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Abstract 

The COVID-19 pandemic had a delayed onset in South America compared to 

Asia (outside of China), Europe or North America. In spite of the presumed time 

advantage for the implementation of preventive measures to help contain its 

spread, the pandemic in that region followed growth rates that paralleled, and 

currently exceed, those observed several weeks before in Europe. Indeed, in 

early August 2020, many countries in South and Central America presented 

among the highest rates in the world of COVID-19 confirmed cases and deaths 

per million inhabitants. Here, we have taken an ecological approach to describe 

the current state of the pandemic in Peru and its dynamics. Our analysis 

supports a protective effect of altitude from COVID-19 incidence and mortality. 

Further, we provide circumstantial evidence that internal migration through a 

specific land route is a significant factor progressively overriding the protection 

from COVID-19 afforded by high altitude. Finally, we show that protection by 

altitude is independent of poverty indexes and is inversely correlated with the 

prevalence in the population of risk factors associated with severe COVID-19, 

including hypertension and hypercholesterolemia. We discuss long-term 

multisystemic adaptive traits to hypobaric hypoxia as possible mechanisms that 

may explain the observed protective effect of high altitude from death due to 

COVID-19. 
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Introduction 

The expansion of the SARS-CoV-2 pandemic from Wuhan, China, has followed 

a rapid international spread in line with global travel patterns and slower, more 

complex within-country spread dynamics, attuned not only by internal migration 

patterns but also by a broad array of additional local determinants, including 

non-pharmaceutical policy interventions1, population density2, demographics3, 

health care system capacity and quality4, inequality and poverty5, age6-8, co-

morbidities8-10, ethnicity8,11, genetic factors12, household structure13, air quality14 

or climate15,16. In South America, subsequent to the first confirmed case of 

COVID-19 reported on February 25 in São Paulo, Brazil, the pandemic has 

followed an apparently protracted initial phase of spread, before entering an 

exponential growth phase of cases and deaths, becoming the latest global 

epicenter of the pandemic17. In some cases, in particular Brazil, failure to 

implement mandatory nation-wide non-medical mitigation measures, including 

the use of face masks18 and application of social distancing, may help explain 

the uncontrolled spread of the pandemic. However, in other countries, like Peru, 

introduction of several such measures at an early phase of the pandemic, albeit 

confusing as to the use of face masks, has not prevented its spread and high 

mortality rates in the country as a whole. 

In part due to the relative scarcity of detailed data19 and to underreporting, few 

studies20,21 have explored the dynamics and specific characteristics of the 

COVID-19 pandemic spread in South America. Until recently22, limited 

availability of viral sequence information23-25 has also prevented genomic 

epidemiological approaches to understanding viral spread, variation and 

possible heterogeneous pathogenesis26 in specific geographical and population 

contexts in the region. In spite of these information shortcomings in the early 

stages of the pandemic in South America, accumulating data are making 

possible to conduct more detailed epidemiological analyses, essential to inform 

policies intended to protect the populations at higher risk. Here, we have 

analyzed open-access data for confirmed COVID-19 cases and deaths in Peru, 

by means of temporal and spatial analyses, along with association analyses 

with demographic parameters, socio-economic determinants and co-morbidities 

in an ecological approach to the pandemic. Our analysis reveals a significant 
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protection from COVID-19 contagion and death conferred by high altitude, 

independent of population density, distance from the pandemic epicenter or 

poverty levels. 

 

Results 

Age distribution and female-to-male rates of COVID-19 in Peru 

The COVID-19 pandemic in Peru has followed a dynamic similar to that of other 

South American countries. Unlike the majority of European countries or North 

America, in which multiple import events have seeded subsequent viral spread, 

the spread in South America can often be traced to a single import event per 

country22. In order to better understand the dynamics of the pandemic in Peru 

and potential ecological peculiarities, we have undertaken a systematic 

longitudinal and geographical analysis of all cases and deaths registered in 

Peru through July 17, 2020. (Table S1). General data on the pandemic in Peru 

are readily available to the public through several information channels 

(https://cs.ucsp.edu.pe/monitor-covid/; 

https://covid19.minsa.gob.pe/sala_situacional.asp). We dissected such coarse 

data into finer detail, by analyzing the age distribution and female-to-male ratios 

of cumulative cases diagnosed and deaths registered on four separate dates 

(April 10, May 15, June 19 and July 17) in each of the larger territorial divisions 

of the country (i.e., departments, each consisting of provinces, that encompass 

several districts). In these analyses, we have avoided the case-fatality ratio 

metric as it may obscure the geographical dynamics of the pandemic in the 

event of concomitant evolution of cases and fatalities27 and because of a 

degree of uncertainty in territorial differences in testing coverage. Importantly, 

all our comparative analyses are performed with normalized case and death 

numbers both for population density [(cases or deaths/(population/Km2)] and for 

total population (cases or deaths/106 population). 

While the age distribution of cases at the overall national level was stable along 

the entire study period, with a median age 42 on all four dates, similar to that 

reported for countries like China28, several departments showed a significant 

departure from the nationwide distribution, not only on the early cut-off point of 
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April 10, but also on later dates (Fig. 1A). This was particularly evident in 

departments distant from the large coastal urban centers, such as Cajamarca, 

Cusco and Huancavelica (in the Andes) or San Martín, Amazonas and Madre 

de Dios (in the Amazon, or “selva”, region), with median ages for cases ranging 

from 27 (Madre de Dios; April 10 cumulative) to 39 (Madre de Dios; May 15, 

June 19 and July 17). These relatively young age distributions for COVID-19 

cases are reminiscent of those for South Korea28, a reflection of generally 

younger demographics as compared to Italy, Spain or other European 

countries29. The nationwide age distributions of death from COVID-19 were also 

stable over time (mean age 66). The distribution of death from COVID-19 by 

department were variable on the earlier dates, likely owed to the low number of 

deaths in several departments early in the pandemic (Fig. 1A), but were 

generally uncoupled from age distribution of cases, as expected from the 

relatively low incidence of death from SARS-CoV-2 infection in the young29. 

Also as expected7,9, cases and, particularly, deaths, affected more men (0.72 to 

0.74) than women nationwide (Fig. 1B). However, notable exceptions were 

several departments in which much of their territories are located at high 

altitude (> 2,500 m), namely Apurímac, Pasco and Puno, as well as Moquegua 

(featuring inhabited districts with altitudes ranging from sea level to above 4,000 

m), where death from COVID-19 affected more women (0.51 to 0.82 for the 

June 19 or July 17 cut-offs) than men (Fig. 1B). 

Peru presents a peculiar orographical arrangement, in which low-altitude 

regions are both on the coast and inland (Amazon or “selva” regions), 

separated by the high-altitude Andean range. This setting is uniquely suited to 

test hypotheses on the potential health impacts of altitude as a factor 

independent from other factors such as population density or distance from 

large urban centers. By geographically mapping population density-normalized 

case and death rates at the district level, we corroborated in more detail coarser 

publicly available maps, indicating that higher case and death rates generally 

corresponded to coastal and Amazon (“selva”) districts, relatively sparing 

districts located in the Andes range (Fig. 2). Interestingly, although the 

recognized initial epicenter of the pandemic is attributed to the Lima region, 

which indeed presents the higher overall number of cases and deaths in Peru 
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(Table S1), the population density-normalized data indicated an early, higher 

intensity epidemic in relatively distant coastal districts located North and South 

of Lima, as well as in a number of Amazon districts. As the pandemic 

progressed, the case and fatality rates progressively increased over time in a 

number of high-altitude districts. However, the majority of such districts were 

relatively unaffected, with case and death rates per population density below 1 

(Fig. 2). Coastal districts are those with the largest urban centers and higher 

population densities. That many “selva” districts, geographically distant and not 

readily accessible from the coast, had case and death rates as high as many 

coastal districts suggests that proximity to large coastal urban centers alone is 

not a major factor explaining the high COVID-19 case and death rates. 

 

Distribution and relative risk of COVID-19 case and death rates as a function of 

altitude 

Given the above geographical distribution of COVID-19 cases and deaths, and 

following up several reports that have suggested an inverse correlation between 

altitude and COVID-19 cases and severity30-32, we analyzed the incidence of 

confirmed COVID-19 cases and deaths at various altitude intervals. High 

altitude is defined as terrain located above 2,500 m and thus we first used this 

altitude threshold to stratify our data. It can be seen (Fig. 3) that the rates of 

COVID-19 cases and deaths in districts at altitudes below 2,500 m were 

significantly higher than those at altitudes above this mark on all three cut-off 

dates analyzed. We further stratified populations into 1,000-m intervals, and 

found highly significant differences in case and death rates in comparisons 

between sites located below 1,000 m and all other sites located above 1,000 m 

on all three cut-off dates (Fig. 4). Smaller differences in case and death rates 

were observed in comparisons between altitude intervals above 1,000 m.  

Consistently, relative risks (RR) were significantly higher for COVID-19 case 

and death rates in districts at altitudes lower than 2,500 m, with 11.4-fold (April 

10 cut-off), 7.6-fold (May 15), 8.2-fold (June 19) and 6.5-fold (July 17) RR for 

case rates and 13.1-fold (April 10), 21.6-fold (May 15), 10.5-fold (June 19) and 

6.5-fold (July 17) RR for death rates (Fig 5A, Table S2). Likewise, RR for case 

and death rates were significantly higher in comparisons between sites below 
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1,000 m and all other altitude intervals above 1,000 m, and generally not 

significant when comparing 1,000-m intervals above 1,000 m (Fig. 5B, Table 

S2). An exception to the latter was observed when comparing RR between the 

1,000-1,999 m and 3,000-3,999 m intervals, which suggests small, but 

significant, relative protection from SARS-CoV-2 infection and COVID-19 death 

conferred by the higher altitude range (Fig 5B, Table S2). This suggests that 

altitudes above 1,000 m associate with a protective effect from COVID-19, and 

that altitudes above 1,000 m do not significantly add further protection. Of note, 

the potential protection conferred by altitude, although strong and consistently 

significant for all altitude ranges above 1,000 m as compared to those below 

1,000 m, declined over time (Fig. 5B, Table S2). Interestingly, a progressively 

dwindling protection conferred by altitude over time was conspicuous in the 

1,000-m interval comparisons (Fig. 5B). This might be attributed to either the 

apparent protection being an artifact related to testing coverage or data registry 

shortcomings, or to factors associated with the dynamics of the pandemic (see 

below). 

Because the apparently abrupt drop in death rates from districts below and 

above 1,000 meters of altitude might be an artifact of the stratification used, we 

stratified districts into 500-m altitude intervals and calculated the mean value of 

population density-adjusted death rates for each interval. We observed that the 

decline in death rates was indeed gradual, albet not linear, from the first altitude 

interval up to the boundary between the 1500-1999 and 2000-2499 m intervals, 

best visible in the July 17 cut-off date (Fig. 6). The low death rates at high 

altitude on earlier cut-off dates, close to or equal to zero, prevent an adequate 

visualization of this decline until later dates. 

As crowding and high population density are established transmission factors 

for viral respiratory diseases, including COVID-19 (ref. 2), we further compared 

COVID-19 death rates between pairs of districts with equivalent population 

densities but located at different altitudes, either below 1,000 m (low altitude) or 

above 2,500 m (high altitude). With few exceptions, these pairwise comparisons 

yielded significantly greater death rates in districts at low altitude than at high 

altitude (Fig. 7). This was also observed in pairwise comparisons between low- 

and high-altitude districts within the same department (Fig. S1). Collectively, 
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these observations suggest a protective effect from COVID-19 conferred by 

altitude, independent of population density. 

 

High incidence of COVID-19 at high altitude sites may reflect recent migration 

triggered by the COVID-19 pandemic 

The above pairwise comparisons between districts with equal population 

densities and very different altitudes were plotted as fractions of the combined 

death rates of the two districts under consideration, for the May 15, June 19 and 

July 17 cut-off dates (Fig. 8). The earlier date showed a strong and general 

predominance of death rates in lower districts (< 2,500 m) over higher altitude 

districts (≥ 2,500 m), with two notable exceptions in the pairwise comparisons 

between the low-population density (35/Km2) districts Catacaos (Piura, low 

altituve) vs. La Oroya (Junín, high altitude) and the high-population density 

(1,136/Km2) districts Chaclacayo (Lima, low altitude) vs. Huamancaca Chico 

(Ayacucho, high altitude) (Fig. 8). This predominance was progressively 

attenuated on later cut-off dates in the comparisons Belén (Loreto, low altitude) 

vs. Tarna (Junín, high altitude), with a population density of 111/Km2, San 

Vicente de Cañete (Lima, low altitude) vs. Muquiyauyo (Junín, high altitude), 

with a density of 118/Km2, and Huaral (Lima, low altitude) vs. Huaraz (Ancash, 

high altitude), with a density of 161/Km2. This could be attributed to either 

decreased death rates over time in low-altitude districts or, conversely, 

increased death rates over time in the population density-paired high-altitude 

districts. 

More generally, we noted that, although high altitude sites had attenuated case 

and death rates as compared to low altitude sites, a number of high-altitude 

districts showed increased COVID-19 incidence and death rates over time. As 

an approach to trace the origin of these high-death rate districts located at high 

altitude, we plotted all districts as a function of deaths newly registered at three 

time intervals, from March 1 through April 10, April 11 through May 15, and May 

16 through June 19. This showed that newly registered deaths from COVID-19 

increased over time in a number of districts that clustered at altitudes between 

2,500 and 3,500 m (Fig. S2). We reasoned that, under community spread, 

newly registered death rates would be in direct relationship to prior case rates in 
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the same districts and thus be geographically distributed in accordance with 

prior case rates, while death rates associated with imported cases would not be 

correlated to prior local case buildup. Out of 743 districts in our database 

located at altitudes between 2,500 and 3,500 m, 65 had ≥ 50/106 newly 

registered deaths between May 16 and June 19. Remarkably, geographical 

mapping of these districts revealed that 60 of them (92.3%) were located within 

a 50 Km-wide strip on either side of a path leading from the Lima metropolitan 

area through the Canta and Yauli districts and then along route 3N/3S, from the 

Cajamarca department in the North all the way to the Chilean border in the 

South, with a dense cluster near Huancayo, on route 3S (Fig. 9). Three of the 5 

districts outside this path formed a tight cluster near Arequipa, a major urban 

center with high case and death rates. Interestingly, high-death rate, high-

altitude districts first (April 11 through May 15 interval) appeared near Lima, and 

in more distant districts along the path described above on later dates (May 16 

through June 19). Furthermore, all of the districts described above (Fig. 8) 

showing longitudinal shifts in death rate predominance in population density-

paired comparisons between high- vs. low-altitude districts are located within 

this narrow strip of land. This pattern is highly suggestive of propagation from 

the early epicenter of the pandemic, namely the Lima metropolitan area, to 

high-altitude districts, which may explain the high-altitude, high-death rate 

clusters located in relative proximity to Lima and along a heavily transited path 

used by recent migration forced by the pandemic, in contravention of 

Government-mandated mobility restrictions.  

 

Altitude as an independent protective factor from COVID-19 

The above observations suggest that altitudes above 1,000 m confer protection 

from COVID-19. While the only known protective factor from the severity of this 

disease is young age6-8, several co-morbidities have been shown, in cohort 

studies, to associate with severe COVID-19, including hypertension, 

cardiovascular disease, obesity, diabetes or respiratory diseases6-8,33. The data 

described above (Fig. 1) hinted at several geographical differences in age 

distribution and male-to-female ratios of cases and deaths. To explore if age or 

sex are a factor associated with the diminished incidence and death rates in 
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high-altitude districts, we compared the age distribution of COVID-19 cases and 

deaths in districts stratified by 1,000-m altitude intervals. There were no 

statistical differences in normalized case or death rate age distributions 

between altitude intervals on any of the four cut-off dates under consideration. 

A trend towards a younger age distribution in cases in the 3000-4999 m altitude 

range (Fig. 10A) was not statistically significant. Similarly, there were no 

significant differences in male-to-female case or death ratios in comparisons 

between different altitude intervals (Fig. 10B), although female death rates 

reached 0.50 at the 1000-1999 m range in the May 15 registry cut-off. From 

this, we conclude that neither altitude-dependent age distribution, nor 

differential sex susceptibility, explains the apparent protection from COVID-19 

associated with high altitude.  

The dataset used in our analysis does not contain clinical information, which 

precludes the analysis of co-morbidities. In order to ascertain how co-

morbidities known to associate with severe COVID-19 may influence the 

geographical distribution of cases and deaths, we resorted to a proxy approach 

by which the most recently available survey data on the nationwide prevalence 

of non-transmissible diseases in Peruvian cities34 were used as variables in 

principal component analysis (PCA) and correlation tests. The variables 

analyzed included prevalence of hypertension, hypercholesterolemia, diabetes, 

obesity, smoking habit and sedentary lifestyle, retrieved from the 2010 

TORNASOL suvey34, the 2018 poverty index35, current population density, and 

the cut-off date of May 15 count for COVID-19 deaths per million people. This 

date was chosen assuming that it better reflects deaths from local cases than 

later dates, more subject to the influence of imported cases. Expectedly, our 

analyses showed clustering of sedentary lifestyle with obesity and 

hypercholesterolemia with diabetes (Fig. 11A). Interestingly, hypertension rates 

clustered more closely with COVID-19 death rates than with the other 

morbidities analyzed as variables. Rates of smoking habit did not cluster with 

any of the other morbidities, and population density was as close to COVID-19 

death rates as were hypertension rates (Fig. 11A). Importantly, altitude 

inversely correlated with COVID-19 death rates and all morbidity prevalence 

rates analyzed. Also of note, poverty indexes clustered together with altitude, 
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although without reaching statistical significance, and inversely correlated with 

all analyzed morbidities. (Fig.11B). With all the caveats stemming from a 

comparison between current epidemiological data and past prevalence of co-

morbidities, plus the fact that we could only analyze select cities, these 

observations suggest that death from COVID-19 occurs preferentially in a 

context of high rates of morbidities such as hypertension and 

hypercholesterolemia, prevalent in low-altitude cities, and less preferentially in 

high-altitude, high-poverty index locations. 

 

Discussion 

This ecological study is intended to provide details relevant for the 

understanding of the dynamics of the COVID-19 pandemic in Peru that may aid 

in shaping policy decision-making in the face of its unrelenting spread. Our 

most relevant finding is a significant association between life at high altitude 

and a lower risk of COVID-19 contagion and death from the disease. We also 

provide evidence that the recent surge of the pandemic in high-altitude districts 

in Peru may be explained by the influx of migrants from large urban centers to 

high-altitude districts along a specific land route, overriding the protective effect 

that might have been conferred by high altitude to residents of those particular 

districts. 

Although prior studies have suggested that altitude may be a protective factor 

from COVID-19 (ref. 27,30-32,36-40), our analysis is the first to employ a large 

longitudinal database encompassing all COVID-19 cases and deaths registered 

in Peru through July 17, 2020 (https://www.datosabiertos.gob.pe/group/datos-

abiertos-de-covid-19). In order to correct for population density, which tends to 

be significantly higher on the coastal lowlands, we have normalized case and 

death counts by population density and per million people in all districts. 

Likewise, we have considered the prevalence of non-transmissible diseases as 

determined by prior surveys, as a proxy for potential co-morbidities associated 

with case and death incidence34. Past studies have shown that low-altitude 

populations in Peru, both on the coast and in the Amazon forest departments, 

have significantly higher risk than high altitude populations for a number of non-

transmissible diseases, including obesity, diabetes or hypertension41,42, 
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comorbidities that impart strong risks for the development of severe COVID-19 

(ref. 6-8,33). 

Our multivariate analysis corroborates that the prevalence of obesity, diabetes, 

hypertension and hypercholesterolemia correlate with low altitude. It further 

reveals that the normalized death rate from COVID-19 is significantly correlated 

with prevalence of hypertension and hypercholesterolemia, as well as low 

altitude. Interestingly, death rates from COVID-19 are not significantly 

correlated with population density, despite a trend towards correlation. Indeed, 

our comparisons of case and death incidence between populations stratified by 

altitude shows the same protective effect of altitude when normalized by million 

people or by population density (population/Km2). Although crowding is a known 

viral spreading factor43, there is evidence that spread of SARS-CoV-2 tends to 

adopt focal patterns, with superspreader conditions or individuals in which high 

viral production and loads can be more relevant nucleating transmission factors 

than mere population density43-45. Likewise, current COVID-19 death rates are 

not correlated with local prevalence of smoking habit, an observation consistent 

with a recent large-scale cohort study that found that smoking did not confer a 

significantly increased risk of severe COVID-19 (ref. 8). 

It could be argued that populations in sparsely populated sites at high altitude 

might have less access to diagnostic PCR or serological tests confirmatory of 

SARS-CoV-2 infection. However, these tests are applied to the general public 

free of charge by the Peruvian national health system, and there is no evidence 

of shortage of serological tests, although they are unevenly distributed 

throughout the territory (see Study Limitations). Likewise, high poverty levels 

could limit the availability of health care and may be expected to be associated 

with elevated case and death rates as observed elsewhere (e.g., 

https://www1.nyc.gov/site/doh/covid/covid-19-data.page). Contrary to this 

expectation, in our multivariate analyses, high poverty indexes were associated 

with higher altitude and lower, not higher, death rates. In conclusion, altitude 

appears to confer protection from COVID-19 incidence and death independent 

of population density and not offset by high poverty levels. The latter 

observation is at odds with the findings of the OpenSAFELY study, which 

detected an increased risk of COVID-19 death with greater deprivation in the 
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United Kingdom8, not fully explained by pre-existing conditions or other risk 

factors. This reinforces the notion that additional local conditions are significant 

modifiers of sensitivity to COVID-19. 

We have found that the apparent protective effect of altitude was very strong 

when comparing populations below and above the accepted high-altitude 

threshold (2,500 m), with relative risks for low-altitude populations, both in 

coastal and Amazonian regions, between 6.5 and over 11-fold for cases and 

over 6.5 and 21.6-fold for deaths, relative to high-altitude populations. Because 

atmospheric pressure decreases with altitude, inspired PO2 (PO2) is also 

reduced. At 2,500 m, PiO2 decreases approximately to 110 mm Hg from its sea-

level value of 150 mm Hg, and consequently arterial PO2 drops below 70 

mmHg. Around this value, hemoglobin (Hb) O2 saturation approaches the 

inflexion region of the O2-Hb dissociation curve and therefore the physiological 

effects of hypoxemia become noticeable and significant. Hence the use of 

2,500m as the threshold for defining high altitude. Our finding that population 

density-adjusted COVID-19 death rates gradually decline from altitudes below 

500 m up to 2,000 m is suggestive of an effect of chronic high-altitude hypoxia 

exposure associated with the seeming protective effect from COVID-19 

conferred by altitude. 

In spite of the general potential protection conferred by altitude, we have 

observed clusters of high incidence of cases and deaths from COVID-19 at 

high-altitude sites. Geographical localization of high-altitude clusters of newly 

registered COVID-19 deaths revealed that the majority corresponds to sites on, 

or adjacent to, a major migration route from the Lima metropolitan area, namely 

route 3N/3S. Because the overwhelming majority of the high altitude locations 

outside of this route have very low rates of COVID-19 cases and deaths, we 

surmise that these high case and death rate clusters are a reflection of viral 

spread imported from the high-rate Lima metropolitan district, rather than bona 

fide community spread. In all transmissible disease epidemics, short distance 

from a major focus is a predictor of case incidence and rate. However, in the 

COVID-19 pandemic in Peru, sites located at long distances from Lima, such as 

districts in the Amazon regions, show high case and death rates. Importantly, 

the latter sites are located at low altitude. Based on these considerations, we 
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suggest a scenario in which altitudes above 1,000 m confer a general protective 

effect from COVID-19, in co-existence with high case and death rate clusters 

imported from Lima. At this time, we have not observed evidences for spread to 

high-altitude sites from other high-incidence coastal sites, a situation that might 

change if the pandemic continues its current trend. 

This scenario implies that the apparent protection from COVID-19 conferred by 

altitude would benefit long-time resident populations, rather than recent 

migrants to high-altitude districts. Protection attributed to altitude was also noted 

during the 2009 H1N1 influenza pandemic in Peru46 and the 2006 H5N1 avian 

influenza epidemic in Indonesia47 and Thailand48. Experiments with mice 

acclimatized to high altitude also showed enhanced resistance to a type A 

influenza strain49. As noted above, a major factor impacting physiological 

changes associated with altitude is hypobaric hypoxia50. Low environmental 

PO2 at high altitude is a selective force that has shaped the genetic endowment 

of highlanders in the Andes, the Himalayas and the Ethiopian plateau51. Human 

populations have evolved to select for local and shared high-altitude adaptive 

traits. Adaptive variants in regulators of the hypoxia response pathways are 

commonly shared among populations from all three high-altitude regions51,52, 

including EPAS1 (also known as HIF-2), SENP1 or EGLN1 (PHD2) in the 

Andes53 and the Himalayas54 or THRB and ARNT2 in Ethiopia55. The 

implication is that these highland populations display genetically-determined 

elevated steady-state activation of hypoxia-response pathways compared to 

lowlanders. This is supported by evidences such as differences in lung 

respiratory capacity, peripheral and central vasculogenesis, enhanced 

erythropoiesis and metabolic signatures50, all of which are known targets of the 

hypoxia response in cellular and animal models56. Some of these physiological 

responses are also observed in lowlanders upon acute hypoxia or under short-

term acclimatization to high altitude, which are reversed at low altitude. 

In keeping with our hypothesis that long-term, but not short-term exposure to 

altitude and relative hypoxia may explain protection from COVID-19, we 

propose that stable morphological, physiological, and metabolic characteristics 

resulting from long-term or life-long high altitude exposure, genetically or 

epigenetically determined, are more likely to be associated with relative 
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protection from severe respiratory viral diseases than short-term responses to 

hypobaric hypoxia. Potential mechanistic explanations of the protective effect of 

altitude might include chronic hypoxia-induced adaptive characteristics in the 

lungs at the organ and cellular level, expression of viral receptors and 

associated endothelial and lymphatic vessel networks, as well as metabolic 

adaptations. 

SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) for cell entry, 

which is potentiated by the transmembrane serine protease 2 (TMPRSS2)57. As 

such, low levels of both proteins could mitigate the entry of SARS-CoV-2 into 

susceptible cells. Hypoxia and the activation of hypoxia-dependent pathways 

have shown to modulate the expression of ACE2 and TMPRSS2. Acute 

hypoxia in vitro induces HIF-1-independent expression of ACE258,59, followed by 

HIF-1-dependent repression and downregulation under prolonged hypoxia60. 

Also, activation of the HIF pathway through the hypoxia-mimicking compound 

CoCl2 causes a decrease of TMPRSS2 expression in vitro61. Downregulation of 

ACE2 by chronic hypoxia has also been proposed as a mechanism for 

pulmonary hypertension associated with acute mountain sickness in lowlanders 

travelling to high altitude62. However, there is no evidence that ACE2 

expression is regulated in vivo in populations living at high altitude63. 

Furthermore, this possible mechanism would be specific of viruses using ACE2 

as their receptor, such as SARS-CoV and SARS-CoV-2, and would not explain 

protection from H1N1 influenza or viruses that use other cellular ports of entry.  

On the other hand, low ACE2 levels are expected to lead to angiotensin-II 

accumulation with consequent pulmonary vasoconstriction and vascular 

remodeling resulting in increased pulmonary artery pressure (PAP)60,62,64. The 

usual mild to moderate pulmonary hypertension observed in Andean 

highlanders65 is somewhat compensated by chronic hypoxia-induced lung 

vascularization preventing PAP to reach exaggerated values. In addition, 

augmented lymphangiogenesis may facilitate fluid drainage to prevent lung 

edema, as shown in some animal models66. Importantly, experimental genetic 

depletion of lymphatic vessels leads both to lung emphysema and lung fluid 

accumulation under injury67, highlighting the importance of the lymphatic 

network in normal and diseased lung function. Mechanistically, hypoxia induces 
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HIF-1-independent expression of the lymphangiogenic factors VEGF-C and 

VEGF-D68, promoting new lymphatic vessel formation, possibly in concert with 

hypoxia-driven modulation of Notch activity69. Additionally, inflammatory 

stimuli70 and stretch injury71 stabilize HIF-1α in alveolar epithelial cells, and 

resolution and repair in the alveolus requires the proliferation and trans-

differentiation of alveolar cells, that in turn requires HIF-1α-dependent VEGF 

expression70. It should be noted that the lung injuries associated with COVID-19 

are distinct from those of high-altitude pulmonary edema (HAPE)72,73. While the 

acute respiratory distress syndrome in COVID-19 is due to primary alveolar and 

lung endothelial destruction with concomitant inflammation and 

microthromboses74,75, HAPE is a non-cardiogenic pulmonary edema caused by 

hypoxic pulmonary vasoconstriction that leads to a non-inflammatory and 

hemorrhagic alveolar capillary leak that only over time may elicit a secondary 

inflammatory response76.  Nevertheless, it is plausible that the protective 

pathophysiological mechanisms discussed above are relevant to both 

conditions. 

Of potential relevance in the context of COVID-19, hypoxia has significant 

consequences on the activity and regulation of the immune and inflammatory 

systems and metabolic networks. Like in SARS or MERS, in addition to acute 

respiratory distress and, less frequently, heart or renal failure77, uncontrolled 

hyperinflammatory states78 and disseminated coagulopathy77,79 underlie death 

from COVID-19 in many patients. Hypoxia results in metabolic and immune-

inflammatory reprogramming and activation of HIF and NF-κB pathways in 

tightly intertwined networks80, and adaptation to high altitude and chronic 

hypoxia follows different metabolic and immune modulatory routes for 

lowlanders and highlanders81. In experimental settings, acute hypoxia favors a 

HIF-1α-mediated skewing of macrophages to an inflammatory M1 phenotype, 

and of immunosuppressor Treg to inflammatory Th17 phenotpes, dependent on 

increased mitochondrial succinate production. In contrast, HIF-2α polarizes an 

inflammatory-suppressing M2 macrophage phenotype82. Of note, while the 

initial response to hypoxia (< 24 h) is dominated by HIF-1α, more sustained 

responses are supported by HIF-2α83. Also relevant when considering immune 

and inflammatory adaptation to hypoxia and high altitude, HIF-1 is ubiquitously 
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expressed, whereas HIF-2 shows more restricted expression patterns, 

predominantly in immune cell subtypes such as macrophages, neutrophils and 

lymphocytes84. 

In a study of effects of short-term and long-term exposure to high altitude, 

lowlanders, but not Sherpas, showed diminished muscle succinate levels while 

developing signs of oxidative stress with prolonged exposure to high altitude, at 

least partly owing to lower but more efficient OXPHOS in altitude in Sherpas81. 

HIF-1α promotes glycolysis through transcriptional upregulation of glycolytic 

enzymes, while limiting mitochondrial respiration through upregulation of 

pyruvate dehydrogenase kinase-1 (PDK1), which inhibits pyruvate 

dehydrogenase and entry of pyruvate to the TCA cycle56. Consistently, in the 

same study, lowlanders showed increased glycolytic activity at high altitude, 

while Sherpas had no sign of altered glucose homeostasis81, suggesting that 

highlanders have reprogrammed their metabolism for alternative sources of 

ATP in hypoxia. As high glycolytic rates favor the differentiation of myeloid 

progenitors to proinflammatory M1 macrophages80, this would provide a 

mechanistic explanation for the inflammatory reaction observed in lowlanders at 

high altitude and the protection form excessive inflammation in highlanders. In 

turn, blunted inflammatory responses are expected to protect highlanders from 

inflammation-induced obesity and adipocyte accumulation, another source of 

inflammatory molecules such as interleukin-1β (IL-1β) or interleukin-6 (IL-6)85,86. 

Interestingly, apart from HIF-pathway genes, variants coding for metabolic and 

immune-inflammatory molecules are significantly linked with highlander 

populations, including IL1B, IL6 and tumor-necrosis factor (TNF) among 

Andeans and Himalayans, or peroxisome proliferator-activated receptor alpha 

(PPARA) among Himalayans51. 

Finally, erythropoietin (Epo) is also a candidate to play an anti-inflammatory role 

in highlanders following SARS-CoV-2 infection87. Besides its role in 

erythropoiesis, this pleiotropic hormone/cytokine exerts neuro and 

immunomodulatory, anti-inflammatory, anti-apoptotic, and tissue-protective 

effects88,89, and thus could be beneficial in diminishing the clinical outcome 

severity and contribute to explain in part the lower lethality due to COVID-19 at 

high altitude. Chronic hypoxia increases Epo expression in most tissues and 
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reduces the expression of the soluble Epo receptor (sEpoR), an endogenous 

Epo antagonist90,91. This combination increases Epo availability and ensures a 

stronger Epo signaling. Andean highlanders show modestly increased serum 

Epo and decreased sEpoR compared to lowlanders92, and therefore it is 

possible that an Epo-related anti-inflammatory steady-state favors a better 

clinical outcome after SARS-CoV-2 infection. 

In summary, we favor the view that long-term high altitude exposure protects 

from severe respiratory viral diseases, including COVID-19, through multiple 

mechanisms prevalent in residents or genetically selected populations adapted 

to chronic hypobaric hypoxia. Such mechanisms include physiological, 

anatomical, metabolic and immune-inflammatory adaptations. The role played 

by unabated inflammation in COVID-19 pathogenesis has been evident from 

the outset of the pandemic78 and addressed therapeutically by targeting 

inflammatory molecules, and that of metabolic responses and viral subversion 

has been eloquently highlighted in a recent review article93. It has been argued 

that environmental factors, including high levels of ultraviolet radiation, low 

humidity or low temperatures, could contribute to a diminished transmission of 

SARS-CoV-2 at high altitude63. It should be noted, though, that high humidity 

acts as a protective barrier against94,95, while low temperatures favor95, viral 

respiratory diseases. Our analysis supports that living in altitude is a general 

protective factor from severe COVID-19. Translating this knowledge to 

therapies for immediate use against COVID-19, for instance by means of 

pharmacological stabilizers of HIF transcription factors93,96, is challenging, given 

the likelihood that protective effects may require long-term multi-systemic 

adaptations and that adroit navigation will be required to negotiate through the 

heterogeneous downstream consequences of manipulating different 

components of the hypoxia response. 

 

Study limitations 

This study presents some limitations. First, the public databases used for our 

analyses contain gaps and inconsistencies in the numbers of cases or deaths 

reported for some districts. As described in the Methods section, all such 

districts were removed from our analyses, which might introduce a bias. The 
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removed districts, though, showed geographical distributions that were similar 

to the entire set of districts, particularly with regards to altitude. As such, 

removal of these districts from our analysis is not expected to result in 

significant variations in our conclusions pertaining to the associations between 

COVID-19 incidence and altitude. 

Second, positive cases encompass those tested by more robust (sensitive, 

specific and reproducible) qPCR diagnostic assays and those tested by 

arguably less reliable serological assays97. The latter may include false positive 

results, potentially affecting our analysis and conclusions. While considering 

this issue as potentially problematic, we have also reasoned that such a bias 

would be similarly represented in all districts, thus largely offsetting possible 

distortions introduced by false positives in our comparative analyses between 

different districts or groups of districts. 

Third, although data on testing coverage per district or province (encompassing 

several districts) are not available, data per department (the next level of 

territorial organization), and show variations in coverage from 1.08% of the 

population in Cajamarca to 8.76% in Moquegua (Table S3). A priori, this could 

introduce a bias towards underreporting in registered cases below uncertain 

thresholds of testing coverage, while testing coverage above yet uncertain 

thresholds would result in lower rates of registered positive cases. In general, 

larger coastal urban centers have higher testing coverage. Systematic 

population-level (> 5,000 individuals) serological testing for SARS-CoV-2 has 

found case prevalence between 1.7% and 19.3% in diverse populations with 

very different testing coverage98-100. However, we have found no significant 

correlation between testing coverage and case rates (R2 = 0.13) or, particularly, 

death rates (R2 = 0.03) (Fig. S3). Accordingly, we have placed more emphasis 

on the conclusions drawn from the analysis of death rates. 

Fourth, our correlation analyses of COVID-19 deaths with the prevalence of 

non-transmissible diseases uses, for the latter, data from a survey conducted in 

2010-11 in select cities in Peru. More recent surveys101,102 provide information 

limited to one or two the morbidities of our interest and without city- or district-

level detail. Although the relative prevalence among departments of 

hypertension, obesity or smoking habits did not vary significantly between 2014 
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and 2019 (ref. 102), our analyses would provide a more accurate representation 

with more current prevalence data for morbidities at city or district levels. 

Finally, this study, like many other current studies on the COVID-19 pandemic, 

suffers from the hurdle posed by a constantly moving target. As such, our 

conclusions on the protective effects of altitude, supported by our correlation, 

longitudinal and geographical analyses, may risk being quickly obscured de 

facto by the massive and rapid pandemic wave currently sweeping the entire 

Peruvian territory. Imported cases quickly turn into foci of community 

transmission, with potential high viral loads overwhelming any possible 

protective effect that may be afforded by physiological or molecular adaptations 

to high altitude of the affected local populations. In other words, adaptations to 

high altitude may confer a degree of protection from, but not immunity against, 

SARS-CoV-2 and its pathogenicity. 

 

Methods 

Study design. We conducted a retrospective study using national registry data 

including COVID-19 cases and death data (see Data Source). The study 

explores cumulative data registered on four different cut-off dates: April 10, May 

15 and June 19, July 17. Cases correspond to the population diagnosed as 

infected with SARS-COV-2 and positive by either quantitative RT-PCR 

(molecular test) or by a serological assay. Deaths from COVID-19 correspond 

to patients positive for SARS-CoV-2 by either a molecular or a serological 

assay, and certified as death from COVID-19.  

Data source.  Data on positive COVID-19 cases and deaths were collected from 

the Open COVID-19 data resource released by the Secretaría de Gobierno 

Digital of the Peruvian Government. Data was accessed between June 10, 

2020 and July 17, 2020 through https://www.datosabiertos.gob.pe/group/datos-

abiertos-de-covid-19. The data file provided by the Open Data contains country-

specific daily numbers of COVID-19 cases and deaths, and include gender, 

age, date of diagnosis, type of diagnostic assay (serological or PCR), and 

location information including district, province and department.  For each date, 

we calculated two COVID-19 epidemic measures: i) number of cases per million 
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people or population density calculated using the number of cumulative cases 

and population size or population density, ii) number of deaths per million 

people or population density calculated as the number of cumulative deaths and 

population size or population density. Demographic data for Peru was obtained 

from the Instituto Nacional de Estadística e Informática (INEI) through 

https://www.inei.gob.pe.  Data were a cumulative count up to and including April 

10, 2020; May 15, 2020, June 19, 2020, and July 17, 2020. Records were 

considered as nulls when age, gender or date were missing and when district 

and province were missing. The resulting dataset includes 333,958 cases and 

12,045 deaths as of July 17, 2020. For some analyses, cases and deaths newly 

registered between April 11 and May 15 or between May 16 and June 19 were 

retrieved. Each case represented a positive diagnosis of COVID-19 along with 

demographic data.  

Demographic parameters. A descriptive analysis was performed on the basis of 

nationwide data for gender and age of cases and deaths, stratified into 10 age 

ranges (0-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, ≥ 90). 

Data was analyzed both by departments and by altitude intervals (in meters 

above sea level), the latter associated with each district. Departments included 

Amazonas, Áncash, Apurímac, Arequipa, Ayacucho, Cajamarca, Callao 

(Constitutional province), Cusco, Huancavelica, Huánuco, Ica, Junín, La 

Libertad, Lambayeque, Lima, Loreto, Madre De Dios, Moquegua, Pasco, Piura, 

Puno, San Martín, Tacna, Tumbes y Ucayali. Districts were classified according 

to their altitude in the following ranges: 0-999 m, 1000-1999 m, 2000-2999 m, 

and 3000-4999 m. The altitude for each district as well as data on population 

size, territory area, and population density were obtained from the National 

Institute of Statistics and Informatics (INEI) at available at 

https://www.inei.gob.pe/. This database is available in Table S1. 

Mapping. Geographical maps with cases and deaths per districts were 

composed with Mapinseconds (http://www.mapinseconds.com/) and precise 

geographical localization of selected districts was done with the aid of 

GoogleMyMaps (https://www.google.com/mymaps). 

Estimates of Relative Risk. The relative risk (RR), its standard error and 95% 

confidence interval were calculated according to Altman103. The RR is given by 
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with the standard error of the log relative risk being 

 

 

and the 95% confidence interval 

95% CI = exp(ln(RR) – 1.96xSE ⎨ln(RR)⎬) to exp(ln(RR) + 1.96xSE ⎨ln(RR)⎬) 

RRs were calculated for pairwise comparisons of cumulative cases or deaths 

between different altitude intervals on a given cut-off date. Cases or deaths 

counts were designated events (numerators), and the sums of the general 

population for each altitude interval were designated controls (denominators). 

Population numbers as control values was used rather than numbers of SARS-

CoV-2 diagnostic tests performed, given the uncertainty and the territorial 

unevenness of the testing coverage. 

Pairwise comparisons of low- and high-altitude districts. Official reports show 

total number of deaths by department. However, many of these regions harbor 

low- and high-altitude provinces. Thus, to exemplify the proportional 

contribution to total death rates of these provinces, we compared death rates 

normalized to population density of low and high-altitude capital districts in the 

same department. To illustrate the relationship between death rate, altitude and 

population density, we compared death rates in paired low- and high-altitude 

districts of similar population density. Pairs of districts were generated based on 

their altitude (< 2,500 m or ≥ 2,500 m) and a maximum population density 

difference of 5%. Comparisons were made at cut-off points May 15, June 19, 

and July 17. To illustrate the contribution of low and high-altitude districts of 

each pair, the fractional composition was calculated as the number of deaths 

per million of each district, divided by the total number of deaths for each 

population density category. 

Principal component analysis (PCA) and correlation tests (CT). Cities were 

selected for which prevalence data for morbidities are available as part of the 

TORNASOL survey34. For the same cities, the 2018 poverty survey data35 were 

used, and COVID-19 death rates (per 106 people) on the May 15 cut-off date 

were retrieved from the curated general dataset. Altitude and population density 

were retrieved as indicated under Data Sources. Values for all variables were 

row median-normalized and subjected to PCA and CT as implemented in 
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XLSTAT. For graphical representation, the first two factors from PCA were 

plotted as biplots including observations and variables with their depicted 

eigenvectors. 

Generation of heatmaps. For heatmap generation, variables were row-

normalized and heatmaps generated with the aid of Morpheus 

(https://software.broadinstitute.org/morpheus/). 

Other statistical analyses. For non-paired, non-parametric data comparisons, 

Mann-Whitney tests were performed on GraphPad. Chi-square tests were 

applied for contingency data analyses. Unless otherwise indicated, significance 

levels are denoted in graphs by asterisks, as follows: * ≤ 0.05; ** ≤ 0.01; *** ≤ 

0.001; **** ≤ 0.0001. 
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Figure 1. Longitudinal distribution of COVID-19 cases and deaths in Peru 
accumulated on four cut-off dates, by department, age range and sex. A. 
Heatmap of frequencies of distributions of cumulative cases and deaths at each 
of the indicated dates for the indicated age ranges and departments. Median 
ages for cases and deaths for each department and each cut-off date are 
shown to the right of the heatmaps. Nationwide heatmaps corresponding to age 
range distribution frequencies and median ages are also shown for each date. 
B. Histograms of relative frequencies of cumulative male and female cases and 
deaths on the indicated dates at each department (as indicated in panel A). 
Nationwide female:male relative frequencies are also shown for each date. 
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Figure 2. District-level map of case and death rates in Peru, normalized for 
population density. Cumulative COVID-19 case and death rates per 
population density [cases or deaths/(persons/Km2)] on each of the indicated 
cut-off dates are mapped at the district level. Heatmaps and their equivalencies 
are specific for each date. The numbers indicate the upper limits of value range. 
Blue circles are indicators of the Lima metropolitan region. 
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Figure 3. Distribution of case and death rates per million people or 
population density in districts located below or above 2,500 m of altitude. 
Cumulative deaths and cases per 106 population or population density were 
plotted on each of the 4 indicated dates. Green and orange vertical lines denote 
mean values and horizontal lines 95% confidence intervals. All pairwise 
comparisons between low- and high- altitude strata on all 4 dates yielded P 
values < 0.0001 (Mann-Whitney nonparametric test). mamsl, meters above 
mean sea level. 
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Figure 4. Distribution of case and death rates per million people or 
population density in districts stratified at 1,000 m intervals. Green and 
orange vertical lines denote mean values and horizontal lines 95% confidence 
intervals. P value ranges are are denoted as asterisks: *, < 0.05; **, < 0.001; 
***, < 0.0001. (Mann-Whitney nonparametric test). Not shown are significant 
level indicators for comparisons between case or death rates between the 0-
999 m interval and all other altitude intervals on all dates, all highly significant (< 
0.0001). The x-axes were segmented for better visualization. 
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Figure 5. Relative risks for SARS-CoV-2 positiviy and death from COVID-
19 in comparisons between low-altitude vs. high altitude districts. A. Left 
panel, table of relative risk values calculated for cumulative registered cases 
and deaths in districts below or above 2,500 m on the indicated dates. Given 
the uncertainty of the testing coverage, total populations in each altitude range 
were used as surrogate control groups in these calculations. Right panel, 
graphical representation of the values on the left table. B. Left panels, tables of 
relative risk values calculated for cumulative cases and deaths in districts at 
1,000-m altitude intervals. Total populations in each altitude range were used 
as surrogate control groups. Right panels, graphical representations of the 
values on the left tables. Logarithmic scales were applied in the y axes for 
improved visualization of negative relative risk values. In all tables, values in 
bold are significant, red fonts denote increased relative risk for districts in the 
altitude range in the leftmost columns and blue fonts denote decreased relative 
risk in the corresponding pairwise comparisons Values in regular font denote 
non-significant relative risks. Confidendce intervals and p values are detailed in 
Table S2.  
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Figure 6. Gradual decline in COVID-19 death rates with increasing altitude. 
Population density-adjusted COVID-19 deaths (deaths/population density) 
determined for all districts were stratified into 500-m altitude intervals. Mean 
values were calculated and plotted for each atitude interval. mamsl, meters 
above mean sea level.  
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Figure 7. Pairwise comparisons for cumulative death rates between 
districts with equivalent population densities located at high or low 
altitudes. Death rates were compared in paired low- (< 2,500 m) and high-
altitude (≥ 2,500 m) districts of similar population density (5% maximum 
difference). Comparisons were made at cut-off points May 15, June 19, and 
July 17. 
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Figure 8. Graphical representation of fractions of combined death rates of 
population density-paired low-altitude vs. high-altitude districts. To 
illustrate the contribution of low and high-altitude districts of each pair, the 
fractional composition for all pairwise comparisons in Figure 6 was calculated 
as the number of deaths per million of each district, divided by the total number 
of deaths at each population density category. 
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Figure 9. Geographical mapping of high-altitude districts with high death 
rates. All districts above 2,500 m of altitude with registered death rates ≥ 50/106 
people between May 16 and June 19, 2020 were mapped with the 
GoogleMyMaps online application. Highway 3N/3S is indicated at various points 
on the map. An interactive map can be accessed at 
https://www.google.com/maps/d/edit?mid=1VVUxlS9bz0rj-
ChtbpGTQ0tUSs27TKWL&usp=sharing. 
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Figure 10. Age and sex distribution of COVID-19 cases and deaths in Perú 
as a function of 1000-m altitude intervals. A. Heatmap of frequencies of 
distributions of cumulative cases and deaths on each of the indicated dates in 
each of the indicated age ranges and altitude intervals. Median ages are shown 
to the right of the heatmaps. B. Histograms of female-to-male rates of 
cumulative and deaths on the indicated dates, and altitude intervals. 
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Figure 11. Correlation analyses of COVID-19 death rates, non-
transmissible morbidity prevalence and altitude in major Peruvian cities. 
A. Principal component analysis of COVID-19 deaths registered from May 15 
through June 19 (rates per 106 population), together with morbidity prevalence, 
altitude and poverty index. B. Correlation analysis between variables. Values in 
bold are significant (alpha = 0.5; p ≤ 0.05). In red, positive correlation. In blue, 
negative correlation. P values for each correlation factor are provided in Table 
S5. 
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