluster.  Clonal dissemination, defined by vertical inheritance of the same SC, 

vanA plasmid type and Tn1546 variant, was the most frequent scenario of vancomycin-

resistance dissemination occurring in the Netherlands between 2012-2015. However, we also 

detected outbreak settings in which Tn1546 transposition between distinct plasmid types 

and/or plasmid dissemination were the dominant mechanisms driving the vanA gene cluster 

dissemination. To our knowledge, we provide one of the first studies to estimate the frequencies 

of clonal and HGT processes in the dissemination of the vanA gene cluster occurring in Dutch 

healthcare settings between 2012-2015.  

Methods  

Dutch VRE collection, short-read WGS and genome assembly 

The isolates from this collection represent a subset of isolates from a previous study we 

conducted and that consisted of 1,644 E. faecium isolates (21). Isolates with the vanA-type 

vancomycin-resistance gene cluster (n=309) from 32 Dutch hospitals collected between 2012 

and 2015 were further analyzed. DNA extraction, and whole-genome sequencing using Illumina 

NextSeq were conducted as previously described (22). Short-reads were trimmed using Trim 

Galore (version 0.6.4_dev) using the flag ‘--paired’ and specifying a phred score of 20 with the 

flag ‘--quality’ (23). We used Unicycler (version 0.4.7) passing the short paired-end trimmed 

reads from Trim Galore and specifying the normal mode ( --mode) (24). Unicycler was used to 

compute the assembly graph provided in the file ‘assembly.gfa’ which selects for the k-mer size 

that optimises the ratio between number of dead-ends and contig size in the graph given by 

SPAdes (version 3.14.0) (25). In-silico prediction using Abricate 

(https://github.com/tseemann/abricate, version 0.8), with the ResFinder database (indexed on 

16th of July 2018) (26) was conducted to search and select for isolates bearing the vanA 

resistance gene.  

Population structure of VREfm isolates  

Recombination events and estimation of sequence clusters using BratNextGen and hierBAPS 

were performed as previously described (21). PopPUNK (version 2.0.1) was run specifying the 

flag ‘--easy-run’ with a minimum k-mer size of 13 (flag --min-k) and creating the files required 

to generate a microreact project (flag --microreact) (27).   
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De-novo plasmid prediction  

Gplas (version 0.6.1) was used to de novo predict the plasmids present in the assembly graph of 

each VRE isolate (28). Gplas was run using mlplasmids (22) as classifier to predict plasmid 

sequences (flag ‘-c’), specifying the species model ‘Enterococcus faecium’ (flag -s), a modularity 

threshold of 0.1 to partition the resulting bins (flag -q), and 50 walks per plasmid seed  (flag -x).   

Tn1546 characterisation   

TETtyper (unique version) was used (29) to detect SNPs and deletions present in the Tn1546 

sequences of each complete plasmid sequence or predicted vanA plasmid bin against a reference 

sequence (--ref) corresponding to the original transposon structure (NCBI Nucleotide Accession 

M97297) described by Arthur et al. (30). We passed the trimmed reads to TETyper with 

otherwise default parameters.  

Network of complete plasmid sequences and plasmid type definition  

Mash (version 2.2.2) (31) specifying a k-mer size (-k) of 21 and sketch size (-s) of 1,000 was 

used to perform k-mer pairwise comparisons between the 26 complete vancomycin-resistant 

(vanA) plasmids from the same collection of 1,644 E. faecium isolates (21). Based on the density 

distribution of Mash distances, we estimated an optimal cutoff of 0.025 to define the minimum 

distance to draw an edge between two nodes (complete plasmid sequences) in a network. The 

igraph R package (version 1.2.4) was considered to represent the network (32). Independent 

components (subgraphs, size > 1 node) in the network were considered as plasmid types (A-F).  

 

To perform average nucleotide identity (ANI) measures between the complete plasmid 

sequences, we used the script ‘average_nucleotide_identity.py’ provided in the pyani tool 

(version 0.2.10) (33) with default parameters. We further considered the reported ANIm 

alignment coverage and ANIm identity values to support plasmid type assignments. The 

hierarchical clustering given by pyani, based on ANIm alignment coverage, was compared 

against the plasmid types defined using our proposed network approach.  

 

For visualization purposes, the starting coordinate position of complete vanA plasmids was 

adjusted using the function fixstart from circlator (version 1.5.5) using a customized database of 

known plasmid replication initiator sequences (34). Easyfig (version 2.2.2) (35) with a 

minimum 80% identity and minimum block length of 500 bp were considered to visualize the 
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blastn alignment (36) produced using the complete plasmid sequences belonging to the plasmid 

type B.   

 

Network of predicted plasmid bins and integration of plasmid types  

The predicted plasmid bins reported by gplas and bearing the vanA gene cluster were pairwise 

compared using Mash (k = 21, s = 1,000).  The igraph R package (version 1.2.4) was used to 

represent a network in which nodes corresponded to vanA plasmid bins and edges to 

connections between bins with a Mash distance lower than 0.025. The same threshold (0.025)  

to define an edge was considered since the density distribution of Mash distances followed the 

same pattern as previously observed with the complete plasmid sequences. The network 

consisted of 270 nodes and 16 independent components (subgraphs with > 1 node). Component 

3 (236 nodes) was partitioned into 3 different graph groups based on its modularity value 

(0.42) using the function ‘cluster_louvain’ from the igraph R package (version 1.2.4). We focused 

on components/graph bins with > 10 isolates that were termed as plasmid bin groups (1-8).  

 

Next, we integrated the plasmid types (A-F) into the network of predicted plasmid bins. For this 

purpose, we computed Mash distances (k = 21, s = 1,000) between complete plasmid sequences 

and predicted plasmid bins. The igraph R package (version 1.2.4) was used to represent a 

network in which nodes either corresponded to vanA plasmid bins or complete plasmid 

sequences and edges to connections between sequences (bins or complete sequences) with a 

Mash distance lower than 0.025. Plasmid bin groups with edges connecting to complete plasmid 

sequences were assumed to carry the same plasmid type (A, B, C, D). Plasmid bin groups 

without edges connecting to complete plasmid sequences were considered as carrying novel 

plasmid types (G, H, I).  

Contribution of nested genomic elements in the dissemination of vanA-type 

gene cluster 

Pairwise comparisons were computed between VRE isolates sampled within 12 consecutive 

months and isolated at: i) same hospital, ii) same Dutch region and iii) country-wide. We 

determined which genomic elements were shared between pairs of VRE isolates and defined the 

following scenarios: i) clonal dissemination, characterized by identical SC, vanA plasmid type 

and Tn1546 structure; ii) HGT plasmid dissemination, characterized by identical vanA plasmid 

type and Tn1546 structure but distinct SC type, iii) HGT transposon dissemination, 
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characterized by identical Tn1546 structure but distinct SC and vanA plasmid types and iv) no 

linkage (unrelated cases),  distinct Tn1546 structure.  

Visualization of genomic elements 

The R package maps (version 3.3.0) in combination with the R package ggplot2 (version 3.1.0) 

were considered to plot spatial information of the isolates specifying the map of the 

Netherlands. The R package genoplotR (version 0.8.9)(37) was used to visualize the gene 

structure and to highlight the vanA gene cluster location and the presence of IS elements 

present in the plasmid types (A-F). The R package ggtree (version 1.14.6) (38) was used to 

integrate the neighbour-joining tree based on the core-genome given by PopPUNK together 

with SC assignment and predicted vanA plasmid types. In addition, a Microreact project (version 

15.0.0) (39) was created to integrate and visualize the genomic and metadata information.   

Results 

The population structure of VRE from Dutch hospitals  

This study was conducted with samples from an extensive collection of 1,644 E. faecium isolates 

derived from clinical and non-clinical sources with associated short-read WGS data (21).  We 

focused on Dutch clinical isolates with complete metadata information regarding clinical 

settings and isolation date, from 2012 to 2015 (n = 593). From this selection, 309 (52.1%) and 

265 (44.7%) isolates carried the vanA and/or vanB gene clusters, respectively.  We focused on 

the vanA VRE samples since the resistance gene cluster is frequently present on plasmids 

(40,41). This permitted us to investigate a nested genomic system in which the glycopeptide 

resistance can be disseminated on a clonal, plasmid and/or transposon level.  

 

The clonality of these 309 vanA VRE  samples was determined using hierBAPS (42), after 

filtering for recombination events as previously described (21). HierBAPS defined 18 different 

sequence clusters (SCs) of which SC13 (n = 102, 33%), SC17 (n = 52, 16.8%) and SC18 (n = 42, 

13.6%) represented the most predominant clones in the dataset (Figure 1A). The distribution of 

these SC across time and geographical position showed that SC13 was widespread in Dutch 

hospitals for the entire collection period (2012-2015) (Figure 1B) compared to SC17 which was 

observed in distinct regions (Amsterdam, Lelystad, Zwolle) from August-September 2012 

(Figure 1B). SC18 was detected around 2014 in several Dutch regions (Figure 1A).  A core-

genome based neighbour-joining tree of the samples was computed using PopPUNK (27), and it 
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was integrated with metadata information in the following Microreact project 

https://microreact.org/project/FCUD_d1zt . Metadata information and SC assignment of the 

isolates are also available in Additional File S1.  

Developing a novel plasmid typing scheme based on network clustering 

To establish a partitioning scheme similar to hierBAPS SCs but uniquely based on the similarity 

between plasmids carrying the vanA-type gene cluster, we first retrieved 26 E. faecium complete 

vanA plasmids from the same collection of 1644 clinical and non-clinical isolates (21) with 

known isolation date and country (Table 1). These complete sequences were pairwise 

compared using Mash (k = 21, s = 1,000) and integrated into a network. Based on the k-mer 

distance distribution (Fig. S1), we defined an optimal cutoff of 0.025 to define an edge in the 

network. This resulted in six independent subgraphs in the network that signified distinct vanA 

plasmid types (A-F) with similar content and structure (Fig. 2A). Two complete plasmid 

sequences (E8172_3 and E8202_3) remained as singletons in the network and were not further 

considered in the analysis.  

 

To better understand the modularity and similarity of these plasmid types, we estimated 

average nucleotide identity (ANI) values using pyani (33). This allowed retrieving ANI coverage 

and identity values of the aligned regions between two complete plasmid sequences (pairwise 

comparisons). We observed that the average coverage between plasmid alignments belonging 

to the same plasmid type was 84% compared to a coverage of 35% when comparing alignments 

from different plasmid types. The single-linkage hierarchical clustering of the alignment 

coverage reported by pyani suggested the same plasmid types as inferred in our network 

approach (Fig. 2B). We did not observe differences in the average identity values between 

aligned regions within  (98.5%) and between (99.7%) plasmid types indicating a common 

origin of the plasmid modules present in the different types (Fig. S2).  To exemplify this, we 

show the plasmid modularity observed in the complete sequences from plasmid type B, since it 

had the highest SC diversity and number of associated sequences (Fig. S3).    

 

In Additional File S2, we provide a detailed genomic characterization of the plasmid types (A-F) 

with a focus on i) replication initiator proteins (rep), ii) Tn1546 variant compared to the original 

sequence described by Arthur et al. (30),  iii) antimicrobial resistance (AMR) genes distinct from 

the vanA gene cluster and iv) presence of well-known E. faecium plasmid TA systems such as ω-

ε-ζ and axe-txe (43). 
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Plasmid prediction and network integration 

Next, we performed a de-novo plasmid prediction of the sequences carrying the vanA gene 

cluster in the set of 309 VRE samples using gplas (28). This tool uses a combination of machine-

learning and a graph-based approach to predict plasmid sequences from short-read graphs 

(28). Contigs predicted as belonging to the same plasmid sequence are returned in the same bin.  

 

In 282 isolates (91.2%), the contig which encodes for the vanA gene cluster (vanA contig) was 

present in a plasmid bin predicted by gplas. In the remaining isolates (n = 27, 8.7%), the vanA 

contig remained unbinned and thus we could not predict whether the vanA gene cluster was 

part of a plasmid. This could be caused by a fragmented assembly graph due to, for example, a 

low sequence coverage.  Also high differences in the k-mer coverage of contigs from the same 

plasmid can prohibit binning of plasmid contigs with gplas. The inability of gplas to predict the 

plasmid location of vanA could also be indicative of a chromosomal location of the vanA gene 

cluster. However, manual inspection of the assembly graph in these 27 isolates revealed that the 

vanA k-mer coverage was clearly higher and distinct from the median k-mer coverage of all 

contigs, indicative of a plasmid location with a higher copy number compared to the 

chromosome.  

 

Based on these findings, we concluded that in all 309 vanA VRE isolates (100%),  the gene 

cluster was present in a plasmid background. The preferential presence of the vanA cluster in a 

plasmid was previously reported by Freitas et al. (53 isolates, 100% plasmid encoded vanA) 

(40) and Wardal et. al (88 isolates, 98% plasmid encoded vanA) (41). These 27 isolates in which 

the vanA gene cluster could not be assigned to a particular plasmid bin were excluded from 

further analysis. 

 

To elucidate gene content and synteny of the plasmid bins (n = 282), we integrated the complete 

plasmid sequences (Table 1, Figure 2) used to define the six plasmid types A to F with the 

predicted plasmid bins carrying the vanA gene cluster (n = 282).  The presence of edges 

connecting complete plasmids and predicted vanA plasmid bins revealed that the predictions 

had a similar k-mer content and thus further validated the predicted vanA plasmid bins (Fig. 3). 

Furthermore, the distribution of k-mer distances between the plasmid bins (Fig. S5) followed 

the same pattern as observed with the complete plasmid sequences (Fig. S1). Based on this, the 

same threshold (0.025) was considered to draw an edge between nodes in the network shown 

in Figure 3. Nodes were coloured based on the SC of the isolate bearing the complete plasmid 

sequence or vanA plasmid bin (Fig. 3).  
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We focused on the presence of eight distinct groups of bins which corresponded to graph 

components that were highly interconnected in the network and had more than 10 nodes 

(Figure 3, Table 2). Four of these groups co-clustered together with complete plasmid 

sequences belonging to the plasmid types A, B, C, D. Three groups of plasmid bins (n = 3) were 

considered as carrying novel plasmid types (G, H, I) since they were not connected to any 

complete plasmid sequence. This approach allowed assigning 239 isolates with a particular 

plasmid type (A, B, C, D, G, H, I) (Table 2). In Additional File S2, we provide an extensive 

characterization of the groups observed in the network (Fig. 3) based on group diversity 

regarding SC, Tn1546 variants, geographical site and year of isolation. The Tn1546 variants 

found in the different samples with respect to the transposon described by Arthur et. al (30) are 

outlined in Additional File S3.  

 

In Figure 4, we combined the core-genome based neighbour-joining tree with SC and vanA 

plasmid type assignments. Some closely related isolates in the core-genome tree had distinct 

predicted vanA plasmid types as exemplified by SC17 containing plasmid types B and H (Fig. 4). 

The observation of divergence in the plasmid content within the same SC indicates that 

particular VRE strains horizontally acquired different vanA plasmids (Fig. 4). Based on this, we 

concluded that the plasmid types B, C, D and H were horizontally disseminated between non-

clonal E. faecium strains whereas the plasmid types A, G and I were linked to isolates which 

were clonally related (Figure 4, Additional File S2). Plasmid type assignments were also 

integrated into the Microreact project https://microreact.org/project/FCUD_d1zt to facilitate 

the exploration of the results.   

                                                                                                             

Dynamics of vanA-type resistance dissemination  
 

The identification of the seven vanA plasmid types (A, B, C, D, G, H, I) present in our Dutch VRE 

collection allowed us to estimate the contribution of the nested genetic elements, clone (defined 

as hierBAPS-based SC), plasmid-type and Tn1546 variant, into the dissemination of the vanA 

gene cluster.  

 

To establish this, we first grouped VRE isolates with a potential epidemiological link which 

corresponded to isolates from the same Dutch region and recovered within a period of 12 

months. To estimate the importance of the inter-regional spread of vancomycin-resistance, the 

same approach was taken without taking into account the origin of the isolates. We then 

performed a pairwise "all vs. all '' comparison of hierBAPS SC, predicted vanA plasmid type 
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and/or Tn1546 variants of VRE isolates. Based on this, we defined the most likely scenarios of 

the dissemination of the vanA gene cluster: i) clonal dissemination, defined by observing the 

same SC, vanA plasmid type and Tn1546 variant; ii) plasmid dissemination, defined by 

observing the same vanA plasmid type and Tn1546 variant but different SC; and iii) Tn1546 

transposition, defined by observing the same Tn1546 variant in different plasmid types.  

 

We observed that, on average, clonal dissemination was the predominant mode of vancomycin-

resistance spread (~45%), followed by Tn1546 mobilisation, (~12%) and plasmid 

dissemination (~6%). However, the dynamics of vancomycin-resistance spread were clearly 

distinct between regions (Fig. 5).  

 

Clonal dissemination driven by the hierBAPS SC 17, plasmid type B and Tn1546 variant 

represented by the T7658C, G8234T SNPs and deletions in orf1, orf2 (1-3343), contributed 

most to vanA-type vancomycin resistance spread in the provinces of  Flevoland (2012-2013, 

frequency avg. = 70%) and North-Holland (2012-2013, frequency avg. = 75%) (Fig. 5). 

Interestingly, in North-Holland (2013-2014), clonal dissemination was still the predominant 

mode of spread (frequency = 70%) but was driven by a different clone defined by the hierBAPS 

SC 13, plasmid type C, and the Tn1546 variant with deletions in orf1, orf2 (1-3417) and 

deletions in the intergenic region 8650-8827.  In contrast, mobilisation of the Tn1546 variant 

characterised by SNP positions T7658C, G8234T, and deletions in orf1, orf2 (1-3343) between 

plasmid types B, C, H was predominant in Overijssel (2012-2013, freq = 47%). The Tn1546 

variants present in the different plasmid types are extensively described in Additional File S2.  

 

Lateral transfer of plasmids contributed most to the dissemination of vancomycin resistance in 

the province of South Holland (2014-2015, freq. avg = 42%). There, we found that plasmid type 

C together with the Tn1546 variant with the orf1, orf2 deletions 1-3417, and intergenic region 

deletions 8650-8827, was found in four distinct clonal backgrounds (SCs: 2, 10, 13, 19). Based 

on this analysis and the fact that the isolates mainly occurred in the a single hospital of the 

South Holland region, we conclude that this epidemic rise of vancomycin resistance involved the 

dissemination of a single plasmid (type C), so could be characterized as a plasmid-driven 

outbreak of vancomycin-resistance (Fig. S6). We also observed complex scenarios of mixtures of 

genomic units exemplified by Limburg in 2012-2013, in which clonal (freq = 38%), plasmid 

dissemination (freq = 7%) and Tn1546 transposition between distinct plasmid types (freq = 

21%), all contributed to the spread of vancomycin-resistance.  
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Finally, we analysed the spread of vancomycin resistance on a country-wide perspective. 

Pairwise "all vs. all '' comparisons revealed that in most cases VRE strains, plasmid and Tn1546 

variants were unrelated (~59%). Clonal dissemination was detected in ~27% of the 

comparisons. Plasmid dissemination and transposition of Tn1546 accounted for ~7% of the 

comparisons (Fig. S7). However, during the period of 2014-2015, plasmid dissemination 

increased up to ~29% which could be linked to the South-Holland plasmid outbreak (2014-

2015) described above (Fig. S6).  

Discussion  
In this study, we propose a combination of machine-learning and graph-based techniques 

coupled with a network analysis of the shared plasmid k-mer content to elucidate the dynamics 

of vertical and horizontal dissemination of AMR genes with short-read WGS. We used this 

approach to elucidate the mode of vanA-type vancomycin resistance dissemination. Clonal and 

horizontal mobilisation of vanA were previously documented but the quantity of these events 

on a large scale is largely unexplored. Our analysis permitted us  to distinguish and quantify 

dissemination occurring by i) clonal spread, ii) plasmid dissemination and iii) Tn1546 

transposition between distinct plasmid types. This revealed that clonal dissemination was the 

predominant (~45%) mode of spread of vanA-type of vancomycin resistance, followed by 

mobilisation due to Tn1546 transposition among different plasmid types (~12%) and plasmid 

dissemination (~6%). The approach presented here can be applied to study clonal and HGT 

dissemination of other AMR genes, such as carbapanamese genes (blakpc) in Enterobacteriaceae 

or colistin-resistance genes (mcr) in Escherichia coli.  

 

Previous studies have described the importance of both clonal and horizontal Tn1546 

dissemination in the emergence of VRE isolates (18,20). However, a quantitative assessment of 

the contribution from the different nested genomic elements in the dissemination of 

vancomycin resistance has not been previously performed. Combining existing short-read WGS 

with complete vanA plasmids allowed us to define and characterize several plasmid types 

present in the collection. The integration of previously completed vanA plasmids was essential 

to elucidate the genetic content of the vanA plasmid bins present in our predicted network. 

These vanA plasmid types were defined by ~99% identity and ~84% coverage and were 

present in different clonal backgrounds (SCs), and carried a predominant Tn1546 variant that 

accumulated additional SNPs and/or deletions (Additional File S2). The genomic relatedness of 

strains, using hierBAPS, plasmid types and Tn1546 variants calling was combined to sketch a 
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comprehensive picture of the molecular epidemiology of vanA-type vancomycin resistance in 

Dutch hospitals. 

 

Transposition of Tn1546 between different plasmids has been reported before. Heaton et al. 

showed the transfer of the Tn1546 element from a non-conjugative to a conjugative plasmid in 

the same bacterial cell which was mediated by flanking IS1216 elements (19). Furthermore, 

horizontal dissemination by larger units than the Tn1546 as part of a composite transposon has 

also been previously documented (18,20). The transfer of the Tn1546 element, alone or as part 

of a composite transposon could explain the presence of highly similar variants in different 

plasmid types. Moreover, this observation could also explain the mosaicism observed in the 

plasmidome of hospitalized patients (44). The inclusion of further complete vancomycin-

resistant plasmids into our network could unravel the presence of mosaic plasmids resulting 

from recombination processes between different vancomycin-resistant plasmid types.  

 

The dissemination of the vanA gene cluster can also occur at a plasmid level in which both 

plasmid type and Tn1546 variant are horizontally disseminated, as observed in South-Holland 

between 2014-2015. This type of HGT dissemination can be driven by conjugative plasmids but 

also from non-conjugative mobilizable plasmids. The presence of non-conjugative plasmids co-

residing with conjugative plasmids in the same cell can enhance the horizontal dissemination of 

both plasmid sequences. This observation has been experimentally validated for the E. faecium 

pHTβ-like plasmid, which contained an efficient conjugation machinery, and allowed the 

mobilization of other multi-drug resistant and non-conjugative plasmids present in the same 

cell (45).  

 

The dissemination of vancomycin resistance was previously investigated using WGS in several 

recent studies (11,46–49) but seldom with a focus on distinguishing clonal and plasmid 

outbreaks. One exception is the study by Pinholt et al. (14) that used a combination of short-

read and long-read sequencing to describe the clonal expansion of VRE in the Capital Region of 

Denmark between 2012 and 2015. Here, ST80 was defined as responsible for the first observed 

local outbreaks. These clonal isolates subsequently spread to other hospitals in the same region. 

The plasmid bearing the vanA gene cluster was disseminated to other, non-clonally related 

vancomycin-susceptible isolates. In our data set covering the same time frame, ST80 

represented by SC18 was also a predominant clone (Fig. 1A). 

 

The emergence of vanA-type resistance was also investigated in Australia during 2015 using a 

combination of short and long-read sequencing (15). The study showed the presence of several 
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vanA plasmid types which were dominant in each ST group with distinct Tn1546 variants. This 

unravelled that, in Australia, the emergence of the vanA-type resistance most likely occurred by 

multiple introductions of different clones which suggested that HGT is not solely responsible for 

the spread of the vanA gene cluster, which is in line with our own results.  

 

Both these studies (14,15), however, followed a reference-based approach to deduce the 

presence of a particular vanA plasmid type. This could mask the presence of plasmid-types 

which are distinct from the selected reference plasmid(s). In our study, predicted plasmids have 

been integrated into a network that avoids the arbitrary usage of a reference plasmid and takes 

plasmid modularity into account. Bipartite networks were previously postulated to explore the 

pangenome of bacterial species with a particular emphasis on the accessory genome (50). A 

network approach also allows classifying plasmids in the absence of a common evolutionary 

history as it can integrate both horizontal and vertical inheritance, in contrast to phylogenetic 

trees (51,52). The classification of plasmids based on k-mer similarity networks has also 

recently been proposed by Acman et al. (53).  Consequently, our network-based analysis could 

be expanded to include other vanA plasmids from plasmid databases such as Plasmid Atlas or 

PLSDB (54,55) and could provide a global picture of the dissemination of vancomycin-

resistance.  

 

A focus on the core genome can overestimate the number of isolates that are considered as non-

related and thus missing potential epidemiological links. In line with Harris et al. (56), we 

encourage the shift from a traditional core genome view on outbreak investigations to a new 

perspective that also includes the analyses of HGT mobilisation of AMR genes to effectively 

confirm potential epidemiological links and correctly evaluate the effectiveness of infection 

control policies. We showed that highly similar plasmids can be transferred between different 

SC’s which challenges the interpretation of AMR outbreak studies that are solely focused on 

core-genome analysis. A factor that contributes to this clonality centricity are the limitations 

inherent to short-read WGS from which the assembly of plasmids is difficult and error-prone 

due to the high number of repeated sequences (57). For full resolution, many studies 

recommend long-read sequencing to complete chromosomes and plasmids (16,57,58). We show 

in this study, however, that distinguishing between different modes of spread is feasible also in 

the absence of long-read data. 

 

A limitation of this work is  that only a single colony per isolate was sequenced. This masked the 

true underlying  diversity present in the bacterial population and could have prohibited the 

detection of potential epidemiological links. While our data set allowed us to define the most 
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likely events of dissemination, we lacked patient admission and ward movement information to 

discern transmission routes and events, as previously shown by Raven et al. (11) and Neumann 

et al. (59).  The absence of data on vancomycin-susceptible isolates also prevented us to deduce 

how the distinct plasmid types and Tn1546 variants were introduced into the Dutch hospitals. 

Nonetheless, we succeeded to provide one of the first quantitative assessments to discern the 

dynamics and contribution of clonal and horizontal transmission in the dissemination of 

vancomycin resistance.  

 

Conclusions  
This study has shown that clonal dissemination was the preferential mode of dissemination of 

vanA-type vancomycin resistance in Dutch hospitals between 2012 and 2015. However, we also 

detected outbreak settings in which HGT dissemination, either mediated by plasmid or Tn1546 

dissemination, contributed most to the spread of resistance. Our analyses showed the 

importance of taking all nested genomic elements into account to effectively elucidate how 

resistance spreads in healthcare settings. This is fundamental to corroborate potential 

epidemiological links that could be neglected by uniquely considering strain relatedness. Only 

then, the effectiveness of current infection control policies to prevent AMR spread can be truly 

assessed.  

 

List of abbreviations  
WHO - World Health Organization  

VRE - Vancomycin resistant Enterococcus faecium  

WGS - Whole-genome sequencing  

HGT - Horizontal gene transfer  

AMR - Antimicrobial resistance  

SC - Sequencing cluster  

SNP - Single nucleotide polymorphism  

ORF - Open reading frame  
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Figure Legends 
Figure 1. Temporal and spatial distribution of the 309 VRE isolates. A) Isolation date 

distribution of the sequencing clusters (SC) found in the 309 VRE isolates. B) Geographical 

distribution of the 309 VRE isolates along the years (2012-2015).  

Figure 2. Definition of the plasmid types (A-F) observed in 26 vanA complete plasmid 

sequences. A) Network of vanA complete plasmid sequences. Nodes in the graph correspond to 

plasmids and edges to connections between similar (Mash distance = 0.025, k =21, s =1,000) 

plasmid sequences. The independent components, present in the network, were designated as 

plasmid types (n = 6) and nodes were coloured according to the SC isolate carrying the plasmid 

sequence. B)  Heatmap and single-linkage clustering of the pyani pairwise alignment coverage 

obtained from our set of vanA complete plasmid sequences (n = 26). The rectangles present on 

the right side indicate the grouping of the complete plasmid sequences into the defined plasmid 

types present in panel A (A-F).   

Figure 3. Network of predicted plasmid bins and complete vanA plasmid sequences. Nodes 

corresponding to complete plasmid sequences are highlighted with squared shapes while nodes 

from predicted plasmid bins are represented with circles. Edges are connections between nodes 

with similar vanA sequences (Mash distance = 0.025, k = 21, s = 1,000). Rectangles indicate the 

grouping of nodes, based on highly interconnected components, with a size larger than 10 

nodes. 

Figure 4. PopPUNK neighbour-joining tree, based on the core genome, in combination with 

hierBAPS Sequencing Cluster (SC) and vanA plasmid type assignments. 
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Figure 5. Contribution of nested genomic elements in regional dissemination of vanA-type 

vancomycin resistance in the Netherlands. VRE samples isolated from 12 consecutive months 

and from the same Dutch region were considered. Clonal dissemination (green bar) 

corresponded to pairs of isolates sharing the same hierBAPS SC, vanA plasmid type and Tn1546 

variant. Plasmid dissemination (orange bar) corresponded to pairs of isolates sharing the same 

vanA plasmid type and Tn1546 variant but different hierBAPS SC. Dissemination mediated by 

Tn1546 transposition (blue bar) corresponded to pairs of isolates sharing the same Tn1546 

variant, different vanA plasmid type and same or different the hierBAPS SC. Unrelated (purple 

bar) isolates corresponded to pairs of isolates with a different Tn1546 variant. 

Tables  

Table 1. Metadata information of the vanA complete plasmid sequences (n = 24) and average 

pairwise alignment coverage between and within plasmid types.  

Plasmid 

ID 

Plasmid 

type 

Country Isolation 

Year 

Isolation 

source 

SC type  Between 

coverage a 

Within 

coverage b 

E0139_2 A the Netherlands 1996 Non-

hospital 

29 40% 85% 

E0595_2 A the Netherlands 1996 Pig 30 

E0656_2 A the Netherlands 1999 Non-

hospital 

30 

E6975_4 B Greece 2010 Hospital 13 32% 85% 

E7114_4 B Latvia 2010 Hospital 13 

E7160_5 B Slovenia 2009 Hospital 5 

E7240_4 B Greece 2010 Hospital 10 

E7246_6 B Greece 2009 Hospital 13 

E7471_5 B the Netherlands 2012 Hospital 22 

E8423_3 B the Netherlands 2015 Hospital 18 
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E7313_3 C the Netherlands 2012 Hospital 2 38% 80% 

E8014_3 C the Netherlands 2014 Hospital 13 

E8414_4 C the Netherlands 2014 Hospital 1 

E6055_4 D Portugal 2010 Hospital 22 35% 75% 

E8040_4 D the Netherlands 2014 Hospital 1 

E4227_3 E Sweden 2005 Chicken 35 28% 96% 

E4239_3 E Sweden 2007 Chicken 35 

E6020_3 F Latvia 2010 Hosp. 8 38% 82% 

E6988_5 F Latvia 2010 Hosp. 21 

E7025_5 F Latvia 2010 Hosp. 23 

E7040_5 F Latvia 2010 Hosp. 21 

E7067_5 F Latvia 2010 Hosp. 21 

E7070_9 F Latvia 2010 Hosp. 21 

E7207_6 F Greece 2008 Hosp. 3 

a. Between coverage refers to the average coverage resulting from pairwise comparisons of complete 

plasmid sequences belonging to different plasmid types (A-F)

b. Within coverage refers to the average coverage resulting from pairwise comparisons of complete

plasmid sequences belonging to the same plasmid type.
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Table 2. Description of the vanA plasmid bin groups (> 10 isolates). For each predicted plasmid 

type, we indicated the number of isolates forming the predicted plasmid type, percentage of SCs, 

and assigned plasmid type. 

vanA plasmid 

bin group 

Number of 

isolates 

hierBAPS SC Plasmid 

Type 

1 11 SC10 (100%) G 

2 31 SC13(93.1%) 

SC10(3.4%) 

SC1(3.4%) 

C 

3 76 SC13(72.0%), 

SC2(12.0%) 

SC1(4.0%) 

SC10(4.0%) 

SC18(2.7%) 

SC9(1.3%) 

SC19(1.3%) 

SC22(1.3%) 

SC23(1.3%) 

C 

4 62 SC17(66.1%) 

SC10(17.7%) 

SC18(12.9%) 

SC22(1.6%) 

SC23(1.6%) 

B 

5 20 SC13 (50.0%) 

SC17(40.0%) 

SC7(5.0%) 

SC8(5.0%) 

H 

6 17 SC20 (47.1%) 

SC18 (35.3%) 

SC1(11.8%) 

SC2 (5.9%) 

D 

7 12 SC29(41.7%) 

SC30(33.3%) 

A 
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SC32(25.0%) 

8 10 SC18(100%) I 
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