1	Inflammasome activation in COVID-19 patients
2	Tamara S. Rodrigues ¹ , Keyla S.G. de Sá ¹ , Adriene Y. Ishimoto ¹ , Amanda Becerra ¹ ,
4	Samuel Oliveira ¹ , Leticia Almeida ^{1,2} , Augusto V. Gonçalves ¹ , Debora B. Perucello ¹ ,
5	Warrison A. Andrade ¹ , Ricardo Castro ³ Flavio P. Veras ⁴ , Juliana E. Toller-
6	Kawahisa ⁴ , Daniele C. Nascimento ⁴ , Mikhael H.F. de Lima ⁴ , Camila M. S. Silva ⁴ ,
7	Diego B. Caetite ⁴ , Ronaldo B. Martins ¹ , Italo A. Castro ¹ , Marjorie C. Pontelli ¹ , Fabio
8	C. de Barros ^{5,6} , Natália B. do Amaral ⁷ , Marcela C. Giannini ⁷ , Letícia P. Bonjorno ⁷ ,
9	Maria Isabel F. Lopes ⁷ , Maíra N. Benatti ⁷ , Rodrigo C. Santana ⁷ , Fernando C. Vilar ⁷ ,
10	Maria Auxiliadora-Martins ⁸ , Rodrigo Luppino-Assad ⁷ , Sergio C.L. de Almeida ⁷ ,
11	Fabiola R. de Oliveira ⁷ , Sabrina S. Batah ⁹ , Li Siyuan ⁹ , Maira N. Benatti ⁹ , Thiago M.
12	Cunha ^{2,4} , José C. Alves-Filho ^{2,4} , Fernando Q. Cunha ^{2,4} , Larissa D. Cunha ¹ , Fabiani G.
13	Frantz ³ , Tiana Kohlsdorf ³ , Alexandre T. Fabro ⁹ , Eurico Arruda ¹ , Renê D.R. de
14	Oliveira', Paulo Louzada-Junior', Dario S. Zamboni ^{1,2} *
15	
10	Departemento de Pielogia Calular e Melegular e Piengentes Pategônicos and ² Center
17	of Research in Inflammatory Diseases (CRID). Eaculdade de Medicina de Ribeirão
10	Preto Universidade de São Paulo Ribeirão Preto São Paulo Brazil
20	³ Departamento de Apálises Clípicas Toxicológicas e Bromatologia Faculdade de
21	Ciências Farmacêuticas de Ribeirão Preto. Universidade de São Paulo, Ribeirão Preto.
22	SP. Brazil.
23	⁴ Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto,
24	Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
25	⁵ Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão
26	Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
27	⁶ Departamento de Ecologia e Biologia Evolutiva, Instituto de Ciências Ambientais,
28	Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil.
29	⁷ Divisão de Imunologia Clinica, Emergência, Doenças Infecciosas e Unidade de
30	Terapia Intensiva, Faculdade de Medicina de Ribeirão Preto, Universidade de São
31	Paulo, Ribeirão Preto, SP, Brazil.
32	^o Divisão de Medicina Intensiva, Departamento de Cirurgia e Anatomia, Faculdade de
33	Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, Brazil.
34 25	Departamento de Patologia e Medicina Legal, Faculdade de Medicina de Ribeirão
33 36	Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, Brazil.
30	*Correspondence
38	Dario S. Zamboni, Ph.D.
39	Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos Av
40	Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil.

- Tel: (55) (16) 3602-3265.
- Fax: (55) (16) 3633-1786.
- E-mail: dszamboni@fmrp.usp.br

47 Abstract

48

49	Severe cases of COVID-19 are characterized by a strong inflammatory
50	process that may ultimately lead to organ failure and patient death. The NLRP3
51	inflammasome is a molecular platform that promotes inflammation via cleavage and
52	activation of key inflammatory molecules including active caspase-1 (Casp1p20), IL-
53	1β and IL-18. Although the participation of the inflammasome in COVID-19 has been
54	highly speculated, the inflammasome activation and participation in the outcome of
55	the disease is unknown. Here we demonstrate that the NLRP3 inflammasome is
56	activated in response to SARS-CoV-2 infection and it is active in COVID-19,
57	influencing the clinical outcome of the disease. Studying moderate and severe
58	COVID-19 patients, we found active NLRP3 inflammasome in PBMCs and tissues of
59	post-mortem patients upon autopsy. Inflammasome-derived products such as
60	Casp1p20 and IL-18 in the sera correlated with the markers of COVID-19 severity,
61	including IL-6 and LDH. Moreover, higher levels of IL-18 and Casp1p20 are
62	associated with disease severity and poor clinical outcome. Our results suggest that
63	the inflammasome is key in the pathophysiology of the disease, indicating this
64	platform as a marker of disease severity and a potential therapeutic target for COVID-
65	19.

67

68	COVID-19 is an inflammatory disease caused by the severe acute respiratory
69	syndrome coronavirus 2 (SARS-CoV-2), which can manifest a broad spectrum of
70	symptoms ranging from little or no symptoms to severe pneumonia that may evolve to
71	acute respiratory distress syndrome (ARDS) and death ¹ . While the molecular
72	mechanisms driving disease severity are still unclear, the clinical association of
73	inflammatory mediators such as IL-6 and lactate dehydrogenase (LDH) with severe
74	cases suggests that excessive inflammation is central for the poor clinical outcome ²⁻⁵ .
75	The induction of inflammatory processes in the host cell often requires the
76	engagement of the inflammasomes, which are protein platforms that aggregate in the
77	cytosol in response to different stimuli ⁶ . The NLRP3 inflammasome, possibly the
78	most studied one of such platforms, comprises the NLRP3 receptor, the adaptor
79	molecule ASC, and caspase-1. Caspase-1 is activated by proteolytically cleavage and
80	promotes the activation of many substrates, including the inflammatory cytokines IL-
81	1β and IL-18 and Gasdermin-D, a pore-forming protein that induces an inflammatory
82	form of cell death called pyroptosis ⁶ . NLRP3 activation in response to microbial
83	infections, cell damage, or aggregates in the host cell cytoplasm promotes ASC
84	polymerization, leading to the formation of a micron-sized structure called puncta (or
85	speck) that is a hallmark of active inflammasomes in the cells ⁷ .
86	
87	The pronounced inflammatory characteristics of COVID-19 and the
88	correlation of disease severity with the pyroptosis marker LDH prompted us to
89	investigate the activation of the inflammasome by SARS-CoV-2 and its role in

90 disease development. Initially, we infected primary human monocytes in vitro with

91 SARS-CoV-2 and assessed inflammasome activation. Using monocytes from

92	different healthy donors, we found that SARS-CoV-2 infection triggers LDH release
93	and activation of NLRP3 inflammasome in monocytes, as shown by NLRP3 puncta
94	formation (Fig. 1A-C). As expected, uninfected cells were negative for dsRNA
95	staining and NLRP3 puncta formation. Nigericin, a bacterial toxin known to trigger
96	NLRP3 inflammasome, was used as a positive control. Activation of the NLRP3
97	inflammasome required viable virus particles, as UV-inactivated SARS-CoV-2 failed
98	to induce NLRP3 puncta formation (Fig. 1B). We also measured the activation of IL-
99	1β as a readout for inflammasome activation and found that infection with SARS-
100	CoV-2 caused the production of IL-1 β in primed cells, as measured by ELISA (Fig.
101	1D). We measured the viral load using RT-PCR and confirmed that SARS-CoV-2
102	infects and replicates in primary human monocytes in vitro (Fig. 1E). We also tested
103	infection in primary human monocyte-derived macrophages and found that SARS-
104	CoV-2 infection triggers macrophage cell death in a dose-dependent effect as shown
105	by the presence of LDH in the supernatants (Fig. 1F). Nigericin was used as positive
106	control and UV-inactivated virus as a negative control. We next tested the
107	inflammasome activation in the sera of COVID-19 patients. It was previously shown
108	that IL-1 β is activated independently of caspase-1 in vivo ⁸⁻¹⁰ , thus we assessed
109	active/cleaved caspase-1 (Casp1p20) and cleaved IL-18 as readouts for
110	inflammasome activation in COVID-19 patients. We tested sera from 124 COVID-19
111	patients obtained on the day of hospitalization (all tested RT-PCR positive for SARS-
112	CoV-2) and compared with sera of 42 controls that tested RT-PCR/serology negative
113	or that were collected before the COVID-19 pandemic. We found higher
114	concentrations of Casp1p20 and IL-18 in the sera of patients (Fig. 2A, B), suggesting
115	active inflammasome in COVID-19 patients. We also found that IL-6, IL-10, IL-4
116	were increased in patients as compared to controls, whereas we do not detect

117	statistically significant differences for IL-2, TNF- α , and IL-17A (Fig. 2C and Fig.
118	S1). IFN- γ levels were slightly lower in COVID-19 patients as compared to controls
119	(Fig. S1). Next, we measured inflammasome activation in peripheral blood
120	mononuclear monocytes (PBMCs) from 47 patients and compared them with 32
121	healthy individuals. Using the FAM-YVAD assay that stains active intracellular
122	caspase-1 ¹¹ , we found that, on the day of hospitalization, the PBMCs from patients
123	show a higher percentage of FAM-YVAD+ cells as compared to healthy controls
124	(Fig. 2D-E). Microscopy observation of these cells allows clear visualization of
125	NLRP3 puncta in PBMCs, indicating active inflammasomes in patients cells (Fig. 2F-
126	G). We further confirmed caspase-1 activation using a luminescent assay and found
127	active caspase-1 in supernatants from 46 patients PBMCs cultures, as opposed to low
128	caspase-1 activation in healthy donors (Fig. 2H). We also detected IL-1 β in the
129	supernatants of PBMCs from some patients, but not from healthy donors (Fig. 2I),
130	further supporting inflammasome activation in PBMCs from COVID-19 patients.
131	
132	We further assessed inflammasome activation in lung tissues obtained from
133	autopsies of deceased COVID-19 patients. Using an anti-SARS-CoV-2 antibody, we
134	first confirmed viral presence by immunohistochemical staining SARS-CoV-2 in
135	injured regions of post-mortem lung tissues (Fig. 3A,B). We then performed
136	Multiplex Staining by Sequential Immunohistochemistry with SARS-CoV-2, anti-
137	CD14, and anti-NLRP3 and identified infected CD14+ cells expressing NLRP3 in
138	post-mortem tissues (Fig. 3C, D). Using multiphoton microscopy, we quantified the
139	number of NLRP3 puncta in tissues 5 controls and 6 COVID-19 patients and found
140	that patients contain higher numbers of NLRP3 puncta as compared to controls. (Fig.
141	3E). Images of tissues stained with anti-NLRP3 antibody illustrates NLRP3 puncta in

of lethal cases of COVID-19 (Fig. 3F-I). We observed NLRP3 puncta inside cells in
the tissues and also cells contained in venules (Fig. 3I), unequivocally demonstrating
activation of the NLRP3 inflammasome in fatal cases of COVID-19.
We next assessed the impact of the inflammasome activation in the clinical
outcome of the disease. Initially, we performed analyses using the levels of Casp1p20
and IL-18 in 124 patients sera obtained on the day of hospitalization. A correlation

149 matrix show association of Casp1p20 and IL-18 levels with patient characteristics and

150 clinical parameters (Fig. 4A). As expected, we found a positive correlation between

151 Casp1p20 and IL-18 levels (Fig. 4B). In addition, Casp1p20 positively correlated

152 with IL-6, LDH and C-reactive protein (CRP) (Fig. 4C-E). Furthermore, we found

153 that IL-18 levels positively correlated with IL-6 and CRP levels (Fig. 4F, G). We also

evaluated if the levels of Casp1p20 and IL-18 were affected by patients comorbidities

and clinical parameters, including bacterial co-infections (cultivable bacteria in the

156 blood), nephropathy, obesity, gender, cerebrovascular accident, pneumopathy,

157 immunodeficiency and neoplasia (Fig. S2). We only detected statistically significant

158 differences when we compared obese with non-obese patients, as the levels of IL-18

159 were higher in patients with body mass index \geq 30 (Fig. S2G).

160

161 Next, we investigated if Casp1p20 and IL-18 levels measured on the day of 162 hospitalization correlated with the clinical outcome of the disease. Importantly, we 163 found that IL-18, but not Casp1p20 were higher in patients who required mechanical 164 ventilation (MV) as compared with patients that did not (**Fig. 4H, I**). When we 165 separated the patients according to the severity of the disease (mild/moderate versus 166 severe), we found that the levels of Casp1p20 but not IL-18 were higher in patients

167	with the severe form of COVID-19 (Fig. 4J, K). We also observed that the levels of
168	IL-18, but not Casp1p20, were higher in lethal cases of COVID-19 as compared to
169	survivors (Fig. 4L, M). Finally, we performed longitudinal analyses of IL-18 and
170	Casp1p20 production in 37 patients from the day of hospitalization (day zero) for up
171	to 45 days post-admission using generalized mixed models with 'gamma' distribution
172	and 'log' link function as the best dataset prediction. For these analyses, we
173	categorized the patients as Death, Mild-Recovery (patients that were hospitalized but
174	did not require mechanical ventilation and recovered), and Critical-Recovery (patients
175	that required mechanical ventilation at the Intensive Care Unit (ICU) and recovered)
176	(Supplemental data). For Casp1p20, the most parsimonious model indicated a
177	significant effect of the day sampled, and the production level decreased with time
178	regardless of sex or patient outcome (Fig. 4N, and Supplemental data). For IL-18,
179	the best-fit model retained also described an overall reduction in IL-18 production
180	along time (Day sampled), which differed among patient groups. This model
181	predicted a decrease in IL-18 at similar rates among the three groups, with patients
182	that died presenting higher levels (intercept) that never reached those observed in
183	mild and critical recovered patients (Fig. 4O and Supplemental data), supporting our
184	assertion that the magnitude of inflammasome activation impacts the disease
185	outcome. In summary, our data demonstrate that the inflammasome is robustly active
186	in COVID-19 patients requiring hospitalization. It also supports that both the
187	magnitude of inflammasome activation at the hospitalization day and the course of
188	inflammasome activation during hospitalization influenced the clinical outcome.
189	Collectively, our observations suggest that the inflammasome is key for the induction
190	of the massive inflammation observed in severe and fatal cases of COVID-19. Our

- 191 study supports the use of inflammasome activation both as a marker of disease
- severity and prognostic but also as a potential therapeutic target for COVID-19.
- 193
- 194

195 Materials and methods

- 196
- 197 **Patients**
- 198 A total of 124 patients with COVID-19 that were tested positive using RT-PCR as
- 199 described previously ^{12,13}. Patients were classified according to their clinical
- 200 manifestations in: i) mild cases: the clinical symptoms are mild and no pneumonia
- 201 manifestations can be found in imaging; ii) moderate cases: patients have symptoms
- 202 such as fever and respiratory tract symptoms, etc. and pneumonia manifestations can
- 203 be seen in imaging; iii) severe cases: adults who meet any of the following criteria:
- 204 respiratory rate \geq 30 breaths/min; oxygen saturations; 93% at a rest state; arterial
- 205 partial pressure of oxygen (PaO₂)/oxygen concentration (FiO₂) < 300 mm Hg ¹⁴.
- 206 Patients were enrolled in HC-FMRP/USP from April 06 to July 02, 2020 and Table
- 207 S1 summarizes clinical, laboratory, and treatment records. We also collected samples
- from 73 age and gender-matched healthy controls. Controls were collected either
- 209 before the COVID-19 pandemic or tested negative for COVID-19 using RT-PCR
- and/or serology (specific IgM and IgG antibodies) (Asan Easy Test.COVID-19
- 211 IgM/IgG kits, Asan Pharmaceutical Co.).
- 212

213 Peripheral blood mononuclear cells isolation

- 214 Whole blood was collected from healthy donors (Ethics Committee Protocol from the
- 215 Clinical Hospital of Ribeirão Preto- USP: CAAE, nº 06825018.2.3001.5440) in tubes

216	containing EDTA (BD Vacutainer CPTTM), according to the manufacturer's
217	instructions. The material was centrifuged at 400 x g for 10 minutes at room
218	temperature. Then, the plasma was discarded and the cell pellet was resuspended in
219	PBS 1X pH 7.4 (GIBCO, BRL). The cells were applied to the Ficoll-PaqueTM PLUS
220	gradient column (GE Healthcare Biosciences AB, Uppsala, Sweden). Then, they were
221	centrifuged at 640 x g for 30 minutes at room temperature to obtain the purified
222	mononuclear fraction, which was carefully collected and transferred to a new tube.
223	The cells were washed and the pellet was resuspended in RPMI for the subsequent
224	analysis.
225	
226	Purification of monocytes from healthy donors and differentiation into
227	macrophages
228	The PBMCs were quantified and the monocytes (CD14+ cells) were purified using
229	positive selection with magnetic nanoparticles (BD). Briefly, PBMCs were labeled
230	with BD IMag TM Anti-human CD14 Magnetic Particles - DM. The cells were
231	transferred to a 48-well culture plate and placed over a magnetic field of the cell
232	separation. Labeled cells migrated toward the magnet (positive fraction) whereas
233	unlabeled cells were drawn off (negative fraction). The plate was then removed from
234	the magnetic field for resuspension of the positive fraction. The separation was
235	repeated twice to increase the purity of the positive fraction. The CD14 + monocytes
236	resulting cells from this process were used for experiments or cultured in RPMI 1640
237	(GIBCO, BRL) containing 10% SFB and 50 ng/mL GM-CSF (R&D Systems) for 7
238	days for differentiation into macrophages.
239	
240	Virus stock production and in vitro infection

- 242 Brazilian case of COVID-19. Viral stock was propagated under BSL3 conditions in
- 243 Vero E6 cells, cultured in Dulbecco minimal essential medium (DMEM)
- supplemented with heat-inactivated fetal bovine serum (10%) and
- antibiotics/antimycotics (Penicillin 10,000 U/mL; Streptomycin 10,000 µg/mL). For
- 246 preparation of viral stocks, Vero cells were infected in the presence of trypsin-TPCK
- 247 $(1\mu g/\mu L)$ for 48 hours at 37°C in a 5% CO₂ atmosphere. When the virus-induced
- 248 cytopathic effect, the cells were harvested with cell scrapers, and centrifuged (10.000
- 249 x G). The supernatant was stored at -80°C, and the virus titration was performed in
- 250 Vero cells using standard limiting dilution to confirm the 50% tissue culture
- 251 infectious dose (TCID50).
- 252 For human cells infections, $2x10^5$ purified human monocytes or monocyte derived
- 253 macrophages were plated in 48 well plates, and infected with SARS-CoV-2 at
- 254 Multiplicity of Infection (MOI) of MOI0.2, MOI1, and MOI5. After 2 hours of viral
- 255 infection, the cells were washed with PBS1x, and a new medium (RPMI 10% FBS
- 256 without Fenol Red) was added. Cells were incubated for 24h at 37°C in the presence
- 257 of 5% CO₂ atmosphere. After incubation, cells were processed for
- 258 immunofluorescence assays and the supernatant was collected for determination of
- 259 viral loads, cytokine production and LDH quantification.
- 260

261 RT-PCR for SARS-CoV-2

- 262 Detection of SARS-CoV-2 was performed with primer-probe sets for 2019-nCoV_N2
- and gene E, according to USA-CDC and Charité group protocols ^{12,13}. The genes
- 264 evaluated (N2, E, and RNAse-P housekeeping gene) were tested by one-step real-time
- 265 RT-PCR using total nucleic acids extracted with Trizol® (Invitrogen, CA, EUA) from

266	$50\mu L$ of cells supernatants in order to measure the genome viral load from the in vitro
267	assays. All real-time PCR assays were done on Step-One Plus real-time PCR
268	thermocycler (Applied Biosystems, Foster City, CA, USA). Briefly, RNA extraction
269	was performed by Trizol®. A total of 100 ng of RNA was used for genome
270	amplification, adding specifics primers (20 μ M), and probe (5 μ M), and with TaqPath
271	1-Step qRT-PCR Master Mix (Applied Biosystems, Foster City, CA, USA), with the
272	following parameters: 25°C for 2 min, 50°C for 15 min, 95°C for 2 min, followed by
273	45 cycles of 94 °C for 5 s and 60 °C for 30s. Primers used were: N2 fwd: 5'-TTA
274	CAA ACA TTG GCC GCA AA-3'; N2 rev: 5'-GCG CGA CAT TCC GAA GAA-3';
275	N2 probe: 5'-FAM-ACA ATT TGC CCC CAG CGC TTC AG-BHQ1-3' ¹³ ; E fwd:
276	5'-ACA GGT ACG TTA ATA GTT AAT AGC GT-3' ; E rev: 5'-ATA TTG CAG
277	CAG TAC GCA CAC A-3'; E probe: 5'-AM-ACA CTA GCC ATC CTT ACT GCG
278	CTT CG-BHQ-1-3' ¹² ; RNAse-P fwd: 5'-AGA TTT GGA CCT GCG AGC G-3';
279	RNAse-P rev: 5'-GAG CGG CTG TCT CCA CAA GT-3'; RNAse-P probe: 5'-FAM-
280	TTC TGA CCT GAA GGC TCT GCG CG - BHQ-1-3' ¹³ .
281	
282	Evaluation of active caspase-1 activity and LDH release in cultured cells
283	For LDH determination, 2 x 10 ⁵ human CD14+ cells or human monocyte derived-
284	macrophages were plated on 48-well plates in RPMI 10% FBS and incubated
285	overnight. In the following day, cells were infected with SARS-CoV-2 using MOI
286	0.2, MOI 1, and MOI 5 in RPMI without Phenol Red (3.5 g/L HEPES, 2 g/L
287	NaHCO ₃ , 10.4 g/L RPMI without Phenol Red, 1% glutamine, pH 7.2) and incubated
288	for 24 h. The supernatant was collected and LDH release was measured using
289	CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega, Winsconsin, USA)

290 following the manufacturer's instructions. To evaluate caspase-1 activation, $5 \ge 10^5$

291	PBMC from COVID-19 patients or healthy donors were centrifuged (400g, 10
292	minutes) and cells were labeled for 30 minutes with the FLICA carboxyfluorescein
293	reagent (FAM – YVAD – FMK, Immunochemistry Technologies, LLC), as
294	recommended by the manufacturer. The cells were then washed two times with PBS
295	1x, and fixed with fixative reagent provided by manufacture. Acquisition was
296	performed in fixed cells in flow cytometer (BD Accuri TM C6) and then analyzed using
297	"FlowJo" (Tree Star, Ashland, OR, USA) software. To evaluate caspase-1 activity in
298	supernatants, 2x10 ⁵ PBMCs were plated in 96 wells plate, and incubated overnight.
299	To measure caspase-1 activity, the supernatants were collected, and incubated with
300	the Luciferin WEHD-substrate provided by the Caspase-Glo 1 Assay (Promega).
301	After 1 hour incubation at room temperature, luminescence was measured using
302	SpectraMax i3 system (Molecular Devices).

303

304 Immunofluorescence staining of isolated cells

305 For staining PBMCs from COVID-19 patients, a total of $5x10^5$ PBMCs were plated in

306 8 wells chamber slides for 1 h in RPMI without FBS for cell adhesion before fixation.

307 For staining cells infected in vitro a total of $2x10^5$ human monocytes or monocyte

308 differentiated macrophages were plated in 24-wells plate containing coverslips and

309 infected with SARS-CoV-2 at indicated MOI for 16h. For fixation of the samples,

310 tissue culture supernatants were removed and cells were fixed with 4%

311 paraformaldehyde (PFA) for 20 minutes at room temperature. PFA was removed,

312 cells were washed with PBS1x, and the coverslips or chambers were processed for IF

- 313 as described. Cells were blocked and permeabilized using PBS 1x with goat serum
- and 0.05% saponin for 1h at room temperature. Primary antibodies mix of rabbit mAb
- anti-NLRP3 (Cell Signaling, 1:1000) were diluted in blocking solution and added to

316 each chamber/coverslip. After 1h of incubation the samples were washed with PBS 1x

317 and secondary antibodies were added and incubated for 1h at room temperature.

318 Secondary antibodies used were goat anti-rabbit 488 (Invitrogen, 1:3000) and goat

319 anti-rabbit 594 (Life Technologies,1:3000). Slides were washed and mounted using

- 320 DAPI (1mM) and ProLong (Invitrogen).
- 321

322 Lung samples from autopsies and immunofluorescence and imaging

323 Adapted minimally invasive autopsies were performed in COVID-19 patients ¹⁵⁻¹⁷.

324 Briefly, a mini thoracotomy (3cm) was done under the main area of lung injury

325 identified by prior x-ray or computed tomography. The lung parenchyma is clamped

326 by Collins Forceps, cut and fixed in 10% buffered formalin. Pulmonary tissue

327 samples were stained with hematoxylin and eosin (H&E) and immunostaining as

328 reported ¹⁸ ¹⁹. The slides were incubated with the primary antibodies, rabbit anti-

329 CD14 mAb (Abcam, 1:200) and mouse anti-Nlrp3 mAb (AdipoGen, 1:200), for 2h at

330 room temperature or overnight at 4°C. Goat anti-mouse Alexa fluor-647 (Invitrogen)

331 or goat anti-rabbit Alexa fluor-594 (Invitrogen) were used as secondary antibodies.

332 Images were acquired by Axio Observer combined with LSM 780 confocal device

333 with 630 x magnification (Carl Zeiss). Minimally invasive autopsies were approved

by the FMRP/USP Ethical Committee (protocol #4.089.567).

335

336 Sequential immunoperoxidase labeling and erasing

337 Tissue sections from paraffin-embedded lung fragments obtained from COVID-19

338 fatal cases were tested by immunohistochemistry (IHC) using anti-SARS-CoV-2

339 polyclonal antibody for in situ detection of SARS-CoV-2. Sequential

340 immunoperoxidase labeling and erasing (SIMPLE) was then performed to determine

341	additional markers after SARS-CoV-2 immune stain, using antibodies to CD14
342	(Abcam, 1:100 dilution), NLRP3 (Cell Signaling, 1:100 dilution) (Glass et al., 2009).
343	After the incubation with primary antibody, the slides were incubated with immune-
344	peroxidase polymer anti-mouse visualization system (SPD-125, Spring Bioscience,
345	Biogen) and then with the chromogen substrate AEC peroxidase system kit (SK-4200,
346	Vector Laboratories, Burlingame, CA). Microphotographs after immunostaining of
347	tissue slides were scanned on a VS120 Olympus. After high-resolution scanning,
348	slides coverslips were removed in PBS and dehydrated through ethanol gradient to
349	95% ethanol. Slides were incubated in ethanol series until erasing AEC color reaction.
350	Following rehydration, antibodies were eluted by incubating sections in 0.15 mM
351	$KMnO_4/0.01 M H_2SO_4$ solution for 2 min, followed immediately by a distilled water
352	wash. Tissue was then restained as indicated in the blocking step.
353	
354	Cytokine quantification in sera
355	Active caspase-1 (Casp1p20) and IL-18 levels were evaluated by ELISA assay (R&D
356	Systems) in the serum from patients with COVID-19 or health donors following
357	manufacturer's instructions. TNF- α , IL-2, IL-4, IL-6, IL-10, IFN- γ , and IL-17 were
358	quantified in the serum from patients with COVID-19 or health donors using a human
359	CBA cytokine kit (Th1/Th2/Th17 Cytokine Kit, BD Biosciences) following
360	manufacturer's instructions. IL-1 β in the tissue culture supernatants of human
361	monocytes or macrophages cells infected with SARS-CoV-2 was quantified by
362	ELISA (R&D Systems) following manufacturer's instructions.

363

364 Statistics

365	Statistical significance for the linear analysis was determined by either two-tailed
366	paired or unpaired Student t-test for data that reached normal distribution and Mann-
367	Whitney was used for not normally distributed data. These statistical procedures and
368	graph plots were performed with GraphPad Prism 8.4.2 software. In addition,
369	longitudinal analyses were implemented to describe variation in IL-18 and Casp1p20
370	production along time, considering patients' outcomes and sex as fixed factors. These
371	analyses were performed in R (version 4.0.2) using RStudio (version 1.3.1056), and
372	are detailed as R Markdown object at the supplementary material. The patients'
373	outcomes were divided into 3 categories (37 patients in total, 16 women and 21 men):
374	death ($n = 10$ individuals, a total of 25 samples), mild recovery (patients that were
375	hospitalized but did not require mechanical ventilation; $n = 17$ individuals, a total of
376	53 samples) and critical recovery (patients that required mechanical ventilation at the
377	UCI and recovered; $n = 10$ individuals, a total of 27 samples). Activation of IL-18 and
378	Casp1 were evaluated separately using full models that considered the interaction of
379	time ('Day.sampled') with patients' outcomes ('Outcome') or sex ('Sex') and
380	included individuals ('Patient.ID') as a random factor to control for repeated
381	measures and individual effects. Normality and homoscedasticity of the dataset were
382	verified and refuted for time series dataset (see RMarkdown object), and analyses
383	were implemented using the glmmTMB package ²⁰ in a generalized mixed model's
384	(GMM's) approach with 'gamma' distribution and 'log' link function. Akaike
385	information criterion for finite samples (AICc) was used to select the best models
386	from the full ones using MuMIn ²¹ . Models having AICc values within 2 units of the
387	best-fit model were considered to have substantial support ²² ; adequate residuals
388	distributions were confirmed and representative graphics and tables were constructed

- 389 using the packages DHARMa ²³, ggeffects ²⁴ and broom.mixed ²⁵ see RMarkdown
- 390 object to access all parameterization in **Supplemental data**.
- 391

392 Study approval

- 393 The procedures followed in the study were approved by the National Ethics
- 394 Committee, Brazil (CONEP, CAAE: 30248420.9.0000.5440). Written informed
- 395 consent was obtained from recruited patients.

396

397 Acknowledgments

- 398 We are grateful to Maira Nakamura, Bárbara Moreira de Carvalho e Silva and Laura
- 399 Khouri for technical assistance.
- 400

401 Author Contributions

- 402 T.S.R., and D.S.Z. conceived the study. T.S.R., K.S.G.S. A.Y. I., A.B., S.O., L.A.,
- 403 A.V.G., D.B.P., W.A.A. designed the experiments, defined parameters, collected and
- 404 processed PBMC and sera samples and analyzed data. R.C., J.E.T., D.C.N., M.H.F.L.,
- 405 C.M.S.S., D.B.C. processed PBMC samples. L.D.C. supervised the collection of
- 406 PBMC samples from patients. T.S.R., R.B.M., I.A.C., M.C.P. performed the
- 407 experiments with viral infections. A.T.F., S.S.B., L.S., M.N.B. performed minimally
- 408 invasive autopsy. K.S.G.S., F.P.V. stained and analyzed autopsy tissues. A.Y.I,
- 409 F.C.B., T.K. performed bioinformatic analyses, designed and conducted statistical
- 410 analyses of the data. N.B.A., M.C.G., L.P.B., M.I.F.L., M.N.B., R.C.S., F.C.V., M.A.,
- 411 R.L., S.C.L.A., F.R.O., R.D.R.O., P.L assisted in patient recruitment, collected patient
- 412 specimens and the epidemiological and clinical data. P.L. supervised and R.D.R.O.
- 413 helped clinical data management. T. M.C, J.C.A., F.Q.C., L.D.C., F.G.F., T.K.,

- 414 A.T.F., E.A., R.D.R.O., P.L., helped with interpretations of the data. T.S.R., and
- 415 D.S.Z. drafted the manuscript. All authors helped editing the manuscript. D.S.Z.
- 416 secured funds and supervised the project.

417

418

- 419 **Competing interests**
- 420 The authors declare no competing financial interests.

421

- 422 Materials & Correspondence
- 423 <u>dszamboni@fmrp.usp.br</u>
- 424
- 425 Funding
- 426 FAPESP grants (2013/08216-2, 2019/11342-6 and 2020/04964-8), CNPq and CAPES
- 427 grants.
- 428

429

430 References

d, M. & Martin, J. C. Author Correction: Pathological inflammation in
nts with COVID-19: a key role for monocytes and macrophages. <i>Nature</i>
ws. Immunology 20, 448, doi:10.1038/s41577-020-0353-y (2020).
, G. et al. Clinical and immunological features of severe and moderate
navirus disease 2019. The Journal of clinical investigation 130, 2620-
, doi:10.1172/JCI137244 (2020).
Y. et al. Lactate dehydrogenase, an independent risk factor of severe
TD-19 patients: a retrospective and observational study. Aging 12, 11245-
8, doi:10.18632/aging.103372 (2020).
ng, C. et al. Clinical features of patients infected with 2019 novel
navirus in Wuhan, China. Lancet 395, 497-506, doi:10.1016/S0140-
(20)30183-5 (2020).
s, C. et al. Longitudinal analyses reveal immunological misfiring in
e COVID-19. Nature, doi:https://doi.org/10.1038/s41586-020-2588-y
0).

447	6	Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation
448		and signalling. <i>Nature reviews. Immunology</i> 16 , 407-420,
449		doi:10.1038/nri.2016.58 (2016).
450	7	Hauenstein, A. V., Zhang, L. & Wu, H. The hierarchical structural architecture
451		of inflammasomes, supramolecular inflammatory machines. Current opinion
452		in structural biology 31 , 75-83, doi:10.1016/j.sbi.2015.03.014 (2015).
453	8	Alfaidi, M. et al. Neutrophil elastase promotes interleukin-1beta secretion
454		from human coronary endothelium. The Journal of biological chemistry 290,
455		24067-24078, doi:10.1074/jbc.M115.659029 (2015).
456	9	Guma, M. et al. Caspase 1-independent activation of interleukin-1beta in
457		neutrophil-predominant inflammation. Arthritis and rheumatism 60, 3642-
458		3650, doi:10.1002/art.24959 (2009).
459	10	Joosten, L. A. et al. Inflammatory arthritis in caspase 1 gene-deficient mice:
460		contribution of proteinase 3 to caspase 1-independent production of bioactive
461		interleukin-1beta. Arthritis and rheumatism 60, 3651-3662,
462		doi:10.1002/art.25006 (2009).
463	11	Zamboni, D. S. et al. The Birc1e cytosolic pattern-recognition receptor
464		contributes to the detection and control of Legionella pneumophila infection.
465		Nature immunology 7, 318-325, doi:10.1038/ni1305 (2006).
466	12	Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by
467		real-time RT-PCR. Euro surveillance : bulletin Europeen sur les maladies
468		transmissibles = European communicable disease bulletin 25,
469		doi:10.2807/1560-7917.ES.2020.25.3.2000045 (2020).
470	13	Nalla, A. K. et al. Comparative Performance of SARS-CoV-2 Detection
471		Assays Using Seven Different Primer-Probe Sets and One Assay Kit. Journal
472		of clinical microbiology 58, doi:10.1128/JCM.00557-20 (2020).
473	14	Wu, Z. & McGoogan, J. M. Characteristics of and Important Lessons From
474		the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a
475		Report of 72314 Cases From the Chinese Center for Disease Control and
476		Prevention. Jama, doi:10.1001/jama.2020.2648 (2020).
477	15	Avrahami, R., Watemberg, S., Hiss, Y. & Deutsch, A. A. Laparoscopic vs
478		conventional autopsy. A promising perspective. Archives of surgery 130, 407-
479		409, doi:10.1001/archsurg.1995.01430040069014 (1995).
480	16	Damore, L. J., 2nd, Barth, R. F., Morrison, C. D., Frankel, W. L. & Melvin,
481		W. S. Laparoscopic postmortem examination: a minimally invasive approach
482		to the autopsy. Annals of diagnostic pathology 4, 95-98, doi:10.1016/s1092-
483		9134(00)90018-2 (2000).
484	17	Vejrosta, Z. & Bilder, J. [Pathogenesis of excessive mobility of the
485		temporomandibular joint]. Ceskoslovenska stomatologie 75, 119-124 (1975).
486	18	Fabro, A. T. et al. The Th17 pathway in the peripheral lung microenvironment
487		interacts with expression of collagen V in the late state of experimental
488		pulmonary fibrosis. <i>Immunobiology</i> 220 , 124-135,
489		doi:10.1016/j.imbio.2014.08.011 (2015).
490	19	Fabro, A. T. et al. Yellow Fever-induced Acute Lung Injury. American
491		<i>journal of respiratory and critical care medicine</i> 200 , 250-252,
492	20	doi:10.1164/rccm.2017/11-22671M (2019).
493	20	Brooks, M. E. <i>et al.</i> glmmTMB Balances Speed and Flexibility Among
494		Packages for Zero-Inflated Generalized Linear Mixed Modeling. The R
495		<i>Journal</i> 9, 378-400 (2017).

- 496 21 Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17.
- 497 https://CRAN.R-project.org/package=MuMIn (2020).
- 498 22 Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel 499 Inference: a practical information-theoretic approach (2002).
- 500 23 Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level /
- 501 Mixed) Regression Models. R package version 0.3.2.0. https://CRAN.R-502 project.org/package=DHARMa (2020).
- 503 24 Lüdecke, D. ggeffects: Tidy Data Frames of Marginal Effects from Regression 504 Models. Journal of Open Source Software 3, 772, doi:10.21105/joss.00772 (2018). 505
- 506 25 Bolker, B. & Robinson, D. broom.mixed: Tidying Methods for Mixed Models. 507 R package version 0.2.6. https://CRAN.R-project.org/package=broom.mixed 508 (2020).
- 509
- 510

512

513 Figure Legends

514

515	Figure 1. Infection of primary human monocytes with SARS-CoV-2 triggers
516	inflammasome activation. (A-E) Human CD14+ monocytes were primed or not with
517	PAM3Cys (300ng/mL) for 4 hours and infected with SARS-CoV-2 at a multiplicity
518	of infection (MOI) of 0.2, 1 an 5 for 24 h. Mock was used as a negative infection
519	control, and nigericin as a positive NLRP3 activation control. (A) LDH release was
520	measured in the supernatants from 5 different donors. Triton (9%) was used to induce
521	cell death and estimate 100% death. (B) the percentage of cell containing NLRP3
522	puncta was estimated in cells from 5 different donors. (C) A representative image of a
523	monocyte containing NLRP3 puncta (green, indicated by arrows) and replicating
524	SARS-CoV-2, depicted by anti-dsRNA antibody staining (red, indicated by an
525	arrowhead) is shown. Nuclei stained in blue. Scale bar 5 μ m. (D) IL-1 β production
526	was analyzed in the tissue culture supernatants of monocytes infected or not infected
527	(MOCK) with the indicated MOI in experimental replicates. (D) Viral loads in the
528	cell culture supernatants were estimated by RT-PCR in monocytes infected for 8 and
529	24 hs at the indicated MOI. (F) Monocytes from one donor were derived into
530	macrophage and primed with PAM3Cys (300ng/mL) for 4 hours and infected with
531	SARS-CoV-2 at a MOI of 1, 5 and 10 and 20 for 24 h. LDH were measured in the
532	supernatants of experimental replicates. Mock and UV-irradiated virus (U.V. Inat.)
533	was used as a negative infection control, and nigericin as a positive control. * $P <$
534	0.05, as determined by Student's t-test. Box shows the average \pm SD of the values.
535	

536	Figure 2. Inflammasome activation in COVID-19 patients. (A-C) Cytokine
537	concentration in the serum control individuals (CT, n=42 to ELISA and 45 to CBA)
538	and COVID-19 patients (COVID-19 P, n=124 to ELISA and 92 to CBA; all tested
539	positive using RT-PCR). Active caspase-1 (Casp1p20, A) and IL-18 (B) were
540	measured by ELISA, and IL-6 (C) were measured by CBA. Data are shown as Log10-
541	transformed concentrations in pg/mL. (D-I) Peripheral Blood Mononuclear Cells
542	(PBMCs) were isolated from fresh blood of CT or COVID-19 P. (D-E) FAM-YVAD
543	positive PBMCs were estimated by FACS using FLICA Caspase-1 Assay Kit. (D)
544	Representative histograms or one representative CT and one COVID-19 P indicate the
545	gate for determination of the percentage of FAM-YVAD+ cells. (E) The percentage
546	of FAM-YVAD+ cells for the 32 CT and 47 COVID-19 P. (F) PBMCs from COVID-
547	19 P were stained with anti-dsRNA (red, indicating SARS-CoV-2 replication) and
548	anti-NLRP3 (green) for determination of NLRP3 puncta (indicated by white arrows).
549	Dapi (blue) stains the nuclei. Scale bar 20 μ m. (G) The percentage of cells with
550	NLRP3 puncta are shown for 24 CT and 17 COVID-19 P. (H) PBMCs from 18 CT
551	and 46 COVID-19 P were maintained in culture for 16 hours and the supernatants
552	were assayed for caspase-1 activity using the Caspase-Glo 1 Assay (H). (I) PBMCs
553	from 6 CT or 18 COVID-19 P were maintained in culture for 16 hours and IL-1 β
554	production were estimated by ELISA. * $P < 0.05$, ** $P < 0.01$ and *** $P < 0.001$ as
555	determined by Student's t-test or Mann Whitney. Each dot represents the value form a
556	single individual. Box shows average \pm SD of the values.

558 Figure 3. Lung histopathological analysis and NLRP3 activation in fatal cases of

- 559 **COVID-19.** Representative pulmonary histological findings in COVID-19 patient
- 560 (COVID-19 P), autopsied by ultrasound guided-minimally invasive autopsy. (A, B)
- 561 Representative Immunohistochemical image of tissues from Control (CT, A) or
- 562 COVID-19 P (B) stained with anti-SARS-CoV-2. Scale bar 50 µm. (C-D) Multiplex
- 563 staining by sequential immunohistochemistry staining with anti-SARS-CoV-2, anti-
- 564 CD14 and anti-NLRP3 arrows indicates infected CD14+ cells expressing NLRP3.
- 565 Scale bar 20 μ m (C) and 10 μ m (D). (E) Quantification of NLRP3 puncta in
- 566 pulmonary tissues of 5 CT and 6 COVID-19 P. (F, I) Multiphoton microscopy of
- 567 tissues stained with anti-NLRP3 antibody indicates NLRP3 puncta (red, indicated by
- 568 black arrows) in the pulmonary tissues. DAPI stains nuclei (blue). (I) NLRP3 puncta

569 in a cell inside a venule (dotted white line). Scale bar 10 μ m.

- 570
- 571

572 Figure 4. Inflammasome activation influences the clinical outcome of COVID-19.

573 (A) Correlation matrix of Casp1p20 and IL-18 levels in the serum of COVID-19

574 patients at the hospitalization day with patient characteristics and clinical parameters.

- 575 (B-J) Correlations of Casp1p20 with IL-18 (B), Casp1p20 with IL-6 (C), Casp1p20
- 576 with lactate dehydrogenase (LDH) (D), Casp1p20 with C-reactive protein (CRP), IL-

577 18 with IL-6 (F) and IL-18 with CRP (G). (H,I) Levels of Casp1p20 (H) and IL-18 (I)

- 578 in patients that required (MV+, blue box) or not (MV-, red box) mechanical
- 579 ventilation. (J,K) Levels of Casp1p20 (J) and IL-18 (K) in patients with
- 580 Mild/Moderate (yellow box) or Severe COVID-19 (pink box). (L,M) Levels of
- 581 Casp1p20 (L) and IL-18 (M) in survivors (green box) or non-survivors (purple box).
- 582 The levels of Casp1p20 and IL-18 were measured by ELISA and are shown as
- 583 Log10-transformed concentrations in pg/mL. * P < 0.05, ** P < 0.01 and *** P <

584	0.001 as determined by Student's t-test. Each dot represents value to form a single
585	individual. Box shows average \pm SD of the values. (N, O) Derived predictions from
586	the best-fit models retained in Casp1p20 (N) and IL-18 (O) longitudinal analyses; IL-
587	18 Model (O) comprises variation in the intercept among patients' groups: Death
588	(Red), Critical/Recovery (orange) and Mild/Recovery (blue).
589	
590	
591	Fig. S1. Cytokine production in COVID-19 patients. Cytokine concentration in the
592	serum control individuals (CT, n=45) and COVID-19 patients (COVID-19 P, n=92;
593	all tested positive using RT-PCR). IL-10 (A), IL-4 (B), IFN- γ (C), TNF- α (D) and IL-
594	17A (E) were measured by CBA. Data are shown as Log10-transformed
595	concentrations in pg/mL. ** $P < 0.01$ and *** $P < 0.001$ as determined by Student's t
596	test. Each dot represents the value form a single individual. Box show average \pm SD
597	of the values.
598	
599	Fig. S2. Association of inflammasome activation with clinical characteristics and
600	comorbidities. (A) Matrix correlation of Casp1p20 and IL-18 levels in the serum of
601	COVID-19 patients at the hospitalization day with clinical parameters and
602	comorbidities. (B-S) Levels of Casp1p20 (B, D, F, H, J, L, N, P, R) and IL-18 (C, E,
603	G, I, K, M, O, Q, S) in patients with clinical parameters such as cultivable bacteria in
604	the blood (B, C), nephropathy (D, E), obesity (F, G), gender (H, I), cerebrovascular
605	accident (J, K), pneumopathy (L, M), immunodeficiency (N, O) and neoplasia (P, Q)
606	and smoking (R, S). The levels of Casp1p20 and IL-18 were measured by ELISA and
607	are shown as Log10-transformed concentrations in pg/mL. ** $P < 0.01$ as determined

- 608 by Student's t test. Each dot represents value form a single individual. Box show
- 609 average \pm SD of the values.
- 610

611 Table S1 – Demographic and clinical characteristics of COVID-19

- 612 patients.
- 613
- 614
- 615

616

617 T	Fable S1:	COVID-19	patient cha	racteristics
-------	-----------	----------	-------------	--------------

Demographics				
Number	124			
Age (years)	59.25 <u>+</u> 18.01			
Female	50	40%		
Comorbio	lities			
Hypertension	61	49%		
Obesity	61	49%		
Diabetes	46	37%		
History of smoking	33	26%		
Heart disease	23	18%		
Lung disease	20	16%		
Kidney disease	13	10%		
Cancer	11	8%		
History of stroke	9	7%		
Immunodeficiency	6	4%		
Autoimmune diseases	2	1%		
Laboratorial	findings			
$CRP (mg/dL)^*$	12.55 <u>+</u> 8.95			
D-Dimers (µg/mL)**	2.47 ± 2.59			
LDH $(U/L)^{\#}$	565.147 <u>+</u> 325.9			
Ferritin (ng/mL) ^{&}	1225.07 ± 1762.9			
Haemoglobin (g/dL)	12.31 ± 2.34			
Neutrophils (cell/mm ³)	6728.443+3903.57			
Lymphocytes (cell/mm ³)	1307.37+789.1			
Platelets (count/mm ³)	253426.2+111616.3			
Medicati	ions			
Heparin	112	90%		
Antibiotics	110	88%		
Glucocorticoids	58	46%		
Oseltamivir	56	45%		
Antimalarial	45	36%		
Respiratory	y status			
Mechanical ventilation	56	45%		
Nasal-cannula oxygen	111	89%		
pO ₂	77.77 <u>+</u> 29.17			
SatO ₂	93.37 <u>+</u> 5.72			
Disease Se	verity			
Mild	7	6%		
Moderate	49	39%		
Severe	68	55%		
Outcome				
Deaths	34	27%		
		21/0 D 1		

^{*}CRP: C-reactive protein (Normal value <0.5 mg/dL); ^{**}D-dimers (NV <0.5 μ g/mL); [#]LDH: lactate

dehydrogenase (Normal range: 120-246 U/L); & Ferritin (NR: 10-291 ng/mL)

Figure 1. Rodrigues et al.

Figure 2. Rodrigues et al.

Figure 4. Rodrigues et al.

Fig. S1. Rodrigues et al.

