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Abstract 19 

The efficacy of digital contact tracing against COVID-19 epidemic is debated: smartphone 20 

penetration is limited in many countries, non-uniform across age groups, with low coverage 21 

among elderly, the most vulnerable to SARS-CoV-2. We developed an agent-based model to 22 

precise the impact of digital contact tracing and household isolation on COVID-19 23 

transmission. The model, calibrated on French population, integrates demographic, contact-24 

survey and epidemiological information to describe the risk factors for exposure and 25 

transmission of COVID-19. We explored realistic levels of case detection, app adoption, 26 

population immunity and transmissibility. Assuming a reproductive ratio 𝑅 = 2.6 and 50% 27 

detection of clinical cases, a ~20% app adoption reduces peak incidence by ~35%.  With 𝑅 =28 

1.7, >30% app adoption lowers the epidemic to manageable levels. Higher coverage among 29 

adults, playing a central role in COVID-19 transmission, yields an indirect benefit for elderly. 30 

These results may inform the inclusion of digital contact tracing within a COVID-19 response 31 

plan. 32 

Introduction 33 

Intervention measures aiming at preventing transmission have been key to control the first 34 

wave of the COVID-19 pandemic. Many countries have adopted lockdown and strong social 35 

distancing during periods of intense epidemic activity to suppress the epidemic and reduce 36 

hospital occupancy below saturation levels (1, 2). Due to their huge economic and societal 37 

costs these interventions can only be implemented for a limited amount of time. The building 38 

of population immunity has been slow (3–5), so that new waves are possible after temporary 39 

lockdowns and lifting of restrictions. Sustainable strategies are required to maintain the 40 

epidemic under control while enabling the close-to-normal functioning of the society. 41 

Widespread testing, case finding and isolation, contact-tracing, use of face masks and 42 

enhanced hygiene are believed to be crucial components of these strategies. 43 
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Contact-tracing aims to avoid transmission by isolating at an early stage only those 44 

individuals who are infectious or potentially infectious, in order to minimize the societal costs 45 

associated to isolation. Considerable resources are therefore directed at improving 46 

surveillance capacities to allow efficient and rapid investigation and isolation of cases and 47 

their contacts. To enhance tracing capacities, the use of digital technologies has been 48 

proposed, leveraging the wide-spread use of smartphones. Therefore, proximity-sensing 49 

applications have been designed and made available – e.g. in Australia, France, Germany, 50 

Iceland, Italy, Switzerland – to automatically trace contacts, notify users about potential 51 

exposure to COVID-19 and invite them to isolate.  52 

Empirical studies of the impact of these digital applications are however limited (6–8), and 53 

the utility of this intervention is debated. Some built-in features make it more efficient than 54 

manual contact tracing: it is automated, reducing the burden of manual contact tracing and 55 

limiting recall bias; it is faster, as information can be transmitted in real time. However, 56 

coverage is uneven. In particular, most children and elderly do not own a smartphone or are 57 

less familiar with digital technologies. The overall adoption of the app among smartphone 58 

owners will also be a limiting factor, as well as the fraction of cases actually triggering the 59 

alert to the contacts and the adherence to isolation of the app adopters who receive an alert. 60 

These variables must be gauged in light of the risk factors for exposure and transmission 61 

driving the COVID-19 epidemic. First, individuals of different age contribute differently to the 62 

transmission dynamics of COVID-19. Younger individuals tend to have more contacts than 63 

adults or the elderly. On the other hand, a marked feature of COVID-19 is the strong age 64 

imbalance among cases (9–13), that may be explained by both a reduced susceptibility (9, 65 

10) and an increased rate of subclinical infections in children compared to adults (10, 11, 13). 66 

As subclinical cases are harder to detect, this implies that identification of cases and of their 67 

contacts may be dependent on age. Second, SARS-CoV-2 transmission risk varies 68 

substantially by setting. Transmissions were registered predominantly in households, in  69 

specific workplaces and in the community (linked to shopping centers, meals, parties, sport 70 
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classes, etc.) (14, 15). This is due, at least in part, to the higher risk of contagion of crowded 71 

and indoor environments (14–16). Notably, contacts occurring in the community are also the 72 

ones more affected by recall biases, thus more difficult to trace with manual contact tracing.  73 

Several modelling studies have quantified the impact of contact tracing (17–26), with some of 74 

them addressing specific aspects of digital contact tracing (18–23). Still the interplay between 75 

age and setting heterogeneity in determining the efficacy of this intervention is largely 76 

unexplored. Here we provide a systematic exploration of the different variables at play. We 77 

considered France as a case study and integrated different sources of data to realistically 78 

describe the French population, in terms of its demography and social contact behavior. We 79 

accounted for the dynamics of contacts according to age and setting, and for the setting-80 

specific risk of transmission. We used COVID-19 epidemiological characteristics for 81 

parametrization. We then modelled case detection and quarantining, isolation of their 82 

household contacts and digital contact tracing, under different hypotheses of potential 83 

reduction in transmissibility due to other effects (e.g. face-masks and increased hygiene). We 84 

quantified the impact of digital contact tracing on the whole population and on different 85 

population groups and settings, as a function of several variables such as the rate of app 86 

adoption, the probability of detection of clinical and subclinical cases, population immunity, 87 

compliance to isolation and transmission potential. Our results provide quantitative 88 

information regarding the impact of digital contact tracing within a broader response plan. 89 

Results 90 

Dynamic multi-setting contact network  91 

We modelled the French population integrating available demographic and social-contact 92 

data. We collected population statistics on age, household size and composition (Figure 1 A, 93 

B), workplace and school size, smartphone penetration (Figure 1 E), and commuting fluxes. 94 

Then, by following standard approaches in the literature (27, 28) individuals were created in-95 

silico with a given age and assigned to a municipality, a household, and a workplace/school 96 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2020.07.22.20158352doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.22.20158352
http://creativecommons.org/licenses/by-nd/4.0/


according to the statistics. Smartphones were assigned to individuals depending on their age 97 

according to available statistics on French users (Figure 1 E) (29). Overall smartphone 98 

penetration was 64%, that represents the upper bound limit of app adoption in the population 99 

– reached when 100% of individuals owning a smartphone download the app. This synthetic 100 

population reproduced the location statistics of individuals in different settings, yielding the 101 

basis of a multi-setting network of daily face-to-face contacts in household, school, 102 

workplace, community and transport (Figure 1 H) (30–32). We parametrized the network 103 

from a social contact survey providing information on contacts by age and setting (33) 104 

(Figure 1 C, D). As contacts may occur repeatedly, we associated an activation rate to each 105 

contact and sampled each day contacts based on their activation rate (Figure 1 G). We 106 

imposed that 35% of the contacts registered during one day occur with daily frequency, as 107 

found in (33). Figure 1 F and I show that the features of the resulting daily contact network 108 

matched the data: the distribution of the number of contacts was right-skewed as the 109 

empirical one reported in (33) and the  contact matrix showed age assortativity and the 110 

characteristic parent-children (off-diagonal) contact pattern. As a case study we restricted our 111 

study to a municipality with a population size of ~100,000 individuals (see Material and 112 

Methods and Supplementary Material for additional details). 113 

COVID-19 epidemic dynamics 114 

We modelled coronavirus transmission and outcome as shown in Figure 2 A, B. Individuals 115 

could be susceptible, 𝑆, exposed, 𝐸, pre-symptomatic preceding subclinical infection, 𝐼+,-., 116 

pre-symptomatic preceding clinical infection, 𝐼+,., subclinically infectious, 𝐼-. , clinically 117 

infectious, 𝐼., and recovered, 𝑅. Subclinical cases had symptoms that ranged from no 118 

symptoms to mild and continued their normal activity throughout the infectious period. 119 

Clinical cases had moderate to critical symptoms and stayed at home after the onset of 120 

symptoms (11, 13) – we did not consider hospitalization. Individuals in compartments 𝐼+,-., 121 

𝐼+,., 𝐼-. , 𝐼. transmitted the infection, with subclinical individuals characterized by a lower risk 122 

of transmission than clinical ones (see Material and Methods). We accounted for the 123 
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heterogeneous susceptibility and clinical manifestation by age as parametrized from (9, 13) 124 

(Table 1). In order to parametrize the infection’s natural history, we combined evidence from 125 

epidemiological and viral shedding studies. We used 5.2 days for the incubation period (34), 126 

2.3 days for the average length of the pre-symptomatic phase (35), and 7 days on average 127 

for the infectivity period after symptoms’ onset (35).  128 

We first simulated an uncontrolled epidemic assuming transmission levels corresponding to 129 

𝑅/ = 3.1, within the range of values estimated for COVID-19 in France at the early stage of 130 

the pandemic (1, 36). The generation time resulting from our model and parameters had 131 

mean value of 6.0 days (95% CI [2,17]), in agreement with epidemiological estimates (11, 35, 132 

37). Figure 2 C and D show the repartition of cases among age groups and settings at the 133 

early stage and during the whole course of the epidemic. Age-specific infection probability 134 

was higher among young adults, while clinical infections were shifted towards older 135 

population with respect to the overall (clinical and subclinical) cases, as noted in previous 136 

observational and modelling works (10). The age profile changed in time with children 137 

infected later as the epidemic unfolded (10, 38). Transmissions occurred predominantly in 138 

household and workplaces followed by the community setting (14). 139 

Contact tracing  140 

We quantified the impact of combined household isolation and digital contact tracing 141 

considering the possible scenario of a new epidemic wave emerging after the release of strict 142 

lockdown measures in the country. We thus assumed some level of immunity to the virus – 143 

exploring a range from 0 to 15% of the population. We considered interventions based on the 144 

use of digital contact tracing, coupled with testing and isolation of clinical cases and 145 

households. 50% of individuals with clinical symptoms were assumed to get tested after 146 

consulting a doctor and to isolate if positive. Higher and lower percentages were also 147 

considered. 148 
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Case tracing was assumed to start when a case with clinical symptoms tested positive and 149 

was isolated, with an average delay of ~1 day. Household members were also invited to 150 

isolate – we assumed that 90% of them accepted to isolate and that their isolation occurred 151 

at the same time as the detected case. If the index case had the app installed, the contacts 152 

he/she registered in the previous 𝐷 = 7 days were notified and could decide to isolate with a 153 

compliance probability of 90% – lower values of compliance were also explored. Note that 154 

only contacts occurring between individuals who both use the app can be registered, so only 155 

app adopters can be notified. We explored several levels of app adoption in the population. 156 

In addition to the detection of clinical cases, we assumed that a proportion of subclinical 157 

cases was also identified. These may be cases with very mild, unspecific symptoms who 158 

decided to get tested as part of vulnerable groups (i.e. co-morbidity) or because highly 159 

exposed to the infection (health care professionals). We hypothesized this proportion to be 160 

small in the baseline scenario (5%), and we later varied it up to 45%. Isolated individuals 161 

resumed normal daily life if infection was not confirmed. We took 7 days as the time needed 162 

for being confirmed negative because multiple tests and some delay since the exposure are 163 

needed for a negative result to be reliable. Infected individuals got out of quarantine after 14 164 

days unless they still have clinical symptoms after the time is passed. They may, however, 165 

decide to drop out from isolation each day with a probability of 2% if they don’t have 166 

symptoms (21, 26).  167 

Figure 3 summarizes the effect of the interventions. We compared the uncontrolled scenario 168 

(𝑅 = 𝑅/ = 3.1) with scenarios where the transmissibility is reduced due to the adoption of 169 

barrier measures (𝑅 down to 1.5). We also assumed 10% of the population to be immune to 170 

the infection (36). Panels A-C shows the results for 𝑅 = 2.6 and 𝑅 = 1.7. With 𝑅 = 2.6 (Figure 171 

3 A, C), the relative reduction of peak incidence due to household isolation only would be 172 

27%. The inclusion of digital contact tracing would increase the relative reduction to 35% with 173 

~20% app adoption, and to 66% with ~60% app adoption – i.e., 90% of individuals owning a 174 

smartphone use the app. This corresponds to an additional mitigation effect ranging from 175 
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30% to 144% provided by contact tracing compared to household isolation only. With 𝑅 = 1.7 176 

(Figure 3 B, C), we find that ~20% app adoption would reduce the peak incidence by 45% 177 

(additional mitigation effect of 25%), while the reduction would reach 89% in a scenario of 178 

~60% app adoption (additional mitigation effect of 147%). According to the projections in 179 

Ref.(1), intensive care units occupation would remain below the saturation level with 180 

incidence below 0.4 /1000 hab. In the scenario with 𝑅 = 1.7, this would be reached with app 181 

adoption greater than ~30% (grey dashed line in Figure 3 B). Stronger reductions could be 182 

obtained with more efficient detection of clinical cases (Figure 3 E, H, obtained with 𝑅 = 2.6) 183 

and of subclinical ones (Figure 3 L, 𝑅 = 2.6). The relative reduction in peak incidence 184 

produced by ~20% app adoption would be 47% with an 80% detection rate of clinical cases, 185 

compared to the 35% relative reduction obtained with 50% detection rate. Results show 186 

similar trends across different levels of population immunity, with higher relative impacts 187 

predicted for low immunity (Figure 3 F, I, 𝑅 = 2.6). Compliance to isolation of household 188 

contacts had an appreciable effect at low app adoption (Figure 3 K, 𝑅 = 2.6). 50% 189 

compliance would reduce peak incidence of 19%, compared to 27% reduction for 90% 190 

compliance, in the case of household isolation only. Compliance of notified contacts to 191 

isolation, instead, has a larger effect on peak incidence only when app adoption is high, as 192 

expected. For example, if the app was adopted by 60% of individuals the reduction in peak 193 

incidence would pass from 55% to 66% if compliance changed from 50% to 90% (Figure 3 J, 194 

𝑅 = 2.6).  195 

We analyzed the simulation outputs to characterize index cases and their contacts and relate 196 

this to the reduction in number of cases by age and setting. We found that adults 197 

represented the majority of index cases (Figure 4 D), while their household contacts were 198 

mostly children. The app registered mostly contacts with adults, and the tracked contacts 199 

were occurring predominantly in workplaces and in the community (Figure 4 A). This results 200 

in a heterogenous reduction in transmission (𝑇𝑅𝑅) by setting and age group. Household 201 

isolation reduced transmission in all settings, with the smallest effect in workplaces (Figure 4 202 
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B). Digital contact tracing has instead a high 𝑇𝑅𝑅 at work, in the community and in transports 203 

(Figure 4 C). Household isolation reached mostly children (< 15 years old) and the elderly 204 

(especially the 75+ group) with the smallest effect in the 15-59 years old (Figure 4 E). 205 

Adopting digital contact tracing led to an increased TRR with age, even among the oldest 206 

age range (Figure 4 F). This result shows the indirect effect of digital tracing: due to the 207 

central role of adults in the transmission of SARS-CoV-2 towards all age-groups, avoiding 208 

adult infections led to less transmission to the elderly. We also tested the case in which 209 

elderly people (70+) owning a smartphone did not install the app at all, assuming they are 210 

less familiar with digital technologies, and we found no appreciable effect. These results and 211 

additional details are provided in the Supplementary Material.  212 

Traced and Isolated individuals  213 

Feasibility of contact tracing depends on the number of traced contacts who require 214 

assistance and virological tests. In a scenario with high detection rate (80%), we found that 215 

for each detected case 1.5 contacts were identified on average through household isolation 216 

but up to 7.5 with app adoption at 57%, for 𝑅 = 2.6 and 10 for 𝑅 = 1.7  (Figure 5 D). This 217 

number was however subject to fluctuations (Figure 5 A). Overall, the maximal fraction of the 218 

population quarantined at any given time was ~50 per 1000 habitants in a scenario with 𝑅 =219 

2.6, and was between ~1 and ~4.5 per 1000 habitants when 𝑅 = 1.7 (Figure 5 B and E). The 220 

latter case corresponded to the situation in which high levels of app adoption were able to 221 

strongly reduce spreading, thus the proportion of isolated individuals declined in time, 222 

signaling the success of quarantining in preventing the propagation of the infection. A total of 223 

30 per 1000 habitants were isolated in a scenario with  𝑅 = 1.7, assuming high app adoption. 224 

At 𝑅 = 2.6, 1030 per 1000 habitants were isolated at the end of the epidemic meaning that 225 

certain individuals were isolated more than once. In all scenarios, the increase of app 226 

adoption inevitably determined an increase in the proportion of people that were 227 

unnecessarily isolated, i.e. of individuals that were not infected but still isolated (Figure 5C, 228 

F): this proportion increased from 61% to 84% with the increase of app adoption from 0% to 229 
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57% (note that the case of 0% app adoption implies that 61% of individuals who were 230 

isolated through household isolation were not infected). These numbers were similar for the 231 

two tested values of 𝑅 = 1.7 and 2.6 (Figure 5 C and F). 232 

Discussion 233 

Quantifying the impact of digital contact tracing is essential to envision this strategy within a 234 

wider response plan against the COVID-19 epidemic. We modelled this intervention together 235 

with household isolation assuming a 50% detection of clinical cases. In a scenario of high 236 

transmissibility (𝑅 = 2.6), we found that household isolation by itself would produce a 237 

reduction in peak incidence of 27%, while the inclusion of digital contact tracing could 238 

increase this effect by 30% for a reasonably achievable app adoption (~20% of the 239 

population), and by 144% for a large-scale app adoption (~60%). At a moderate 240 

transmissibility level (𝑅 = 1.7), the app would substantially damp transmission (36% to 89% 241 

peak incidence reduction for increasing app adoption), bringing the epidemic to manageable 242 

levels if adopted by 32% of the population or more. Importantly, the app-based tracing and 243 

household isolation have different effects across settings, the first intervention efficiently 244 

preventing transmissions at work that are not well targeted by the second. Moreover, app-245 

based contact tracing also yields a protection for the elderly despite the lower penetration of 246 

smartphones in this age category. 247 

Lockdown and social distancing have been effective in reducing transmission in the first 248 

epidemic wave in many countries. However, their huge societal and economic costs made 249 

their prolonged implementation impossible. Phasing out lockdown occurred at the beginning 250 

of the summer in Europe, with high temperatures, increased ventilation and outdoor activities 251 

helping reducing the risk of contagion (16). The relaxation of almost all restrictive measures, 252 

the start of activities in the fall and the cold season accelerated transmission, reaching a 253 

point in which strict non-pharmaceutical interventions were again necessary to curb the 254 

epidemic increase. At the time of writing, national or local lockdowns were restored in several 255 
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countries in Europe (39). This highlights the need for exit strategies based on sustainable 256 

non-pharmaceutical interventions, able to suppress COVID-19 spread while having limited 257 

impact on the economy and on individuals’ daily life (1). 258 

Many countries have increased their capacity to detect cases and track their contacts. In 259 

France, thousands of transmission clusters have been identified and controlled since the end 260 

of the first lockdown period (40). Under-detection of cases was however estimated over 261 

summer, and the system was predicted to deteriorate rapidly for increasing epidemic activity 262 

(41). The automated tracking of contacts could then provide an important complementary 263 

tool. Here we found that digital contact tracing could reduce attack rate and peak incidence, 264 

in agreement with previous works (18, 19, 26). The impact of the measure would depend on 265 

population immunity, thus geographical heterogeneities should be expected, as regions were 266 

differentially hit by the first wave of the epidemic (4). On the other hand, app adoption as well 267 

may be higher in these areas because of risk aversion behavior (42). Also, higher 268 

participation rates may be expected in dense urban areas to protect from exposure from 269 

random encounters (e.g. in public transports).  270 

Under realistic hypotheses, the intervention would not be able alone to bring the epidemic 271 

under control in a scenario where transmission is high (18, 19, 26), mainly due to the strong 272 

role of asymptomatic transmission in fueling the epidemic (11, 12, 43). We explored different 273 

values of the reproductive number 𝑅, to effectively account for non-pharmaceutical measures 274 

mitigating the epidemic and for the adoption of preventive measures substantially hindering 275 

SARS-COV-2 transmission. We found that a reduction of the epidemic to a manageable level 276 

would be possible with a moderate 𝑅	(e.g. 𝑅 =1.7 explored here).  277 

Improved case finding is the first step towards a successful contact-tracing intervention. We 278 

found that the increase in detection of clinical cases substantially reduced peak incidence 279 

and improved the efficacy of contact tracing. Many countries progressively increased testing 280 

capacity (41) and lifted restrictions on access to testing (44). Easy access to testing is 281 
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essential to detect cases, because of the substantial fraction of subclinical cases and the 282 

similarity of COVID-19 clinical presentation to the one of other respiratory infections. In the 283 

period from September to November 2020, the French network of virological surveillance run 284 

by general practitioners reported that only 22.7% of Acute Respiratory Infections were 285 

caused by SARS-CoV2, against 46.5% attributed to rhinovirus (45). Given that the majority of 286 

cases do not require hospitalization, case detection effectiveness is also influenced by the 287 

consultation rate. This has been estimated to be around ~30% with peaks at ~45% by the 288 

participatory surveillance platform covidnet.fr (40, 41). Increased population awareness is 289 

thus essential for the efficient monitoring of the epidemic and its containment through contact 290 

tracing.  291 

Little information is available on compliance to isolation. Low compliance to isolation was 292 

reported in the UK and in a university campus in the US (46, 47). However, this may vary 293 

greatly according to cultural, socioeconomic and demographic context. Due to a self-294 

selection bias, individuals who decided to download and use the mobile application may be 295 

more akin to follow the recommendation and isolate if they receive a notification. Step-by-296 

step recommendations provided by the app can further help in increasing compliance.  297 

Strengthened communication and compensations (such as paid work leave, loss-of-income 298 

payments for self-employed professionals, medical school-absence certificates) should be 299 

implemented to increase the acceptability of isolation (48). 300 

App adoption remains the key factor determining the efficacy of digital contact tracing. 301 

Adoption levels were initially low (<5%) in many countries (e.g. Italy, France), increasing later 302 

as the second wave was rising, likely due to increased concerns of the population. As of 303 

November 2020, 17% and 13% of the population had downloaded the app in Italy and 304 

France, respectively (49, 50). Higher levels were observed, e.g., in Australia (6 millions 305 

download, 25% of the population) (51) and Iceland (~150 thousand, 38%) (52). Importantly, 306 

official figures may overestimate real adoption levels, since many individuals may download 307 

the application without using it. In France this proportion was 60% among university students 308 
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(53). Individuals may be more inclined to use the app if they perceive a direct and immediate 309 

benefit from its use. This may be implemented through, e.g., easy access to testing in case 310 

they are notified as contacts and assistance by public health professionals. Moreover, even if 311 

the application preserves users’ privacy and can be downloaded on a voluntary basis in 312 

many countries, increased transparency and ethical debate remain essential to reassure the 313 

population about data treatment (53–55). 314 

The results presented here are based on an agent-based model that describes age-specific 315 

risk factors for exposure and transmission: contact rates, contacts by location, susceptibility 316 

to the virus, probability of being detected and rate of app adoption. The interplay between 317 

these features has a profound impact on COVID-19 spread and affects the efficacy of 318 

household isolation and digital contact tracing. To account for contact heterogeneities we 319 

used statistics on population demography, combined with social contact surveys to build a 320 

multi-setting contact network, similarly to previous works (17, 21, 26, 30–32). The network is 321 

also dynamic in time as it captures the repetition of a certain number of contacts (e.g. 322 

relationships) and the occurrence of random encounters. Social contact data provide an 323 

invaluable information source to study the current COVID-19 outbreak (1, 36). Previous 324 

projections on the impact of contact tracing rely on a similar approach in some cases (17, 24, 325 

26). Other works make use of high resolution data (18, 19, 22), that are more reliable than 326 

contact surveys, but are restricted to specific settings or population groups. Despite the 327 

difference in the data source and approach, the results of these studies are consistent and in 328 

agreement with our work on the overall impact of the intervention. 329 

We modelled age-specific epidemiological characteristics based on available knowledge in 330 

the literature. Children are less impacted by the COVID-19 epidemic (9–13). This may be 331 

explained by reduced susceptibility and severity, with accumulating evidence that both 332 

effects are acting simultaneously (10). The strength of these effects is still debated and the 333 

infection risk for children should not be minimized. However, these differences have 334 

implications for digital contact tracing. Indeed, it is precisely in the group that plays a central 335 
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role in transmission and where cases are more likely symptomatic (i.e., adults) that the app 336 

coverage is already the highest. Our model shows that taken together, these characteristics 337 

reinforce the impact of digital tracing and provides indirect protection in the elderly 338 

population. This occurs even if no adoption is registered in the elderly population. 339 

Our study is affected by limitations. First, we analyzed the effect of digital contact tracing on 340 

COVID-19 incidence in the general population. Crucial information for public health 341 

authorities would be to quantify the effect in time of these measures on hospitalizations. This 342 

would require to couple our model for COVID-19 transmission in the general population with 343 

a model describing disease severity and within-hospital patient trajectories (17, 21, 26). 344 

Second, the model does not account for transmission in nursing homes. This setting is where 345 

the majority of transmissions among elderly occurred. At the same time, however, the 346 

response to the COVID-19 epidemic in this setting relies mostly on routine screening of 347 

symptoms and frequent testing of residents, together with face masks and strict hygiene 348 

rules for visitors. Third, results may be conservative as clustering effects and large 349 

fluctuations in the number of contacts per person (56) are only partially captured by the 350 

model thanks to the repetition of contacts, but effects may be larger in real contact patterns. 351 

This also includes crowding events playing an important role in the transmission dynamics 352 

(15). Overall behaviors obtained with our synthetic network of contacts are however 353 

compatible with findings obtained with real contact data (18). In a future work the description 354 

of temporal and topological properties of contacts in workplaces, schools and community 355 

could be improved by using modeling frameworks informed by detailed contact data, that has 356 

become available for specific settings (57–59). For this purpose, frameworks such as hidden 357 

variable models or other recent dynamical models for social networks could be employed 358 

(60–62). Fourth, other assumptions may be instead optimistic, regarding the probability of 359 

detection of index cases, and compliance to isolation, for example. Few data are available to 360 

inform these parameters that may also vary over time (depending on the epidemic context 361 

and increased population fatigue) and across countries (depending on cultural aspects and 362 
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regulations in place). While we explored a range of parameter values, more detailed 363 

information will be needed to contextualize our approach to a specific epidemic situation in a 364 

given country.  365 

Material and Methods 366 

Synthetic population 367 

The model simulates the population of Metropolitan France representing individual 368 

inhabitants. This approach is similar to studies done previously e.g. for Italy(27) and for 369 

USA(28). The French synthetic population is based on the National Institute of Statistics and 370 

Economic Studies (INSEE) censuses. Individuals were assigned to municipalities according 371 

to the administrative borders. The number of households and the age structure of their 372 

inhabitants, sizes of schools and workplaces, fluxes of commuters between municipalities 373 

also followed the distribution of these statistics found in the INSEE data. Population size was 374 

kept constant through a simulation as we aimed at simulating one season of the epidemic.  375 

To generate the population, we defined several statistics derived from INSEE publicly 376 

available data:  377 

• The list of municipalities (“les communes de France”) of Metropolitan France (2015) with 378 

each municipality described by its INSEE code, population size, number of schools of six 379 

different levels (from kindergarten to university), number of workplaces in given size 380 

categories (0-9, 10-49, 50-99, 100-499, 500-999 and over 1000 employees) (Populations 381 

légales 2017, INSEE, https://www.insee.fr/fr/statistiques/4265429?sommaire=4265511). 382 

• Statistics regarding the percentage of people in given age groups enrolled in each of six 383 

school levels, employed and unemployed (Bilan démographique 2010, INSEE, 384 

https://www.insee.fr/fr/statistiques/1280950).  385 

• The age pyramid for France as the population fractions of individuals of a given age 386 

(Bilan démographique 2010, INSEE, https://www.insee.fr/fr/statistiques/1280950). 387 
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• The number of people commuting to work between each pair of municipalities (Mobilités 388 

professionnelles en 2016: déplacements domicile - lieu de travail, INSEE, 389 

https://www.insee.fr/fr/statistiques/4171554).  390 

• The number of people commuting to school between each pair of municipalities 391 

(Mobilités scolaires en 2015: déplacements domicile - lieu d’études, INSEE, 392 

https://www.insee.fr/fr/statistiques/3566470).  393 

• The probability distributions of sizes of households in France (Couples - Familles - 394 

Ménages en 2010. INSEE, https://www.insee.fr/fr/statistiques/2044286/?geo=COM-395 

34150.)  396 

• The probability of individuals belonging to a particular age class, given their role in the 397 

household: child of a couple, child of a single adult, adult in a couple without children, 398 

adult in a couple with children (Couples - Familles - Ménages en 2010. INSEE, 399 

https://www.insee.fr/fr/statistiques/2044286/?geo=COM-34150). 400 

With the above statistics, the synthetic population was generated in the following steps:  401 

1. Initialization of all the municipalities with an appropriate number of schools of each type 402 

and workplaces of given sizes.  403 

2. Creation of schools in each municipality according to given statistics.  404 

3. Creation of workplaces in each municipality according to given statistics.  405 

4. Definition of the commuter fluxes between municipalities.  406 

Each municipality has a defined number of inhabitants and individuals are created (one by 407 

one) until this number is reached. Each individual was assigned an age, a school or a 408 

workplace (or is assigned to stay at home) according to probability distributions derived from 409 

the data mentioned above.  410 

The numbers of households within each municipality were not defined explicitly, but 411 

depended on the number of individuals. The municipal population size and statistics 412 
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regarding family demographics constrain the number of households. Additional details on the 413 

algorithm for the population reconstruction are provided in the Supplementary Material. 414 

Face-to-face contact network 415 

The synthetic population encodes information on the school, workplace, household and 416 

community each individual belongs to. We used this information to extract a dynamic network 417 

representing daily face-to-face contacts. We parametrized this network based on contacts’ 418 

statistics for the French population (33). 419 

First, we generated a time aggregated network representing all contacts that can potentially 420 

occur – we will call this the acquaintance network, with some abuse of language since it 421 

includes also sporadic contacts. Second, to each contact we assigned a daily rate of 422 

activation. Then, in the course of the simulation we sampled contacts each day based on 423 

their rate.  424 

The acquaintance network has five distinct layers representing contacts in household (layer 425 

𝐻), workplace (layer 𝑊), school (layer 𝑆), community (layer 𝐶) and transports (layer 𝑇). The 426 

household layer is formed by a collection of complete networks linking individuals in the 427 

same household. The 𝑊, 𝑆, 𝐶, and 𝑇 layers are formed by collections of Erdős–428 

Rényi networks generated in each location 𝑖, with average degree 𝜒9. A location can be a 429 

workplace (𝑊 layer), a school (𝑆 layer) and a municipality (𝐶 and 𝑇 layers). 𝜒9 is extracted at 430 

random for each place and depends on the type and size of the location. In particular, when 431 

the size of a location is small we assume that each individual enters in contact with all the 432 

others frequenting the same place. As the size increases the number of contacts saturates.  433 

Once the acquaintance network was built a daily activation rate 𝑥 was assigned to each link 434 

according to a cumulative distribution that depends on the layer 𝑠. For simplicity we assumed 435 

this distribution to be the same for 𝑠 = 𝑊, 𝑆, 𝐶, while we allowed it to be different in household 436 

(where contacts are more frequent) and in transports (where contacts are sporadic). 437 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2020.07.22.20158352doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.22.20158352
http://creativecommons.org/licenses/by-nd/4.0/


Parameters were tuned based on average daily number of contacts, proportion of contacts 438 

by setting, and contact frequency as provided in (33) (Figure 1 C D). Additional details on the 439 

network reconstruction and parametrization are provided in the Supplementary Material. 440 

Transmission model 441 

We defined a minimal model of COVID-19 spread in the general population that accounts for 442 

two levels of symptoms: none to mild (subclinical cases, 𝐼-.), and moderate to severe (clinical 443 

cases, 𝐼.). We assumed that clinical cases stay at home after developing symptoms.  444 

Susceptible individuals, if in contact with infectious ones, may get infected and enter the 445 

exposed compartment (𝐸). After an average latency period 𝜖=>	they become infectious, 446 

developing a subclinical infection with probability 𝑝-.@  and a clinical infection otherwise. From 447 

𝐸, before entering in either 𝐼-.  or 𝐼., individuals enter first a prodromal phase (either 𝐼+,-. or 448 

𝐼+,.), that lasts on average 𝜇+=> days and where individuals do not show any sign of illness, 449 

despite being already infectious. Contact-tracing, population-screening and modelling studies 450 

provide evidence that infectivity is related to the level of symptoms, with less severely hit 451 

individuals being also less infectious (11, 43). Therefore, we assumed that subclinical cases, 452 

𝐼+,-.  and 𝐼-.  have a reduced transmissibility compared to 𝐼+,. and 𝐼.. This is modulated by the 453 

scaling factor 𝛽C.  We neglected hospitalization and death and assumed that with rate 𝜇  454 

infected individuals become recovered.  455 

The impact of COVID-19 is heterogeneous across age groups (9–13). This may be driven by 456 

differences in susceptibility (9), differences in clinical manifestation (11, 13) or both (10). We 457 

considered here both effects in agreement with recent modelling estimates (10). 458 

Susceptibility by age, 𝜎@, was parametrized from (9), while clinical manifestation, 𝑝-.@ , was 459 

parametrized from a large-scale descriptive study of the COVID19 outbreak in Italy (13).  460 

Transition rates are summarized in Figure 2 B, and parameters and their values are listed in 461 

Table 1. The incubation period was estimated to be around 5.2 days from an early analysis 462 

of 425 patients in Wuhan (34). COVID-19 transmission potential varies across settings, 463 
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populations and social contexts (14–16). In particular, indoor places were found to increase 464 

the odds of contagion 18.7 times compared to an open-air environment (16). In our model we 465 

assumed that all contacts at work, school and transport occur indoor and have the same 466 

transmission risk (𝜔F). In the contact survey of Béraud et al. (33), 46% of contacts in the 467 

community were occurring outdoors. Combining this information with the 18.7 indoor vs. 468 

outdoor risk ratio leads to a 60% relative risk of community contacts with respect to 469 

workplace/school/transport contacts. Contacts within households are generally associated to 470 

a higher risk with respect to other settings, because they last longer and there is a higher risk 471 

of environmental transmission. We assumed that the transmission risk associated with them 472 

is twice the one in workplace/school/transport. For the basic reproductive ratio of COVID-19 473 

we took 𝑅/~3.1	(1, 36). We also explored lower levels of transmission potential, i.e. 474 

reproductive ratios 𝑅 down to 1.5, to effectively account for behavioral changes and adoption 475 

of barrier measures. Our definition of 𝑅 does not integrate population immunity. We explicitly 476 

indicate the initial level of population immunity to disentangle the relative role of the two 477 

quantities. 478 

Modelling contact tracing  479 

Self-isolation and isolation of household contacts  480 

Self-isolation and isolation of household contacts was modelled according to following rules:  481 

• As an individual shows clinical symptoms, s/he is detected with probability 	482 

𝑝H,. (baseline value 50%, additional explored values 30% and 80%).  If detected, case 483 

confirmation, isolation and contacts’ isolation occur with rate 𝑟H,. = 0.9 upon symptoms 484 

onset. 485 

• Subclinical individuals are also detected with probability 	𝑝H,-. (baseline value 5%, 486 

additional explored values 25% and 45%), and rate 𝑟H,-. = 0.5. 487 

• The individual’s family members are isolated with probability 	𝑝.,M = 0.9 (0.5 and 0.7 were 488 

also explored). 489 
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• We assume that contacts are tested and the follow up guarantees that all individuals who 490 

got infected prior to isolation are detected. Thus, contacts that are negative (either 491 

susceptible or recovered at the time of isolation) terminate their isolation after 7 days. 492 

The index-case and the positive contacts are isolated for 14 days. Contacts with no 493 

clinical symptoms have a daily probability 𝑝HNO+ = 0.02 to drop-out from isolation.  494 

• For both the case and the contacts, isolation is implemented by assuming no contacts 495 

outside the household and contacts within a household having an associated 496 

transmission risk (i.e. the weight 𝜔P) reduced by a factor 𝜄 = 0.5.  497 

Digital contact tracing 498 

We assumed that contact tracing is adopted in combination with self-isolation and isolation of 499 

household members. Therefore, we added the following rules to the ones outlined above: 500 

• At the beginning of the simulation, a smartphone is assigned to individuals with 501 

probability 𝑝-R@ , based on the statistics of smartphone penetration (0% for [0,11], 86% for 502 

[12,17], 98% for [18,24], 95% for [25,39], 80% for [40,59], 62% for [60,69], 44% for 70+) 503 

(29). 504 

• Each individual with a smartphone has a probability 𝑝S to download the app (we explored 505 

values between 0 and 0.9). 506 

• Only contacts occurring between individuals with a smartphone and the app are traced. 507 

• If the individual owns a smartphone and downloaded the app the contacts that s/he has 508 

traced in the period since 𝐷 = 7 days before his/her detection are isolated with probability 509 

𝑝.,S = 0.9 (0.5 and 0.7 were also tested). 510 

• We assume contacts are tested and the follow up guarantees that all individuals who got 511 

infected prior to isolation are detected. Thus, contacts that are negative (either 512 

susceptible or recovered at the time of isolation) terminate their isolation after 7 days. 513 

The index-case and the positive contacts are isolated for 14 days. Contacts with no 514 

clinical symptoms have a daily probability 𝑝HNO+ = 0.02 to drop out from isolation. 515 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2020.07.22.20158352doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.22.20158352
http://creativecommons.org/licenses/by-nd/4.0/


• For both the case and the contacts, isolation is implemented by assuming no contacts 516 

outside the household and contacts within a household having an associated 517 

transmission risk (i.e. the weight 𝜔P) reduced by a factor 𝜄 = 0.5.  518 
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Figures and Tables 791 

 792 

Figure 1 Synthetic population. A-E Key statistics used as input for the synthetic population reconstruction. A 793 

Age pyramid for France (source INSEE). B Household size (source INSEE). C Ratio of contacts by setting with 794 

respect to household contacts (33). D Fraction of contacts occurring each day or less frequently (33). E 795 

Smartphone penetration by age. The overall average adoption in the population is 64% (29). F Distribution of the 796 

number of daily contacts in the model. G Cumulative distribution of the activation rate associated to the contacts 797 

in the model, calibrated in order to be consistent with the information of panel D. H Sketch of the construction of 798 

the contact network: contacts among individuals were represented as a multi-layer dynamical network, where 799 

each layer includes contacts occurring in a specific setting. I Age contact matrix computed from the contact 800 

network model. 801 
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 803 

Figure 2. Modelling COVID-19 epidemic. A, B Compartmental model summarizing the epidemic states and 804 

transitions between states. Parameters and their values are reported in Table 1. C Cases by age for an 805 

uncontrolled epidemic. We show all cases (clinical and subclinical) in red and clinical cases in black. The grey line 806 

shows the clinical cases in the early stage of the epidemic (here defined as the first 30 days), with less cases 807 

among children than in later stages. D Transmission by setting (H, W, S, C, T stand respectively for household, 808 

workplace, school, community, transport). The simulations were done with 𝛽 = 0.25 corresponding to 𝑅/ = 3.1. 809 

Additional aspects of the outbreak are reported in the Supplementary Material. 810 
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 811 

Figure 3 Impact of digital contact tracing and household isolation on the epidemic. A, B Incidence (clinical 812 

cases) according to app adoption for 𝑅 = 2.6 and 𝑅 = 1.7, respectively. The black curve shows the scenario with 813 

no intervention (NI). Other curves correspond to app adoption levels ranging from 0% (household isolation only) 814 

to 57% (90% of smartphone users). Incidence threshold level corresponding to ICU saturation is showed as a 815 
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dashed grey line in panel B.  C Relative reduction (𝑅𝑅) in attack rate (AR) and peak incidence (PI) as a function of 816 

the app adoption for the scenarii shown in A and B. 𝑅𝑅 is computed as TUVW=T
TUVW

 , where 𝑥	is either PI or AR and 𝑥NXY 817 

is the value of the quantity with no intervention. Attack rate is computed as cumulative incidence discounting initial 818 

immunity (10%). D, G Peak incidence and attack rate according to reproduction ratio 𝑅 and app adoption. E, H 819 

Peak incidence and attack rate according to app adoption and percentage of clinical cases detected. F, I Peak 820 

incidence and attack rate according to app adoption and initial immunity. J Peak incidence according to app 821 

adoption and compliance to isolation of contacts notified by the app. K Peak incidence according to app adoption 822 

and compliance to isolation of household contacts. L Peak incidence according to app adoption and percentage 823 

of subclinical cases detected. Except as otherwise indicated, parameters values were: initial immunity 10%, 824 

clinical case detection 50%, subclinical case detection 5%, compliance to isolation of contacts notified by the app 825 

90%, compliance to isolation of household contacts 90%, 𝑅 = 2.6 .  826 

 827 

 828 

Figure 4 Effect of digital contact tracing and household isolation by age and setting. A Repartition among 829 

the different settings of the contacts detected by contact tracing (57% app adoption). B Relative reduction in 830 

transmission (𝑇𝑅𝑅) by setting obtained with household isolation. The relative reduction in transmission is here 831 

defined as 𝑇𝑅𝑅(𝑠) = 	
CUVW
\ =C\

CUVW
\ , where 𝐼- is the total number of clinical and subclinical cases infected in setting 𝑠, in 832 
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the given intervention scenario considered (here household isolation) and 𝐼NXY-  is the same quantity in the 833 

reference scenario (here the scenario with no intervention).  C  𝑇𝑅𝑅 obtained with digital contact tracing with 834 

respect to household isolation only, for three values of app adoption. D Repartition among the different age 835 

groups of the index cases and of the detected contacts, in a scenario with household isolation only, and with the 836 

inclusion of digital contact tracing (57% app adoption). The repartition of index cases is very similar in the two 837 

scenarios, thus only the one with household isolation is shown for the sake of clarity. E 𝑇𝑅𝑅 by age group of the 838 

infected as obtained with household isolation only. F  𝑇𝑅𝑅 of digital contact tracing with respect to household 839 

isolation only. We assume 𝑅 = 2.6, immunity 10% and probability of detection 50%. 840 

 841 

 842 

Figure 5 impact of combined digital contact tracing and household isolation on the isolation of 843 

individuals. A Distribution of the number of isolated individuals per detected case (DC) for 57% of 844 

app adoption. D Average number of isolated individuals per detected case as a function of app 845 

adoption. B, E Percentage of the population isolated as a function of time for 𝑅 = 1.7 (B)  𝑅 = 2.6 (E). 846 

C, F: Fraction of unnecessary isolated, i.e. fraction of contacts isolated without being positive.  847 

Table 1. Compartmental model parameters and their values 848 
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Parameter Description Values Source 

𝐼𝑃 Incubation period 5.2 days (34) 

𝜇+ Rate of developing symptoms for pre-

symptomatic individuals 

(2.3 days)-1   (35) 

𝜖 Rate of becoming infectious for 

exposed individuals  

(2.9 days)-1   𝐼𝑃 − 𝜇+=> 

𝜇 Recovery rate (7 days)-1   (35) 

𝛽C transmissibility rescaling according to 

the infectious stage 

0.51 for 𝐼+,-., 𝐼-. 

1 for 𝐼+,., 𝐼. 

(1) 

𝜔- Transmission risk by layer 1 for 𝐻 layer 

0.3 for 𝐶 layer 

0.5 otherwise 

(16, 33) 

𝛽	 Transmission rate Explored between 0.1 

to 0.25	

 

𝜎@ susceptibility 0.23 for 𝐴 in [0,14] 

0.68 for 𝐴 in [15,64] 

1 for 𝐴 in 65+ 

(9) 

𝑝-.@  Proportion of subclinical cases 0.27 for 𝐴 in [0,1]  

0.48 for 𝐴 in [2,6]  

0.57 for 𝐴 in [7,19]  

0.43 for 𝐴 in [20,29]  

0.38 for 𝐴 in [30,39]  

0.30 for 𝐴 in [40,49]  

0.24 for 𝐴 in [50,59]  

0.15 for 𝐴 in [60,69]  

0.11 for 𝐴 in [70,79]  

0.12 for 𝐴 in [80,89]  

0.26 for 𝐴 in 90+ 

(13) 

 849 

 850 
 851 
 852 
 853 
 854 
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Supplementary Material of 855 

Anatomy of digital contact tracing: role of age, 856 

transmission setting, adoption and case detection  857 

 858 

 859 

Additional methods 860 

Algorithms for the generation of the synthetic population 861 

The generation of the synthetic population is a stochastic process resulting in a contact 862 

network being slightly different each time it is generated. Thanks to this mechanism, we can 863 

account for some of the uncertainty concerning the input data. It also allows for population 864 

scaling to reduce the population by respecting its composition and spatial distribution, thus 865 

increasing computational efficiency. Specifically, the scaling decreases the number of 866 

individuals in municipalities and the fluxes of commuters between them, but it does not 867 

impact the number of municipalities nor the number of schools and workplaces. The smaller 868 

population has a smaller number of households, but it maintains the statistics regarding 869 

family size and age structure given by the INSEE data.  870 

Households 871 

Census data on age structure and household type and size are used to randomly assign age 872 

and locate individuals in households. Five different types of household are considered: single 873 

person, single with children, couple without children, couple with children, other household 874 

groups; some of the household types may also contain an additional adult member (usually 875 

an elderly person or a relative: if the number of additional adults is greater than one, the 876 

household falls in the "other" category). For each municipality m with population size popm, 877 

we generate new households until the size of the virtual population of the municipality virm 878 
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reaches the real size of population popm. For each household, we determine its type, its size 879 

and the presence of an additional member (if the household type is not single-person or 880 

couple without children, and in the case of a household with children if the size is greater 881 

than the number of adults plus one): then, according to the role of each individual (adult, 882 

child or other) we randomly extract his/her age, with some additional conditions:  883 

C1: the age of any child is between 15 and 45 years less than that of the youngest parent;  884 

C2: spouses’ ages differ by no more than 15 years.  885 

The detailed procedure is summarized in Algorithm 1.  886 

Algorithm S1: Creation of households in municipalities 887 

for each municipality do 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

popm ← number of individuals in m; 

virm← 0; 

while virm < popm do 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

determine household typet ∼ M(pT), where M(pT)is a multinomial distribution with probabilities pT given in the first 

column of Table 1; 

determine age class of household head c ∼ M(pC(t)), where M(pC(t)) is a multinomial distribution with probabilities 

pC(t)given in Table 2; 

determine if the household contains an additional member according to probabilities pE(t) given in the second 

column of Table 1; 

determine age of household head a ∼ M(pA(c)), where M(pA(c)) is the multinomial distribution of the French age 

structure in the interval c; 

for each other member of household do 

 

 

 

 

 

determine the role r of the member (other adult in couple, children of couple; children of single, other); 

determine age class cm ∼ M(pCm(r)), where M(pCm(r)) is a multinomial distribution with probabilities pCm(r) given 

in Table 4; 

determine the exact age am ∼ M(pA(cm)) with the additional constraints C1 and C2; 
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end 

virm← virm+ s 

end 

End 

 888 

Table S1 For each household type, the fist column shows its frequency; the second column the probability that 889 

the household type contains an additional member; the third column the frequency of individuals in each 890 

household type 891 

Type of household Frequency Fr. of add. member Fr. of individuals 

Single without children 0.338 0.0 0.149 

Couple without children 0.268 0.0204 0.243 

Couple with children 0.277 0.0096 0.475 

Single with children 0.09 0.0123 0.106 

Other 0.027 0.0 0.027 

 892 

Table S2 For each household type, the frequency of the age class of the household head 893 

Type of household  0 - 14  15 - 19  20 - 24  25 - 39  40 - 54  
55 - 

64  
65 - 79  80 - 100 

Single without children  0.0  0.019  0.075  0.191  0.186  0.162  0.212  0.155 
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Couple without children  0.0 0.029  0.132  0.263  0.264  0.133  0.094  0.085 

Couple with children  0.0  0.002  0.023  0.271  0.47  0.116  0.073  0.045 

Single with children  0.0  0.001  0.021  0.251  0.313  0.197  0.17  0.047 

Other  0.0 0.008  0.042 0.233  0.283 0.176  0.173  0.085 

 894 

Table S3 Probability distributions of the size of the household (except singles and couples without children, 895 

having size 1 and 2, respectively) for each age class of the household head. Rows are the age class of the 896 

household head, while columns are the size of the household 897 

Age class size: 1 size: 2 size: 3 size: 4 size: 5 size: 6 

0 - 19 0.0 0.3386 0.4432 0.1169 0.0479 0.0534 

20 - 24 0.0 0.1247 0.6325 0.1732 0.044 0.0256 

25 - 29 0.0 0.169 0.5217 0.2291 0.0585 0.0217 

30 - 34 0.0 0.1327 0.3919 0.343 0.1008 0.0316 

35 - 39 0.0 0.106 0.273 0.411 0.1594 0.0506 

40 - 44 0.0 0.1087 0.2546 0.3984 0.1767 0.0616 

45 - 49 0.0 0.1123 0.3323 0.3568 0.1434 0.0552 

50 - 54 0.0 0.1021 0.4621 0.2887 0.1005 0.0466 

55 - 59 0.0 0.0997 0.5513 0.2269 0.0763 0.0458 

60 - 64 0.0 0.1119 0.5888 0.1884 0.0657 0.0452 

65 - 69 0.0 0.2312 0.5307 0.1469 0.0526 0.0386 

70 - 74 0.0 0.3896 0.4509 0.1026 0.0349 0.022 

75 - 79 0.0 0.5679 0.3392 0.0643 0.0183 0.0103 

80 - 100 0.0 0.7572 0.1956 0.0335 0.0087 0.005 

 898 
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Table S4 Probability of age class of individuals depending on his role in the household, excluding the household 899 

head 900 

Age  

class 
Child of couple Child of a single 

Adult of couple 

with children 

Adult of couple 

without children 
Other 

0 - 4  0.2384  0.1288  0.0  0.0  0.0161 

5 - 9  0.2264  0.181  0.0  0.0  0.0176 

10 - 14  0.212  0.2125  0.0  0.0  0.0226 

15 - 19  0.1777  0.2131  0.0035  0.0008  0.0825 

20 - 24  0.0886  0.1144  0.0445  0.0164  0.1587 

25 - 29  0.0305  0.0448  0.071  0.0718  0.1051 

30 - 34  0.0105  0.0204  0.0414  0.1392  0.066 

35 - 39  0.0064  0.0182  0.0244  0.1848  0.0576 

40 - 44  0.0045  0.0181  0.0224  0.1873  0.0577 

45 - 49  0.0028  0.0172  0.0434  0.1642  0.0578 

50 - 54  0.0014  0.0139  0.0902  0.111  0.057 

55 - 59  0.0006  0.0101  0.1379  0.0621  0.057 

60 - 64  0.0002  0.0053  0.1537  0.0306  0.0506 

65 - 69  0.0  0.0016  0.1126  0.0135  0.0364 

70 - 74  0.0  0.0005  0.0993  0.0086  0.0356 

75 - 79  0.0  0.0001  0.0812  0.0056  0.0382 

80 - 100  0.0  0.0  0.0745  0.0041  0.0835 
 

 901 

Employment 902 

School and industry census data are used to randomly assign an employment category to 903 

each individual on the basis of age: the probabilities are reported in Table S5. The table 904 
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assumes that all the children attend school from elementary to high school, while the 905 

attendance of universities is taken from census data. Census data contains the number of 906 

individuals commuting from one municipality to another one, specifying if they are students or 907 

workers, and the same for the number of individuals that study or work in the same 908 

municipality where they live. Such information is used to randomly assign students and 909 

workers to a municipality of work, which may be different from the one where they live, and 910 

then to a random school building or workplace inside this municipality. Students are assigned 911 

to a random school building, while workers are assigned to a random workplace type (5 912 

types, depending on the workplace size, i.e., the number of employees) and then to a 913 

random workplace building. Students are not grouped in classes. 914 

Table S5 Probability of workplace kind by age: individuals in the last column stay at home 915 

Age 

class  
creche  maternel  elementaire  college  lycee  universite  work  neet 

0 - 3  0.6  -  -  -  -  -  -  0.4 

4 - 6  -  1.0  -  -  -  -  -  - 

7 - 11  -  -  1.0  -  -  -  -  - 

12 - 15  -  -  -  1.0  -  -  -  - 

16 - 18  -  -  -  -  1.0  -  -  - 

19 - 21  -  -  -  -  -  0.365  0.448  0.187 

22 - 23  -  -  -  -  -  0.332  0.471  0.197 

24 - 26  -  -  -  -  -  0.026  0.687  0.287 

27 - 62  -  -  -  -  -  -  0.705  0.295 

63 - 100  -  -  -  -  -  -  -  1.0 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2020.07.22.20158352doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.22.20158352
http://creativecommons.org/licenses/by-nd/4.0/


 916 

Face-to-face contact network 917 

Acquaintance network  918 

For each place, 𝑖  – a workplace (𝑊 layer), a school (𝑆 layer) and a municipality (𝐶 and 𝑇 919 

layers) – we build an Erdős–Rényi network, with average degree 𝜒9.  The latter is a 920 

stochastic variable and depends on place layer, 𝑠9, and size, 𝑛9. We draw it from a gamma 921 

distribution with average 𝜒(𝑠, 𝑛)fffffffff and coefficient of variation 𝐶𝑉.  922 

We expect that when the size of a place is small each individual enters in contact with 923 

everybody. As the size increases the number of contacts saturates. We model this by 924 

assuming 𝜒(𝑠, 𝑛)fffffffff = h\	(i=>)
h\j(i=>)

. The function approaches (𝑛 − 1) for small 𝑛 and saturates to 𝑤- 925 

as 𝑛 increases (Figure S1). 926 

For each setting the parameter 𝑤- is tuned to reproduce the overall proportion of contacts 927 

occurring in the layer. 𝐶𝑉 rules the level of heterogeneity among places of the same kind and 928 

size. For simplicity we assume it to be the same for all settings. Additional details on the 929 

parametrization are provided below. 930 

 931 
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Figure S1 Average degree of the acquaintance network 𝜒(𝑠, 𝑛)fffffffff as a function of the size of the place. As the size 932 

goes to infinity the degree saturates to 𝑤- that depends on the setting. Here we show as an example the curve for 933 

the workplace (𝑤l = 41.8). The other parameters estimated are 𝑤F = 18,23, 𝑤n = 4,3, 𝑤o = 20,9. 934 

Daily contact network  935 

Once the acquaintance network is built a daily activation rate 𝑥 is assigned to each link 936 

according to a cumulative distribution 𝐹-(𝑥) that depends on the layer 𝑠. We model 𝐹-(𝑥) with 937 

a sigmoid function with two parameters, 𝐴- and 𝐵-. For simplicity we assume 𝐹-(𝑥) to be the 938 

same for 𝑠 = 𝑊, 𝑆, 𝐶, while we allow it to be different in households (where contacts are more 939 

frequent) and in transports (where contacts are sporadic). On average, a fraction 〈𝑥〉- of the 940 

links of the acquaintance network is active each day. By indicating with 𝐾- and 𝑘- the 941 

average degree of a layer in the acquaintance and daily networks, respectively, we have 942 

〈𝑥〉- =
v\
w\

.  943 

Parametrization 944 

We tuned parameters 𝑤-,  𝐴-, 𝐵- and 𝐶𝑉 to reproduce the contact statistics in (33), namely:  945 

• the average daily number of contacts is 10; 946 

• the contact distribution is skewed with mode 3; 947 

• being 𝑘- the average daily number of contacts in setting 𝑠 and 𝑟- =
v\
vx

, the survey reports 948 

𝑟l = 3.17, 𝑟F = 1.55, 𝑟n = 1.86, and 𝑟o = 0.23. 949 

• 35% of the registered contacts were with people met every day, while the rest with 950 

people met less frequently. 951 

Specifically, these data provide the following constraints:  952 

• Combining point 1) and 2) above we get 𝑘P(1 + 𝑟l + 𝑟F + 𝑟n) = 10, meaning 𝑘P = 1.28. 953 

The household statistics used for our synthetic population reconstruction yields 𝐾P =954 

1.97. This implies 〈𝑥〉P = 0.65. 955 
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• We assume that the daily contact network has 35% of links with activity rate >0.95. In 956 

order to do so we must account for the fact that being 𝑓-(𝑥) the distribution of activation 957 

rate values assigned to links of the acquaintance network (i.e. the probability density 958 

function associated to 𝐹-(𝑥)), the distribution of links sampled in the daily network is 959 

biased toward higher rates, i.e. it is given by T〈T〉 𝑓-(𝑥).  960 

In addition to these, we assume uncommon but still possible to meet more than once people 961 

in transports within a time frame of one or few months. Thus, we assume an activation rate 962 

for links in the transport layer as high as a few percent or lower. Based on these constraints 963 

we design the frequency distribution as in Figure S2. 964 

Once 𝐹-(𝑥) is parametrized we tune the parameters 𝑤- of the acquaintance network to 965 

reproduce the proportion 𝑟- of daily contacts in different settings. We then fix 𝐶𝑉 = 0.2 to 966 

reproduce the mode of the distribution. The main properties of the network (contact 967 

distribution, link activation frequency, and age contact matrix) are shown in Figure 1 of the 968 

main paper. Other features are summaries in Table S1. 969 

 970 

Figure S2 Cumulative distribution of the daily activation rate of contacts. We model it with the function 𝐹(𝑥) =971 

𝐴 tanh=>(1 − 2𝑥) + 𝐵. Parameters are the following: 𝐴 = 0.25 for all settings; 𝐵P = 0.65,𝐵o = −0.40, 𝐵- = 0.56 972 

(𝑠 = 𝑆,𝑊, 𝐶). 973 

Table S6 Main network features 974 
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Parameter Description  Value 

〈𝑥〉-, 𝑠 = 𝑆,𝑊,𝐶 Average activation rate of contacts for the 

school, workplace, community layer 

0.56 

〈𝑥〉P Average activation rate of contacts for the 

household layer 

0.65 

〈𝑥〉o Average frequency of contacts for the 

transport layer 

0.007 

𝑘P (𝐾P) Average degree of the daily network 

(acquaintance network) in a household 

1.79 (2.31) 

𝑘l (𝐾l) Average degree of the daily network 

(acquaintance network) in a workplace 

12.9 (22) 

𝑘F (𝐾F) Average degree of the daily network 

(acquaintance network) in a school 

7.9 (14) 

𝑘n  (𝐾n) Average degree of the daily network 

(acquaintance network) in a community 

2.6 (4.3) 

𝑘o (𝐾o) Average degree of the daily network 

(acquaintance network) in transport 

1.1 (21) 

 975 

Details of the numerical simulations  976 

Simulations are discrete-time and stochastic. At each time step, corresponding to one day, 977 

three processes occur: (i) the contact network is sampled according to the activation rate of 978 

each link; (ii) for each node, the infectious status is updated; and (iii) cases and contacts are 979 

isolated, or get out from isolation.  980 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2020.07.22.20158352doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.22.20158352
http://creativecommons.org/licenses/by-nd/4.0/


The transmission process is modelled through the links of the multi-layer network as follows. 981 

At each time step, a susceptible node 𝑖  gets infected with the following probability 982 

Λ� = 1 − �	∏ ∏ (1 − 𝜎@,9𝛽	𝛽C,�	𝜔-�∈�\	- 𝛿�	)�, 983 

where 𝑗 is a node belonging to the neighborhood 𝜐- of 𝑖 on layer 𝑠, and 𝛿� is 1 if 𝑗 belongs to 984 

any infectious stage (𝐼+,-., 𝐼+,., 𝐼-., 𝐼.) and 0 otherwise. Links of layer 𝑠 have weight 𝜔-, that 985 

represent the average level of risk associated to contacts occurring in the setting 𝑠. We 986 

assume that individuals in the 𝐼. state stay at home due to illness and can therefore transmit 987 

the disease only through the links of the household layer. 988 

Simulations are run on the synthetic municipality of Strasbourg. The population is reduced by 989 

a factor 3 to shorten simulation time to feasible levels, yielding a population of 92,423 990 

individuals. 991 

A single-run simulation is executed with no modelled intervention, until the desired immunity 992 

level is reached. This guarantees that immune individuals are realistically clustered in space. 993 

Then the simulations of the epidemic with contact tracing are started, considering 15 994 

individuals initially infected randomly assigned in the population. 995 

Quantities shown in Figures 2, 3, 4, and 5 of the main paper are computed by averaging 996 

results over different stochastic realizations. We run 100 stochastic simulations. Increased 997 

statistics (300 runs) was necessary to accurately compare the relative reduction in incidence 998 

obtained with low app adoption levels – i.e. household isolation only, app adoption 6% and 999 

app adoption 19%.  1000 

We vary COVID-19 transmission potential by tuning the daily transmission rate per contact 𝛽. 1001 

The reproductive number 𝑅 is computed numerically as the average number of infections 1002 

each infected individual generates throughout its infectious period. To do so, population 1003 

immunity at the beginning of the simulation is set to 0 and 𝑅 is computed considering the 1004 
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infections generated by individuals who get infected the first two time-steps of the simulations 1005 

to guarantee that the whole population is susceptible. We find that 𝛽 = 0.1, 0.125, 0.15,1006 

… , 0.25	corresponds to the following 𝑅 values: 1.47 95% CI [0.0, 4.86], 1.75 95% CI [0.0, 1007 

5.78], 2.05 95% CI [0.0, 5.31], 2.25 95% CI [0.0, 5.31], 2.61 95% CI [0.0, 6.13], 2.95 95% CI 1008 

[0.06, 7.29], 3.09 95% CI [0.68, 8.11]. We also computed numerically the generation time 1009 

from the infector-infected pairs. 1010 

 1011 

Additional results 1012 

Uncontrolled epidemic 1013 

 1014 

Figure S3 Epidemic in an uncontrolled scenario. A Incidence of clinical cases. B Incidence of all cases. C Attack 1015 

rate. The bundle of curves shows 70 stochastic realizations. The epidemic is obtained with transmission rate 𝛽 =1016 

0.25 corresponding to 𝑅/ = 3.1. 1017 

App adoption variable by age 1018 

The model accounted for age-varying smartphone penetration. However, we assumed that 1019 

the probability of downloading the app, provided an individual owns a smartphone, is uniform 1020 

and independent on age – uniform app adoption scenario, 𝑈. This hypothesis is simplified. 1021 

Indeed, elderly people may be less inclined to use the app even when they own a 1022 

smartphone. We also tested the extreme case scenario in which no individual in the 70+ age 1023 

cohort adopts the app – non-uniform app adoption scenario, 𝑁𝑈. We consider a 32% app 1024 
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coverage over the whole population, and we compared 𝑈 and 𝑁𝑈 scenarios, assuming the 1025 

same number of apps are downloaded in the two cases. Figure S4 shows the attack rate 1026 

relative reduction 𝐴𝑅𝑅 = @��
�=@���

�

@��
�  by age group, where 𝐴𝑅-.X@  is the attack rate of the 1027 

epidemic for the age group, 𝐴, and the scenario, 𝑠𝑐𝑒 = 𝑈,𝑁𝑈. We found that 𝐴𝑅𝑅 is close to 1028 

zero, meaning that 𝐴𝑅��@  ≃ 𝐴𝑅�@ , for all age groups (Figure S4). This means that distributing 1029 

the app only to individuals younger than 70 years would not reduce the protection in the 70+ 1030 

age group.  1031 

 1032 

 1033 

Figure S4 Comparison between the 𝑈 and the 𝑁𝑈 contact tracing scenario. Here 𝑅 = 2.6, Immunity is 10%, 1034 

detection probability is 50% and app penetration is 32%. The line shows the average attack rate relative reduction 1035 

and the shaded area is standard deviation. 1036 

 1037 

 1038 
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