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Abstract 31 

Conventional HLA imputation methods drop their performance for infrequent alleles, which 32 

reduces reliability of trans-ethnic MHC fine-mapping due to inter-ethnic heterogeneity in allele 33 

frequency spectra. We developed DEEP*HLA, a deep learning method for imputing HLA 34 

genotypes. Through validation using the Japanese and European HLA reference panels (n = 35 

1,118 and 5,112), DEEP*HLA achieved the highest accuracies in both datasets (0.987 and 36 

0.976) especially for low-frequency and rare alleles. DEEP*HLA was less dependent of 37 

distance-dependent linkage disequilibrium decay of the target alleles and might capture the 38 

complicated region-wide information. We applied DEEP*HLA to type 1 diabetes GWAS data of 39 

BioBank Japan (n = 62,387) and UK Biobank (n = 356,855), and successfully disentangled 40 

independently associated class I and II HLA variants with shared risk between diverse 41 

populations (the top signal at HLA-DRβ1 amino acid position 71; P = 6.2 ×10-119). Our study 42 

illustrates a value of deep learning in genotype imputation and trans-ethnic MHC fine-mapping. 43 

 44 
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Introduction 46 

Genetic variants of the major histocompatibility complex (MHC) region at 6p21.3 contribute to 47 

the genetic of a wide range of human complex traits.1 Among the genes densely contained in 48 

the MHC region, human leukocyte antigen (HLA) genes are considered to explain most of the 49 

genetic risk of MHC.1 Strategies for direct typing of HLA alleles, including sequence specific 50 

oligonucleotide (SSO) hybridization, Sanger sequencing, and next-generation sequencing, do 51 

not easily scale for large cohorts since they are labor-intensive, time-consuming, expensive, 52 

and limited in terms of allele resolution and HLA gene coverage.2,3 As a result, in many cases, 53 

the genotypes of HLA allele are indirectly imputed from single nucleotide variant (SNV)-level 54 

data using population-specific HLA reference panels.3–6 55 

 The MHC region harbors unusually complex sequence variations and haplotypes that 56 

are specific to individual ancestral populations; thus, the distribution and frequencies of the HLA 57 

alleles are highly variable across different ethnic groups.1,7 This causes heterogeneity in 58 

reported HLA risk alleles of human complex diseases across diverse populations.8 For example, 59 

in type I diabetes (T1D), the strong association between non-Asp57 in HLA-DQβ1 and T1D risk 60 

has been found in Europeans9,10 but not in the Japanese population, where the T1D susceptible 61 

HLA-DQβ1 alleles carry Asp57.11 Although elucidation of risk alleles beyond ethnicities would 62 

contribute to further understanding of genetic architecture of the MHC region associated with 63 

pathologies of complex diseases, few trans-ethnic MHC fine-mappings have been reported 64 

yet.12 One of the ways of conducting trans-ethnic fine-mapping in the comprehensive MHC 65 

region is to newly construct a large HLA reference panel which captures the complexities of the 66 

MHC region across different populations.13 The other is to integrate data of different populations 67 

which are imputed with a reference panel specific for each population. Although the latter way 68 
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seems straightforward, we need an HLA imputation method accurate enough for infrequent 69 

alleles to robustly evaluate HLA variants which are highly heterogenous in allele frequency 70 

across ethnicities.  71 

 Various methods for HLA allelic imputation have been developed. SNP2HLA is one of 72 

the standard software, which uses the imputation software package Beagle to impute both HLA 73 

alleles and the amino acid polymorphisms for those classical alleles.14 HLA Genotype 74 

Imputation with Attribute Bagging (HIBAG)15 is also promising software, which employs multiple 75 

expectation-maximization-based classifiers to estimate the likelihood of HLA alleles. While 76 

SNP2HLA explicitly uses reference haplotype data, of which public accessibility is often limited, 77 

HIBAG does not require them once the trained models are generated. Both methods have 78 

achieved high imputation accuracy;16 however, are less accurate for rare alleles as shown later. 79 

Given the complex linkage disequilibrium (LD) structures specific for the MHC region, a more 80 

sophisticated pattern recognition algorithm beyond simple stochastic inference seems to be 81 

necessary to overcome this situation.  82 

After boasting of its extremely high accuracy in image recognition, deep learning has 83 

been attracting attention in various fields, and a lot of successful applications in the field of 84 

genomics have been reported.17 It can learn a representation of input data and discover 85 

relevant features of high complexity through deep neural networks. Its typical application for 86 

genomic problems is the prediction of the effects of non-coding and coding variants, where the 87 

models encodes the inputs of flanking nucleotide sequence data.18–21 Another example is 88 

non-liner unsupervised learning of high-dimensional quantitative data of transcriptome.22,23 89 

However, successful representation learnings for SNV-data in the field of population genetics 90 

has been limited.24 Here, we developed DEEP*HLA, a multi-task convolutional deep learning 91 
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method to accurately impute genotypes of HLA genes from SNV-level data. Through 92 

application to the two HLA reference panels of different populations, DEEP*HLA achieved 93 

higher imputation accuracy both in sensitivity and specificity than conventional methods. 94 

Notably, it was more advantageous especially in imputing low frequent or rare alleles. As also a 95 

value of our method, it was by far the fastest in total processing time, which indicates its 96 

applicability to biobank-scale data. We applied the trained models of DEEP*HLA to the 97 

large-scale T1D GWAS data of BioBank Japan (BBJ) and UK Biobank (UKBB), and conducted 98 

trans-ethnic HLA association analysis.  99 

 100 

  101 
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Results 102 

 103 

An overview of our study 104 

An overview of our study is presented in Fig. 1. Our method, DEEP*HLA, is convolutional 105 

neural networks which learn an HLA referenced panel, and impute genotypes of HLA genes 106 

from pre-phased SNV data. Its framework uses a multi-task learning which can learn and 107 

impute alleles of several HLA genes which belong to the same group simultaneously (see 108 

Method). Multi-task learning is presumed to have two advantages in this situation. First, the 109 

genotypes of some flanking HLA genes, which often have strong LD for each other, are 110 

correlated; and the shared features of individual tasks would be informative. Second, it helps 111 

reduce the processing time by grouping tasks especially in our latest reference panel, which 112 

consists of more than thirty HLA genes. For robust benchmarking, we targeted the two different 113 

HLA imputation reference panels: (i) our Japanese reference panel (n = 1,118);3 (ii) the Type 1 114 

Diabetes Genetics Consortium (T1DGC) reference panel (n = 5,112),25 respectively. We 115 

evaluated its performance in comparison with other HLA imputation methods by 10-fold 116 

cross-validation and an independent HLA dataset (n = 908).6 In the latter part, we performed 117 

MHC fine-mappings of Japanese cohort from BBJ and British cohort from UKBB by applying 118 

the trained models specific for individual populations. We integrated the imputed GWAS 119 

genotypes and performed trans-ethnic HLA association analysis.  120 
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DEEP*HLA achieved high imputation accuracy especially in low-frequency or rare 121 

alleles 122 

First, we applied DEEP*HLA to the Japanese panel, which is a high-resolution allele catalog 123 

of the 33 classical and non-classical HLA genes in 1,118 individuals of Japanese ancestry.3 We 124 

compared imputation accuracy of DEEP*HLA in sensitivity and specificity (see Method) with 125 

SNP2HLA and HIBAG in 10-fold cross-validation. DEEP*HLA achieved sensitivity and 126 

specificity of 0.987 in 4-digit allelic resolution, which were superior to SNP2HLA (sensitivity of 127 

0.985 and specificity of 0.984) and HIBAG (sensitivity and specificity of 0.979; Supplementary 128 

Table 1). Remarkably, DEEP*HLA was best through all ranges of allele frequencies; and was 129 

more advantageous as alleles were low frequent or rare (Fig. 2a and Supplementary Table 1). 130 

In addition to the cross-validation, to investigate whether DEEP*HLA could impute well when 131 

applied to independent samples, we applied the model trained with our Japanese reference 132 

panel to a dataset of 908 Japanese individuals (1,816 haplotypes) with 4-digit resolution alleles 133 

of 8 classical HLA genes and SNP genotype data.6 Similarly, DEEP*HLA performed better than 134 

the other methods; and was more advantageous as alleles were low frequent or rare (Fig. 2a 135 

and Supplementary Table2). 136 

 Next, we applied DEEP*HLA to the Type 1 Diabetes Genetics Consortium (T1DGC) 137 

reference panel of 5,122 unrelated individuals of European ancestries.25 It consists of 2- and 138 

4-digit alleles of the 8 classical HLA gene. DEEP*HLA achieved sensitivity and specificity of 139 

0.976 in 4-digit resolution, which were superior to SNP2HLA (sensitivity of 0.972 and specificity 140 

of 0.935) and HIBAG (sensitivity and specificity of 0.959), was more advantageous as the 141 

alleles were low frequent or rare (Fig.2b and Supplementary Table 3). There were significant 142 

declines in the specificity of SNP2HLA especially for imputing infrequent alleles, because the 143 
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sum of the allele dosages of each HLA gene of an individual can exceed the expected value (i.e. 144 

= 2.0) since it imputes each allele separately as a binary allele.  145 

 146 

DEEP*HLA can define HLA amino acid polymorphisms without ambiguity 147 

DEEP*HLA separately imputes classical alleles of each HLA gene, as a multi-label 148 

classification in the field of machine learning. Thus, it has an advantage that the sum of imputed 149 

allele dosages of each HLA gene is definitely set as an ideal value of 1.0 per a haplotype. This 150 

feature enables us to define a dosage of amino acid polymorphisms from the imputed 4-digit 151 

allele dosages without ambiguity. Then, we compared this method of imputing amino acid 152 

polymorphisms with SNP2HLA, which imputes them as binary alleles. Although DEEP*HLA 153 

was equivalent with SNP2HLA in both accuracy metrics in imputing amino acid polymorphisms 154 

in total (0.997 vs 0.997 in the Japanese panel; 0.996 vs 0.996 in T1DGC panel; 155 

Supplementary Table 4, 5), it achieved more accurate imputation for low-frequency and rare 156 

alleles (Fig. 2c, d). As well as in imputing classical HLA alleles, the performance improvement 157 

was remarkable in specificity evaluated in T1DGC data. 158 

 159 

High performance of DEEP*HLA in computational costs 160 

We benchmarked the computational costs of DEEP*HLA against SNP2HLA and HIBAG using 161 

subset of GWAS dataset from BBJ containing n = 1,000, 2,000, 5,000, 10,000, 20,000, 50,000, 162 

and 100,000 samples (2,000 SNPs consistent with the reference panel). Unlike SNP2HLA, 163 

DEEP*HLA and HIBAG require pre-phased GWAS data and the models trained with reference 164 

data. Thus, we compared the total processing time including pre-phasing of GWAS data, 165 

training the models, and imputation of DEEP*HLA and HIBAG, with the running time of 166 
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SNP2HLA. We used a state-of-art GPU, GeForce RTX 2080 Ti in training DEEP*HLA. As 167 

shown in Fig. 2e, DEEP*HLA imputation was by far the fastest in total processing time as the 168 

sample size increased. When comparing the pure imputation times, it was faster than HIBAG 169 

(Supplementary Table 6). As for memory cost, all methods exhibited maximum memory usage 170 

scaling roughly linearly with sample size (Fig. 2e and Supplementary Table 6), and HIBAG 171 

was the most memory-efficient through all the sample sizes. While SNP2HLA did not work 172 

within 100 GB memory of our machine for the sample size of more than 20,000, DEEP*HLA 173 

was able to impute even the biobank-scale sample size that reached 100,000.  174 

 175 

Characteristics of the alleles where DEEP*HLA was advantageous to impute 176 

We focused on the characteristics of the HLA alleles of which accuracy was improved by our 177 

method in comparison with SNP2HLA, which was second to our method in total accuracy 178 

metrics. SNP2HLA runs Beagle intrinsically, which performs imputation based on hidden 179 

Markov model of a localized haplotype-cluster. We hypothesized that this kind of methods 180 

works better for imputing alleles of which LDs with the surrounding SNVs are stronger in close 181 

positions and get weaker as more distant from the target HLA allele (we termed this feature as 182 

distant-dependent LD decay). Conversely, it could be limited at imputing alleles which have 183 

sparse LD structures throughout the MHC region. To verify this hypothesis, we defined the area 184 

under curve (AUC) representing distant-dependent LD decay. The AUC values become higher 185 

when LDs with the surrounding SNVs get stronger as they get closer to the target HLA allele 186 

(Fig. 3b). We evaluated how much two accuracies of DEEP*HLA and SNP2HLA are affected 187 

by the AUC values and allele frequency with a multivariate linear regression analysis. As 188 

expected, both sensitivity and specificity were positively correlated with AUC in SNP2HLA. On 189 
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the other hand, the specificity in DEEP*HLA were less dependent on AUC, and there was no 190 

significant correlation with the specificity in cross-validation on the Japanese panel (P = 0.069; 191 

Fig. 3a and Supplementary Table 7).  192 

Next, to investigate our assumption that DEEP*HLA performs better imputation by 193 

recognizing distant SNVs as well as close SNVs of strong LD, we applied SmoothGrad, a 194 

method for generating a sensitivity map of a deep learning model.26 It is a simple 195 

approach based on the idea of adding noise to the input data and taking the average of the 196 

resulting sensitivity maps for each sampled data. As displayed in its application to example HLA 197 

alleles, a trained DEEP*HLA model reacted to the noises of not only the surrounding SNVs with 198 

strong LD, but also the distant SNVs (Fig. 3c). Interestingly, the strongly reacted SNVs were 199 

not always those of even moderate LD, but also spread across the entire the input region. While 200 

the validity of SmoothGrad for a deep learning model of genomic data has under investigation, 201 

one probable explanation is that predicting an allele by our method conversely means 202 

predicting absence of the other alleles of the target HLA gene; thus, any SNV positions in LD 203 

with any of the other HLA alleles could be informative. Another explanation is that DEEP*HLA 204 

might recognize complicated combinations of multiple distinct SNVs within the region, rather 205 

than the simple HLA allele-SNV LD correlations. 206 

 207 

Empirical evaluation of imputation uncertainty in deep learning models 208 

A common issue of deep learning models is how to quantify the reliability of their predictions; 209 

and one potential solution is uncertainty inferred from the idea of Bayesian deep learning.27 210 

Then, we experimentally evaluated the uncertainty of imputation by DEEP*HLA using Monte 211 

Carlo (MC) dropout, which could be applied following general implementation of neural 212 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.10.20170522doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.10.20170522
http://creativecommons.org/licenses/by-nc/4.0/


Naito T et al. 

12 

 

networks with dropout units.28,29 In MC dropout, uncertainty was presented as entropy of 213 

sampling variation with keeping dropout turned on. This uncertainty index corresponds not to 214 

each binary allele of a gene, but to the prediction of genotype of a gene of an individual. Thus, 215 

we evaluated whether it could guess the correctness of best-guess genotypes of the target HLA 216 

genes. We compared it with a dosage-based discrimination, in which we assume that a 217 

best-guess imputation of higher genotype dosage (probability) is more likely to be correct. The 218 

entropy-based uncertainty identified incorrectly imputed genotypes in areas under the curve of 219 

the receiver operating characteristic (ROC-AUC) of 0.851 in the Japanese panel, and of 0.883 220 

in T1DGC reference panel in 4-digit alleles, which were superior to dosage-based 221 

discrimination (ROC-AUC = 0.722 in the Japanese panel and = 0.754 in T1DGC panel; 222 

Supplementary Fig. 1). Whereas the estimation of prediction uncertainty of a deep learning 223 

model is still developing;29 our results might illustrate its potential applicability to establishment 224 

of a reliability score for genotype imputation by deep neural networks.  225 

 226 

Trans-ethnic MHC fine-mapping of T1D 227 

We applied the DEEP*HLA models trained with the Japanese panel and T1DGC panel to HLA 228 

imputation of T1D GWAS data of BBJ (831 cases and 61,556 controls) and UKBB (732 cases 229 

and 356,123 controls), respectively. T1D is a highly heritable autoimmune disease that results 230 

from T cell–mediated destruction of insulin-producing pancreatic β cells.30 We separately 231 

imputed GWAS data of the cohorts and then combined them to perform trans-ethnic MHC 232 

fine-mapping (1,563 cases and 417,679 controls). Association analysis of the imputed HLA 233 

variants with T1D found the most significant association at the HLA-DRβ1 amino acid position 234 

71 (Pomnibus = P = 6.2 × 10-119; Fig. 4a and Supplementary Table 8), one of the T1D risk amino 235 
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acid polymorphisms in the European population.10 In T1D, the largest HLA gene associations 236 

were reported in the HLA-DRB1, -DQA1, and -DQB1;10,31 thus, we further investigated 237 

independently associated variants within these HLA genes. When conditioning on HLA-DRβ1 238 

amino acid position 71, we observed the most significant independent association in HLA-DQβ1 239 

amino acid position 185 (Pomnibus = 8.9 × 10-69). Through stepwise forward conditional analysis 240 

in the class II HLA region, we found significant independent associations in on Tyr30 in 241 

HLA-DQβ1 (Pbinary = 9.6 × 10-20), HLA-DRβ1 amino acid position 74 (Pomnibus = 1.4 × 10-11), and 242 

Arg70 in HLA-DQβ1 (Pomnibus = 4.5 × 10-9; Supplementary Fig.2 and Supplementary Table 9). 243 

The association of HLA-DRβ1 amino acid position 74 has been previously reported in 244 

Europeans.32 245 

These results were different from a previous study of large T1D cohort of European 246 

ancestries, which reported three amino acid polymorphisms at HLA-DQβ1 position 57, 247 

HLA-DRβ1 position 13, and HLA-DRβ1 position 71 were top-associated amino acid 248 

polymorphisms in the HLA-DRB1, -DQA1, and -DQB1 region. We then constructed multivariate 249 

regression models for individual population that incorporated our T1D risk-associated HLA 250 

amino acid polymorphisms and classical alleles of HLA-DRB1 and HLA-DQB1, and compared 251 

the effects of these variants. Whereas the odds ratios of the risk-associated variants reported 252 

previously did not show any positive correlation between different populations (Pearson’s r = 253 

-0.59, P = 0.058; Supplementary Fig.3 and Supplementary Table 10), those observed in our 254 

analyses presented significant positive correlation (Pearson’s r = 0.76, P = 6.8 × 10-3; 255 

Supplementary Fig.3). 256 

We further investigated whether T1D risk was associated with other HLA genes 257 

independently of HLA-DRB1, -DQA1, and -DQB1. When conditioning on HLA-DRB1, -DQA1, 258 
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and -DQB1, we identified a significant independent association at HLA-A amino acid position 62 259 

(Pomnibus = 5.4 × 10-13; Fig. 4b and Supplementary Table 8). After conditioning on HLA-A 260 

amino acid position 62, we did not observe any additional independent association in HLA-A 261 

alleles. When we conditioned on HLA-DRB1, -DQA1, -DQB1, and -A, we identified a significant 262 

independent association at HLA-B*54:01 (Pbinary = 1.3 × 10-9; Fig. 4c and Supplementary 263 

Table 8), and its unique amino acid alleles (Gly45 and Val52 at HLA-B). HLA-B*54:01 has 264 

traditionally been suggested as a risk allele in Japanese by a candidate HLA gene approach.11 265 

Its independent association through the MHC region-wide fine-mapping was first proven 266 

here. When conditioning on HLA-DRB1, -DQA1, -DQB1, -A, and -B, no variants in the MHC 267 

region satisfied the genome-wide significance threshold (P > 5.0 × 10-8; Fig. 4d and 268 

Supplementary Table 8). Multivariate regression analysis of the identified risk variants 269 

explained 10.3% and 27.6% of the phenotypic variance in T1D under assumption of disease 270 

prevalence of 0.014%33 and 0.4%34 for Japanese and British cohorts, respectively. Their odds 271 

ratios on T1D risk were also correlated between different populations (Pearson’s r = 0.71, P = 272 

4.4 × 10-3; Table 1).  273 
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Discussion 274 

In this study, we demonstrated that DEEP*HLA, a multi-task convolutional deep learning 275 

method for HLA imputation, outperformed conventional HLA imputation methods both in 276 

sensitivity and specificity. DEEP*HLA was more advantageous when the target HLA variants, 277 

including classical alleles and amino acid polymorphisms, were low frequent or rare. Our study 278 

demonstrated that a conventional method dropped its performance for the alleles which did not 279 

exhibit distant-dependent LD decay features with the target HLA allele. DEEP*HLA was not 280 

restricted to this point, and comprehensively captures the relationships among distinct multiple 281 

variants regardless of LD. 282 

To date, technical application of deep neural networks to population genetics data has 283 

been limited. In a previous attempt for genotype imputation, a sparse convolutional denoising 284 

autoencoder was only compared with reference-free methods.24 There might be two possible 285 

reasons for the success of our DEEP*HLA. First unlike genotype imputation by denoising 286 

autoencoders, which assumed various positions of missing genotypes in a reference panel to 287 

impute, the prediction targets were fixed to the HLA allele genotypes as a classification problem. 288 

Second, convolutional neural networks, which leverage a convolutional kernel that is capable of 289 

learning various local patterns, might be suited for learning the complicated LD structures of the 290 

MHC region.  291 

We filtered alleles of poor imputation quality based on the results of cross-validation in 292 

the current application; however, an indicator of reliability could be further utilized. We 293 

demonstrated that the uncertainty of prediction inferred from a Bayesian deep learning method 294 

had potential capability of distinguishing incorrectly-imputed alleles in per-gene of individuals. 295 
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Our future work should establish a method to quantify per-allele uncertainty of imputation which 296 

could be practically used as a filtering threshold for subsequent analyses. 297 

Taking advantage of the significant improvement of imputation accuracy for rare 298 

alleles, we conducted trans-ethnic MHC fine-mapping in T1D. Our study successfully 299 

disentangled a set of independently associated amino acid polymorphisms and HLA alleles. 300 

This approach could be performed as well using the conventional HLA imputation methods. 301 

However, the results obtained by our method should be more reliable since there were several 302 

risk-associated alleles which were rare only in one population. As a result, the catalogue of the 303 

T1D risk-associated variants by our trans-ethnic approach were different from those of the 304 

previous study in Europeans.10 We admit the possibility that the smaller sample size in our 305 

study and different definition of the phenotypes (between studies, and between cohorts in our 306 

study) might also contribute to this disparity. Especially, we note potential distinctiveness of 307 

Japanese T1D phenotypes.35 Considering that our observed variants shared the effects on the 308 

T1D risk between different populations, however, we might gain a novel insight into the issue of 309 

inter-ethnic heterogeneity of T1D risk allele in the MHC region. 310 

In terms of trans-ethnic analysis, we targeted the two major populations of Europeans 311 

and east Asians. As a next step, multi-ethnic MHC fine-mapping integrating further diverse 312 

ancestry should be warranted for robust prioritization of risk-associated HLA variants.13 Given 313 

their high learning capacity of deep neural networks, our method should be helpful not only 314 

when integrating the imputation results of multiple references, but also when using a more 315 

comprehensive multi-ethnic reference. We expect that highly accurate imputation realized by 316 

learning of complex LDs in the MHC region using neural networks will enable us to further 317 
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elucidate the involvement of common genetic features in the MHC region that affect complex 318 

traits beyond ethnicity. 319 
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Methods 341 

The architecture of DEEP*HLA 342 

DEEP*HLA is a multitask convolutional neural network with a shared part of two convolutional 343 

layers and a fully-connected layer, and individual fully-connected layers which output allelic 344 

dosages of individual HLA genes to impute simultaneously HLA genes of the same group 345 

(Supplementary Fig.4). The grouping was based on the LD structure3 and physical distance in 346 

the current application: (1) {HLA-F, HLA-V, HLA-G, HLA-H, HLA-K, HLA-A, HLA-J, HLA-L, 347 

HLA-E}, (2) {HLA-C, HLA-B, MICA, MICB}, (3) {HLA-DRA, HLA-DRB9, HLA-DRB5, HLA-DRB4, 348 

HLA-DRB3, HLA-DRB8, HLA-DRB7, HLA-DRB6, HLA-DRB2, HLA-DRB1, HLA-DQA1, 349 

HLA-DOB, HLA-DQB1}, and (4) {TAP2, TAP1, HLA-DMB, HLA-DMA, HLA-DOA, HLA-DPA1, 350 

HLA-DPB1}. Genes which were not typed or had only one allele in individual reference panels 351 

were excluded from the group. 352 

For each group, SNPs within its window are encoded to one-hot vectors based on 353 

whether each genotype is consistent with a reference or alternative allele. The window sizes on 354 

each side were set to 500 kb in the current investigation. Two convolutional layers with 355 

max‐pooling layers and a fully-connected layer follow the input layer as a shared part. The 356 

fully-connected layer in the end of shared part is followed by each fully-connected layer which 357 

has nodes consistent with the number of alleles of each HLA gene. To return a dosage of 358 

imputation, which ranges from 0.0 to 1.0 for a haplotype, softmax activation was added before 359 

the last output. Dropout was used on the convolutional and fully-connected layers,36 and batch 360 

normalization was added to the convolutional layers.37 361 

During training, 5% of data set were spared for validation to determine the point for 362 

early-stopping training (i.e. we used 85% of data were used for training in 10-fold 363 
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cross-validation). Categorical cross entropy loss function of each HLA gene was minimized 364 

using the Adam optimizing algorithm.38 As a multi-task learning to find a Pareto optimal solution 365 

of all tasks, we used the multiple-gradient descent algorithm – upper bound (MGDA-UB), where 366 

the loss function of each task is scaled based on its optimization algorithms.39 To taking 367 

advantage of the hierarchical nature of HLA alleles (i.e. 2-digit, 4-digit, and 6-digit), we 368 

implemented hierarchical fine-tuning, in which the parameters of model of upper hierarchical 369 

structures were transferred to those of the lower one.40 We transferred the parameters of 370 

shared networks of 2-digit alleles to 4-digit alleles, and of 4-digit alleles to 6-digit alleles during 371 

training successively. Although some HLA alleles in our reference panel were not determined in 372 

4-digit or 6-digit resolution, we set their upper resolution instead to keep equivalent hierarchical 373 

levels with other HLA genes. Hyperparameters, including the number of filters and kernel sizes 374 

of convolutional layers, fully-connected layer size, were tuned with Optuna.41 The 375 

hyperparameters of the Japanese model were determined using an randomly sampled set 376 

before cross-validation, and the same values were used for hyper-parameters of the European 377 

model. Our deep learning architectures were implemented using Pytorch 1.4.1 (see URLs), a 378 

Python neural network library. 379 

 380 

Empirical evaluation of HLA imputation accuracy 381 

We defined two metrics to evaluate the imputation accuracy of the gene-level dosage in various 382 

aspects. First, the accuracy was calculated by summing across all individuals the dosage of 383 

each true allele in the individual, and divided by the total number of observation, as proposed in 384 

the paper of SNP2HLA.25 We defined this as sensitivity Se because it counts positives that are 385 

correctly identified as such.  386 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.10.20170522doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.10.20170522
http://creativecommons.org/licenses/by-nc/4.0/


Naito T et al. 

20 

 

����� �  
∑ 	
���1�,�� � 
���2�,����
���

2�  

where n denotes the number of individuals, Di represents the imputed dosage of an allele in 387 

individual i, and alleles A1i, L and A2i, L represent the true HLA alleles for individual i at locus L.  388 

In contrast, we defined specificity Sp as  389 
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where alleles �1�,�
������ and �2�,�

������ represent the HLA alleles which are incorrectly imputed dosage 390 

for individual i at locus L. Due to the nature of formula, total sensitivity and specificity of each 391 

HLA gene should be the same value for DEEP*HLA and HIBAG, in which the sum of dosage in 392 

each HLA gene of each individual is constant.  393 

We extended these metrics for each gene to evaluate imputation performance of each 394 

allele A.  395 
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where m denotes the number of true observations of allele A in total sample, and Di represents 396 

imputed dosage of allele A in individual haplotype j which has allele A. Dk represents imputed 397 

dosage of allele A in individual haplotype k of which true allele is not A (note, Sp(A) can be a 398 

negative value). Although these metrics are different from their general definitions, they are 399 

adjusted for bias due to allele frequency by dividing by true number of alleles. 400 

 When averaging the accuracy metrics, we weighted them by allele frequency. 401 

 402 

Estimation of HLA imputation uncertainty of DEEP*HLA using MC dropout method 403 
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In order to provide uncertainty of prediction, we adopted the entropy of sampling variation of MC 404 

dropout method.28 In MC dropout, dropout are kept during prediction to perform multiple model 405 

calls. Different units are dropped across different model calls; thus, it can be considered as 406 

Bayesian sampling with treating the parameters of a CNN model as random variables of 407 

Bernoulli distribution. The uncertainty of a best-guess genotype inferred from the entropy of 408 

sampling variation is determined as 409 

� �  � ��
�
log

�
� � � � �

�
log

� � �
� � 

where T is the number of variational samplings and t is the number of times in which obtained 410 

genotype was same as the best-guess genotype. We set T = 200 in the current investigation. 411 

 412 

AUC metric representing distant-dependent LD decay 413 

To evaluate whether the LD between an HLA allele and its surrounding SNVs gets weaker as 414 

the SNVs are distant to it, we calculated the area under the curve (AUC) of the cumulative curve 415 

of r2 from the HLA allele (AUC for distance-dependent LD decay). When the LD of flanking 416 

SNVs of an HLA allele has such a characteristic, r2 measure of LD tends to decline from the 417 

HLA allele. In other words, the bilateral cumulative curve of r2 from the HLA allele should be 418 

more likely to be convex upward; then the AUC tends to be higher. We determined the AUC by 419 

normalizing the maximum values of r2 sum and window sizes to 1. We evaluated its association 420 

with accuracies of each imputation method by linear regression model adjusted with an allele 421 

frequency and the maximum value of r2. We set window size as the range of its input for 422 

evaluating the association with DEEP*HLA, and 1,000 for SNP2HLA. 423 

 424 

Regional sensitivity maps of DEEP*HLA 425 
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We applied SmoothGrad approach to estimate which SNVs were important for DEEP*HLA to 426 

impute genotypes of each HLA gene.26 For each haplotype, we generated 200 samples which 427 

were added Gaussian noise to encoded SNV data and input them to a trained model, and 428 

obtained the sensitivity values for individual SNV positions by averaging the absolute values of 429 

gradients caused by the difference from the true label. When we obtained the sensitivity of an 430 

allele, we averaged the maps of all haplotypes which truly has the allele.  431 

 432 

HLA imputation software and parameter settings 433 

We tested the latest version of each software available in Jun 2020 to compare with our method. 434 

SNP2HLA (v1.0.3) first arranges the strand in its own algorithm; however, we removed this step 435 

data during cross-validation, in which the strands must be the same between training and test 436 

data. Other settings of SNP2HLA were set to the default values. HIBAG (1.22.0.) receives 437 

phased genotypes data as input; and we used phased data generated using Beagle as well as 438 

our method. The number of classifiers were set to 25, which is sufficient to provide good 439 

performance,42 in testing with the Japanese. For T1DGC panel, training time was extremely 440 

long with 25 classifiers; thus, we set 2 of classifiers after we confirmed that the imputation 441 

accuracy was almost unchanged in the first set of cross-validation. Flanking regions on each 442 

side was set to 500 kb.  443 

 444 

Computational costs measurement 445 

We measured the computational costs of imputation of subset of BioBank Japan (BBJ) Project 446 

data set (n = 1,000, 2,000, 5,000, 10,000, 20,000, 50,000, and 100,000 samples) by our 447 

Japanese reference panel (2,000 SNVs were consistent). All our runtime analyses except 448 
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model training of DEEP*HLA were performed on a dedicated server running CentOS 7.2.1511, 449 

with 48 CPU cores (Intel ® Xeon ® E5-2687W v4 @ 3.00 GHz) and 256 GB of RAM without 450 

GPU. The model training of DEEP*HLA was conducted on Ubuntu 16.04.6 LTS with 20 CPU 451 

cores (Intel ® Core ™ i9-9900X @ 3.50 GHz), 2 GPUs (NVIDIA ® GeForce ® RTX 2080 Ti), 452 

and 128 GB of RAM. DEEP*HLA and HIBAG require pre-phased GWAS data and the models 453 

trained with reference data; thus, we measured the process not only of imputation, but also of 454 

pre-phasing of GWAS data (conducted by Eagle) and training the models with a reference 455 

panel. In SNP2HLA, the maximum of available memory was set to 100 GB. The processing 456 

time and maximum memory usage was measured using GNU Time software when running 457 

from a command line interface. 458 

 459 

HLA imputation reference data 460 

(i) Our Japanese reference panel and a validation dataset 461 

Our Japanese reference panel contains NGS-based 6-digit resolution HLA typing data of 33 462 

classical and non-classical HLA genes, of which 9 were classical HLA genes (HLA-A, HLA-B, 463 

and HLA-C for class I; HLA-DRA, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, and 464 

HLA-DPB1 for class II) and 24 were nonclassical HLA genes (HLA-E, HLA-F, HLA-G, HLA-H, 465 

HLA-J, HLA-K, HLA-L, HLA-V, HLA-DRB2, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DRB6, 466 

HLA-DRB7, HLA-DRB8, HLA-DRB9, HLA-DOA, HLA-DOB, HLA-DMA, HLA-DMB, MICA, MICB, 467 

TAP1, and TAP2), along with high-density SNP data of the MHC region by genotyping with the 468 

Illumina HumanCoreExome BeadChip (v1.1; Illumina) of 1,120 unrelated individuals of 469 

Japanese ancestry.3 Among them, we excluded 2 individuals’ data in which sides of some HLA 470 

alleles were inconsistent among different resolutions after pre-phasing. 471 
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To benchmark the imputation performance when the Japanese panel is applied to 472 

independent dataset, we used 908 individuals of Japanese ancestries with 4-digit resolution 473 

alleles of classical HLA genes (HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQA1, HLA-DQB1, 474 

HLA-DPA1), which was used as a HLA reference panel in our previous study.6 It contains 475 

high-density SNP data genotyped with four SNP genotyping arrays (the Illumina 476 

HumanOmniExpress BeadChip, the Illumina HumanExome BeadChip, the Illumina 477 

Immunochip, and the Illumina HumanHap550v3 Genotyping BeadChip). This study was 478 

approved by the ethical committee of Osaka University Graduate School of Medicine. 479 

(ii) The Type 1 Diabetes Genetics Consortium (T1DGC) reference panel.  480 

T1DGC panel contains 5,868 SNPs (genotyped with Illumina Immunochip) and 4-digit 481 

resolution HLA typing data of classical HLA genes (HLA-A, HLA-B, and HLA-C for class I, 482 

HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, and HLA-DRB1 for class II) of 5,225 483 

unrelated individuals of European ancestries.14 Among them, we excluded 103 individuals’ data 484 

in which sides of some HLA alleles were inconsistent among different resolutions after 485 

pre-phasing. 486 

 487 

T1D GWAS data in the Japanese population 488 

The BioBank Japan (BBJ) is a multi-institutional hospital-based registry that comprised DNA, 489 

serum, and clinical information of approximately 200,000 individuals of Japanese ancestry in 490 

2003-2007.43,44 We used GWAS data from 831 cases who had record of T1D diagnosis and 491 

61,556 controls of Japanese genetic ancestry enrolled in BBJ Project. The controls were 492 

included in those enrolled in our previous study that investigated the association of the MHC 493 

region to comprehensive phenotypes, and the number of T1D cases was increased.3 The 494 
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process of patient registration, the GWAS data, and the QC process have been described 495 

elsewhere.43–45 496 

 497 

T1D GWAS data in the British population 498 

The UK Biobank (UKBB) comprises health related information approximately 500,000 499 

individuals aged between 40-69 who were recruited from across the United Kingdom in 500 

2006-2010.46 We used GWAS data from 732 T1D patients and 356,123 controls of British 501 

genetic ancestry enrolled in UKBB. We selected T1D patients as individuals who were 502 

diagnosed as insulin-dependent diabetes mellitus in hospital records, and neither as 503 

non-insulin-independent diabetes mellitus in hospital records nor as type 2 diabetes in 504 

self-reported diagnosis. The controls were selected as individuals who did not have record of 505 

any autoimmune diseases neither in hospital records nor in self-reported diagnosis. We 506 

included only individuals of British ancestry according to self-identification and criteria based on 507 

principal component (PC).47 We excluded individuals of ambiguous sex (sex chromosome 508 

aneuploidy and inconsistency between self-reported and genetic sex), and outlier of 509 

heterozygosity or call rate of high quality markers. 510 

 511 

Imputation of the HLA variants of GWAS data of T1D and control individuals 512 

In this study, we defined the HLA variants as SNVs in the MHC region, classical 2-digit and 513 

4-digit biallelic HLA alleles, biallelic HLA amino acid polymorphisms corresponding to the 514 

respective residues, and multi-allelic HLA amino acid polymorphisms for each amino acid 515 

position. We applied DEEP*HLA to the GWAS data to determine classical 2-digit and 4-digit 516 

biallelic HLA alleles. The dosages of biallelic HLA amino acid polymorphisms corresponding to 517 
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the respective residues and multiallelic HLA amino acid polymorphisms for each amino acid 518 

position were determined from the imputed 4-digit classical allele dosages. We applied 519 

post-imputation filtering as the biallelic alleles of which both the sensitivity and specificity in 520 

10-fold cross-validation were higher than 0.7. The sensitivity and specificity of the current 521 

definition could be overestimated if an allele frequency is above 0.5; thus, we calculated those 522 

with allele reversed (i.e. flipping reference/alternative alleles) and filtered also by them. The 523 

SNVs in the MHC region were imputed using minimac3 (version 2.0.1) after pre-phased with 524 

Eagle (version 2.3). We applied stringent post-imputation QC filtering of the variants (minor 525 

allele frequency ≥ 0.5% and imputation score Rsq ≥ 0.7). For trans-ethnic fine-mapping, we 526 

integrated the results of imputation of individual cohorts by including the HLA genes, amino acid 527 

position, and SNVs which were typed in both reference panels. Regarding the HLA alleles and 528 

amino acid polymorphisms that existed in one population, they were regarded as absent on the 529 

other population. Considering the disparity in allele frequency of SNVs among different 530 

populations, we removed all palindromic SNVs to align the strands correctly without fail. 531 

 532 

Association testing of the HLA variants 533 

We assumed additive effects of the allele dosages on the log-odds scale for susceptibility of 534 

T1D; and evaluated associations of the HLA variants with the risk of T1D using a logistic 535 

regression model. To robustly account for potential population stratification, we included the top 536 

ten PCs obtained from the GWAS genotype data of each cohort (not including the MHC region) 537 

as covariates in the regression model. For trans-ethnic analysis, PC terms of each other 538 

population were set to 0; and, besides, we added a categorical variable indicating a population 539 

as a covariate. We also included sex of individuals as a covariate.  540 
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 To evaluate independent risk among the HLA variants and genes, we conducted a 541 

forward-type stepwise conditional regression analysis that additionally included the binary HLA 542 

variant genotypes as covariates. When conditioned on HLA gene(s), we included all the 4-digit 543 

alleles as covariates to robustly condition the associations attributable to the HLA genes, as 544 

previously described.3,12 When conditioning on the specific HLA amino acid position(s), we 545 

included the multi-allelic variants of the amino acid residues. We applied a forward stepwise 546 

conditional analysis for the HLA variants and then HLA genes, based on the genome-wide 547 

association significance threshold (P = 5.0 × 10-8).  548 

We tested a multivariate full regression model by including the risk-associated HLA 549 

variants in HLA-DRB1, HLA-DQB1, HLA-A, and HLA-B, which were identified through the 550 

stepwise regression analysis. When we included amino acid polymorphisms in the model, we 551 

excluded the most frequent residue in the British cohort from each amino acid position as the 552 

reference allele. The phenotypic variance explained by the identified risk-associated HLA 553 

variants was estimated on the basis of a liability threshold model assuming the 554 

population-specific prevalence of T1D and using the effect sizes obtained from the multivariate 555 

regression model. 556 

 557 

URLs 558 

DEEP*HLA, https://github.com/tatsuhikonaito/DEEP-HLA 559 

Pytorch, http://pytorch.org/ 560 
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Figure Legends 671 

 672 

Figure 1. An overview of the study 673 

 674 

(a) Our method, DEEP*HLA, is a deep learning architecture that takes an input of genotypes of 675 

SNVs and outputs the genotype dosages of HLA genes. To train a model and benchmark its 676 

performance, we used Japanese and European HLA reference panels respectively, and 677 

evaluated its accuracies in cross-validation with compared to other tools. In the Japanese panel, 678 

we also evaluated its accuracy by applying the trained model to the independent Japanese HLA 679 

data. (b) We conducted trans-ethnic MHC fine-mapping in T1D GWAS data of BBJ and UKBB. 680 

We performed HLA imputation for the Japanese cohort from BBJ and the British cohort from 681 

UKBB using the models specific for individual populations, respectively. We integrated the 682 

individual results of imputed genotypes and performed trans-ethnic association analysis.  683 
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Figure 2. Performance evaluations of HLA imputation methods 684 

 685 
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(a-d) Sensitivity (upper) and specificity (lower) for the 4-digit alleles (a, b) and the amino acid 686 

polymorphisms (c, d) evaluated in our Japanese reference panel (a, c) and T1DGC reference 687 

panel (b, d). For each metrics, those for alleles of which frequency is less than a value on the 688 

horizontal axis are shown on the vertical axis. As a whole, DEEP*HLA outperformed other 689 

methods especially in specificity and imputing infrequent alleles. (e) Processing time (upper) 690 

and maximum memory usage (lower) evaluated on imputing the BBJ samples using the 691 

Japanese panel. DEEP*HLA imputed by far the fastest in total processing time as the sample 692 

size increased. All methods exhibited maximum memory usage scaling roughly linearly with 693 

sample size. SNP2HLA did not work within 100 GB in our machine for the sample size of more 694 

than 20,000.  695 
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Figure 3. Comparison between DEEP*HLA and SNP2HLA displayed with allele 696 

frequencies and AUC for distance-dependent LD decay 697 

 698 

(a) Comparisons of imputation accuracy between DEEP*HLA and SNP2HLA in sensitivity 699 

(upper) and specificity (lower) for 4-digit allele imputation for cross-validation on the Japanese 700 

panel (left) and T1DGC panels (right). Each dot corresponds to one allele, displayed with allele 701 

frequencies (size) and AUC for distance-dependent LD decay (color). Those of which 702 

specificities were less than 0 are shown with converted to 0 for visibility. Performance of 703 

SNP2HLA was limited when imputing the alleles with low frequency and low AUC, DEEP*HLA 704 

was relatively accurate even for the less frequent alleles regardless of the AUC. (b) Example 705 

illustrations of AUC for distance-dependent LD decay. The left figures illustrate r2 of LD between 706 

an HLA allele (red dash line in the central) and flanking SNVs. HLA-DRB1*16:02 has strong LD 707 
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in close positions and weaker in the distance; and cumulative curve of r2 of bilateral SNVs 708 

becomes convex upward; and the AUC becomes bigger. In contrast, HLA-DRB1*07:01 has 709 

moderate LD in distant or sparse positions; and the curve does not become convex upward; 710 

and the AUC becomes smaller. (c) Comparison between r2 (blue line) and sensitivity maps of 711 

DEEP*HLA (orange line) for example alleles (red dash line in the central). The sensitivities are 712 

normalized for visibility. In both examples, DEEP*HLA reacted to noises across an extensive 713 

area regardless of LD.  714 
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Figure 4. Trans-ethnic association plots of the HLA variants with T1D in the MHC region. 715 

 716 

 717 
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Diamonds represent −log10 (P values) for the tested HLA variants, including SNPs, classical 718 

alleles and amino acid polymorphisms of the HLA genes. The dashed black horizontal lines 719 

represent the genome-wide significance threshold of P = 5.0×10-8. The physical positions of the 720 

HLA genes on chromosome 6 are shown at the bottom. (a–e) Each panel shows the 721 

association plot in the process of stepwise conditional regression analysis: nominal results. (a) 722 

Results conditioned on HLA-DRB1, HLA-DQA1, and HLA-DRB1. (b) Results conditioned on 723 

HLA-DRB1, HLA-DQA1, HLA-DRB1, and HLA-A. (c) Results conditioned on HLA-DRB1, 724 

HLA-DQA1, HLA-DRB1, HLA-A, and HLA-B. (d) Our study identified independent contribution 725 

of multiple HLA class I and class II genes to T1D risk in a trans-ethnic cohort, of which the 726 

impacts of class II HLA genes was more evident. Detailed association results are available in 727 

Supplementary Table 4.  728 
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Tables 1. Associations of the HLA variants with T1D risk identified through the 729 

trans-ethnic fine-mapping study. 730 

  Frequency (BBJ) Frequency (UKBB)         

  Case Control Case Control OR (95% CI) P† 

HLA variant n = 831 n = 61,556 n = 732 n = 356,123 BBJ UKBB BBJ UKBB 

HLA-DRβ1 amino acid position 71             

Alanine 0.10 0.18 0.04 0.15 0.85 (0.66-1.10) 1.34 (0.89-1.99) 0.23 0.16 

Arginine 0.82 0.73 0.33 0.45 (reference)     

Glutamic acid 0.073 0.074 0.083 0.12 1.26 (0.89-1.77) 0.72 (0.56-0.93) 0.019 0.0013 

Lysine 0.0096 0.011 0.54 0.28 1.31 (0.71-2.24) 2.09 (1.75-2.50) 0.035 4.2 × 10-16 

HLA-DQβ1 amino acid position 185           

Isoleucine 0.39 0.57 0.68 0.83 2.74 (2.21-3.40) 4.12 (3.45-4.93) 3.5 × 10-20 3.8 × 10-54 

Threonine 0.61 0.43 0.32 0.17 (reference)     

HLA-DQβ1 amino acid position 30           

Histidine 0.16 0.19 0.18 0.23 1.36 (0.97-1.93) 4.13 (2.86-5.95) 0.0078 3.2 × 10-14 

Serine 0.0042 0.0038 0.34 0.25 inf 3.78 (2.51-5.81) 0.079 5.3 × 10-10 

Tyrosine 0.83 0.80 0.48 0.52 (reference)     

HLA-DRβ1 amino acid position 74           

Alanine 0.56 0.59 0.59 0.65 (reference)     

Arginine 0.0018 0.00088 0.28 0.15 0 (0-0.045) 0.65 (0.42-0.97) 0.08 0.0039 

Glutamic acid 0.32 0.27 0.021 0.036 0.77 (0.64-0.93) 0.57 (0.38-0.82) 0.00065 0.0004 

Glutamine 0.0024 0.0030 0.0795 0.15 0 (0-0.0029) 0.31 (0.21-0.45) 0.079 5.3 × 10-10 

Leucine 0.12 0.14 0.023 0.023 0.97 (0.81-1.16) 2.19 (0.84-4.84) 0.074 0.0079 

HLA-DQβ1 amino acid position 70           

Arginine 0.60 0.62 0.79 0.63 (reference)     

Glutamic acid 0.26 0.17 0.020 0.020 0.73 (0.59-0.9) 0.27 (0.11-0.72) 0.00020 0.00057 

Glycine 0.14 0.20 0.19 0.35 0.95 (0.72-1.25) 0.50 (0.36-0.69) 0.073 2.9 × 10-5 

HLA-A amino acid position 62           

Arginine 0.19 0.20 0.06 0.09 1.25 (1.05-1.49) 0.93 (0.74-1.15) 0.0012 0.052 

Glutamic acid 0.39 0.37 0.09 0.09 1.40 (1.21-1.63) 1.33 (1.10-1.59) 9.2 × 10-6 0.0003 

Glutamine 0.15 0.19 0.46 0.49 (reference)     

Glycine 0.26 0.24 0.33 0.29 1.44 (1.23-1.68) 1.27 (1.12-1.44) 6.6 × 10-6 1.5 × 10-4 

Leucine 0 0 0.055 0.044 - 2.01 (1.57-2.55) 1.5 × 10-12 1.8 × 10-8 

HLA-B*54:01 0.14 0.073 0 0 1.78 (1.51-2.08) - - - 
HLA, human leucocyte antigen; OR, odds ratio; 95% CI, 95% confidence interval. 
†Obtained from the multivariate regression model that included all the variants listed here. 
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