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Abstract 31 

Conventional HLA imputation methods drop their performance for infrequent alleles, which is 32 

one of the factors that reduce the reliability of trans-ethnic MHC fine-mapping due to inter-ethnic 33 

heterogeneity in allele frequency spectra. We developed DEEP*HLA, a deep learning method 34 

for imputing HLA genotypes. Through validation using the Japanese and European HLA 35 

reference panels (n = 1,118 and 5,122), DEEP*HLA achieved the highest accuracies with 36 

significant superiority for low-frequency and rare alleles. DEEP*HLA was less dependent on 37 

distance-dependent linkage disequilibrium decay of the target alleles and might capture the 38 

complicated region-wide information. We applied DEEP*HLA to type 1 diabetes GWAS data 39 

from BioBank Japan (n = 62,387) and UK Biobank (n = 354,459), and successfully disentangled 40 

independently associated class I and II HLA variants with shared risk among diverse 41 

populations (the top signal at amino acid position 71 of HLA-DRβ1; P = 7.5 × 10−120). Our study 42 

illustrates a value of deep learning in genotype imputation and trans-ethnic MHC fine-mapping. 43 
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Introduction 45 

Genetic variants of the major histocompatibility complex (MHC) region at 6p21.3 contribute to 46 

the genetics of a wide range of human complex traits.1 Among the genes densely present in the 47 

MHC region, human leukocyte antigen (HLA) genes are considered to explain most of the 48 

genetic risk of MHC.1 Strategies for direct typing of HLA alleles, including sequence specific 49 

oligonucleotide (SSO) hybridization, Sanger sequencing, and next-generation sequencing 50 

(NGS), cannot be easily scaled up for large cohorts since they are labor-intensive, 51 

time-consuming, expensive, and limited in terms of allele resolution and HLA gene coverage.2,3 52 

As a result, in many cases, the genotypes of HLA allele are indirectly imputed from single 53 

nucleotide variant (SNV)-level data using population-specific HLA reference panels.3–6 Although 54 

a high-throughput alternative is HLA type inference from whole-genome sequencing data,7,8 55 

HLA imputation is still widely performed for existing single nucleotide polymorphism (SNP) 56 

genotyping data. 57 

 The MHC region harbors unusually complex sequence variations and haplotypes that 58 

are specific to individual ancestral populations; thus, the distribution and frequency of the HLA 59 

alleles are highly variable across different ethnic groups.1,9 This results in heterogeneity in 60 

reported HLA risk alleles of human complex diseases across diverse populations.10 For 61 

instance, in type 1 diabetes (T1D), the strong association between non-Asp57 in HLA-DQβ1 62 

and T1D risk has been found in European populations11,12 but not in the Japanese populations, 63 

where the T1D susceptible HLA-DQβ1 alleles carry Asp57.13 Although the elucidation of risk 64 

alleles across ethnicities would contribute to further understanding of the genetic architecture of 65 

the MHC region associated with the pathologies of complex diseases, limited trans-ethnic MHC 66 

fine-mappings have been reported to date.14 One method for conducting trans-ethnic 67 
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fine-mapping in the comprehensive MHC region is to newly construct a large HLA reference 68 

panel that captures the complexities of the MHC region across different populations.15 Another 69 

method is to integrate data of different populations that are imputed with population-specific 70 

reference panels. The latter approach appears straightforward but requires an HLA imputation 71 

method accurate enough for infrequent alleles to allow robust evaluation of HLA variants that 72 

show highly heterogenous in allele frequency across ethnicities.  73 

 Starting with a simple inference using tag SNPs,16,17 various methods have been 74 

developed for HLA allelic imputation. Leslie et al. first reported a probabilistic approach to 75 

classical HLA allelic imputation.18 HLA*IMP uses  Li & Stephens haplotype model with SNP 76 

data from European populations.19,20 A subsequently developed software program, 77 

HLA*IMP:02, uses SNP data from multiple populations and can address genotypic 78 

heterogeneity.21 The current version of HLA*IMP:02 does not provide a function for users to 79 

generate an imputation model using their own reference data locally. SNP2HLA is another 80 

standard software, which uses the imputation software package Beagle to impute both HLA 81 

alleles and the amino acid polymorphisms for those classical alleles.22 HLA Genotype 82 

Imputation with Attribute Bagging (HIBAG)23 is also promising software, which employs multiple 83 

expectation-maximization-based classifiers to estimate the likelihood of HLA alleles. Whereas 84 

SNP2HLA explicitly uses reference haplotype data, for which public access is often limited, 85 

HIBAG does not require these data once the trained models are generated. These methods 86 

have achieved high imputation accuracy;24 however, they are less accurate for rare alleles as 87 

shown later. The complex linkage disequilibrium (LD) structures specific for the MHC region 88 

requires a more sophisticated pattern recognition algorithm beyond simple stochastic inference.  89 
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After boasting of its extremely high accuracy in image recognition, deep learning has 90 

been attracting attention in various fields. It can learn a representation of input data and extract 91 

relevant features of high complexity through deep neural networks. Many successful 92 

applications in the field of genomics have been reported.25 A typical application of deep learning 93 

for genomics is the prediction of the effects of non-coding and coding variants, where models 94 

encode the inputs of flanking nucleotide sequence data.26–29 Another application is non-linear 95 

unsupervised learning of high-dimensional quantitative data from transcriptome.30,31 However, 96 

successful representation learning for SNV-data in the field of population genetics is limited.32 97 

Here, we developed DEEP*HLA, a multi-task convolutional deep learning method to accurately 98 

impute genotypes of HLA genes from SNV-level data. Through the application to the two HLA 99 

reference panels of different populations, DEEP*HLA achieved higher imputation accuracy than 100 

conventional methods. Notably, DEEP*HLA was advantageous especially for imputing 101 

low-frequency and rare alleles. Furthermore, DEEP*HLA showed by far the fastest total 102 

processing time, which suggests its applicability to biobank-scale data. We applied the trained 103 

models of DEEP*HLA to the large-scale T1D genome-wide association study (GWAS) data 104 

from BioBank Japan (BBJ) and UK Biobank (UKB) and conducted trans-ethnic fine-mapping in 105 

the MHC region.  106 
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Results 108 

 109 

Overview of the study 110 

An overview of our study is presented in Fig. 1. Our method, DEEP*HLA, is convolutional 111 

neural networks that learn from an HLA referenced panel and impute genotypes of HLA genes 112 

from pre-phased SNV data. Its framework uses a multi-task learning that can learn and impute 113 

alleles of several HLA genes which belong to the same group simultaneously (see Methods). 114 

Multi-task learning is presumed to have two advantages in this situation. First, the genotypes of 115 

some flanking HLA genes, which often show strong LD for each other, are correlated, and the 116 

shared features of individual tasks are likely to be informative. Second, the processing time is 117 

reduced by grouping tasks, especially in our latest reference panel, which comprises more than 118 

30 HLA genes. We employed the two different HLA imputation reference panels for robust 119 

benchmarking: (i) our Japanese reference panel (n = 1,118)3 and (ii) the Type 1 Diabetes 120 

Genetics Consortium (T1DGC) reference panel (n = 5,122).33 We compared its performance 121 

with that of other HLA imputation methods by 10-fold cross-validation and an independent HLA 122 

dataset (n = 908).6 Further, we tested its imputation accuracy for multi-ethnic individuals using 123 

data from the Phase III 1000 Genomes Project (1KGv3). In the latter part, we performed MHC 124 

fine-mapping of the Japanese cohort from BBJ and British cohort from UKB by applying trained 125 

models specific for individual populations. We integrated the imputed GWAS genotypes and 126 

performed trans-ethnic HLA association analysis. 127 
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DEEP*HLA achieved high imputation accuracy especially for low-frequency and rare 129 

alleles 130 

First, we applied DEEP*HLA to the Japanese reference panel, a high-resolution allele catalog 131 

of NGS-based HLA typing data of the 33 classical and non-classical HLA genes along with 132 

high-density SNP data of the MHC region by genotyping with the Illumina HumanCoreExome 133 

BeadChip for 1,118 individuals of Japanese ancestry.3 We compared the imputation accuracy 134 

of DEEP*HLA in terms of sensitivity, positive predictive value (PPV), and r2 of allelic dosage, 135 

and concordance rate of best-guess genotypes (see Methods) with those of SNP2HLA and 136 

HIBAG in 10-fold cross-validation. DEEP*HLA achieved total sensitivity of 0.987, PPV of 0.986, 137 

r2 of 0.984, and concordance rate of 0.988 in 4-digit allelic resolution. The differences in total 138 

accuracy were modest among the methods; however, DEEP*HLA was more advantageous for 139 

rare alleles (For alleles with a frequency < 1%, sensitivity = 0.690; PPV = 0.799; r2 = 0.911; and 140 

concordance rate = 0.691 in DEEP*HLA, compared to sensitivity = 0.628, 0.635; PPV = 0.624, 141 

0.505; r2 = 0.862, 0.792; and concordance rate = 0.621, 0.675 in SNP2HLA and HIBAG, 142 

respectively; Fig. 2a). Further, we applied the model trained with our Japanese reference panel 143 

to a dataset of 908 Japanese individuals to investigate whether DEEP*HLA could impute well 144 

when applied to independent samples. The dataset comprised 4-digit alleles of 8 classical HLA 145 

genes based on the SSO method and SNP data genotyped using multiple genotyping arrays.6 146 

DEEP*HLA achieved the highest total accuracy, with a sensitivity of 0.973, PPV of 0.972, r2 of 147 

0.986, and concordance rate of 0.973. Again, DEEP*HLA was more advantageous for 148 

low-frequency and rare alleles (Fig. 2a). For alleles with a frequency < 1%, sensitivity = 0.690; 149 

PPV = 0.799; r2 = 0.911; and concordance rate = 0.691 in DEEP*HLA, compared to sensitivity 150 
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= 0.628, 0.635; PPV = 0.624, 0.505; r2 = 0.862, 0.792; and concordance rate = 0.621, 0.675 in 151 

SNP2HLA and HIBAG, respectively. 152 

 We also applied DEEP*HLA to the Type 1 Diabetes Genetics Consortium (T1DGC) 153 

reference panel of 5,122 unrelated individuals of European ancestries.33 It comprises 2- and 154 

4-digit alleles of the 8 classical HLA genes based on the SSO method, with SNP data of the 155 

MHC region genotyped with the Illumina Immunochip. DEEP*HLA achieved a sensitivity of 156 

0.979, PPV of 0.976, r2 of 0.981, and concordance rate of 0.979 in 4-digit resolution, and these 157 

values were superior to those of SNP2HLA and HIBAG. DEEP*HLA was more advantageous 158 

especially in PPV and r2, for low-frequency and rare alleles (Fig. 2b). For alleles with a 159 

frequency < 1%, sensitivity = 0.830; PPV = 0.863; r2 = 0.908; and concordance rate = 0.832 in 160 

DEEP*HLA, compared to sensitivity = 0.793, 0.745; PPV = 0.640, 0.753; r2 = 0.745, 0.886; and 161 

concordance rate = 0.804, 0.769 in SNP2HLA and HIBAG, respectively. 162 

 We assessed the superiority of DEEP*HLA using a down-sampling approach 163 

(Supplementary Note 1a). DEEP*HLA trained with down-sampled data also outperformed 164 

other methods especially for rare allele, although there were differences between metrics 165 

(Supplementary Fig. 1). In the cross-validation of our Japanese reference panel, DEEP*HLA 166 

with sampling rates of 70%–80% and 60%–70% was almost equivalent to HIBAG and 167 

SNP2HLA, respectively. In the Japanese independent samples, DEEP*HLA with a sampling 168 

rate of even 70% and 60% outperformed HIBAG and SNP2HLA, respectively. In the 169 

cross-validation of the T1DGC panel, DEEP*HLA with a sampling rates of 70%–80% was 170 

almost equivalent to HIBAG and SNP2HLA, respectively. Notably, DEEP*HLA with a sampling 171 

rate of even 50% outperformed other methods in most cases in terms of PPV. 172 
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 Finally, we investigated differences in accuracy among different HLA genes (Fig. 3). 173 

Whereas the accuracies for HLA-B and HLA-DRB1 were lower than those for other loci 174 

especially in terms of total accuracy, those in DEEP*HLA were relatively high. As a result, 175 

DEEP*HLA had the highest means and lowest variances of accuracies among HLA genes in 176 

most cases. Only for rare alleles in the Japanese independent samples, the variances of 177 

sensitivity and concordance rate were higher than those for SNP2HLA, in which the accuracy 178 

metrics of SNP2HLA were lower than those of DEEP*HLA for almost all loci. 179 

In summary, although the improvement in total accuracy of DEEP*HLA might be 180 

modest, DEEP*HLA was advantageous in imputing infrequent alleles especially in terms of the 181 

dosage accuracy. PPV was significantly decreased in SNP2HLA, probably because the sum of 182 

the allele dosages of each HLA gene in an individual can exceed the expected value (i.e. = 2.0) 183 

since it imputes each allele separately as a binary allele. The improvement in dosage accuracy 184 

is meaningful considering that allelic dosages are typically used for association analysis.3 185 

Furthermore, its small inter-locus variation in imputation accuracy should also be advantageous 186 

in MHC fine-mapping because the accuracy difference among HLA genes would result in 187 

imbalanced filtering, leading to a biased result. 188 

 189 

DEEP*HLA achieved higher accuracy when applied to 1000 Genomes Project data using 190 

a mixed reference panel 191 

To conduct further validation in independent samples and evaluate the effect of ethnicity 192 

differences between a reference panel and target populations, we tested imputation accuracy in 193 

1KGv3 cohort. First, we conducted HLA imputation using our Japanese panel and (n = 1,118) 194 

and a mixed panel which was experimentally conducted using the Japanese and the European 195 
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panels (n = 6,240). When we used the Japanese panel, DEEP*HLA achieved the highest 196 

accuracies in all the metrics in the 1KGv3 JPT cohort (sensitivity = 0.974, PPV = 0.950, r2 = 197 

0.995, and concordance rate = 0.975 in total alleles; Supplementary Fig. 2a). All the methods 198 

achieved high accuracies for rare alleles, in which DEEP*HLA was still superior (sensitivity = 199 

0.862, PPV = 0.865, r2 = 0.999, and concordance rate = 0.862 for alleles with a frequency of < 200 

1%). On the other hand, in other populations including EAS (excluding JPT), no methods were 201 

found to be accurate enough for practical use. This is probably attributed to the distinct 202 

haplotype structures and allele frequency spectra specific for Japanese ancestries even within 203 

East Asian populations.6 In addition, DEEP*HLA did not always perform better than other 204 

methods. Presumably, its high learning capacity of deep learning might backfire and caused 205 

overfitting to the population-specific reference panel. We thus recommend empirical validation 206 

of accuracy when applying DEEP*HLA to individuals mismatched with a reference panel 207 

population. 208 

When we used a mixed panel, despite a slight decline in accuracy in JPT (sensitivity = 209 

0.965, PPV = 0.940, r2 = 0.996, and concordance rate = 0.964 for total alleles), DEEP*HLA 210 

achieved high accuracies in EUR populations (sensitivity = 0.964, PPV = 0.918, r2 = 0.983, and 211 

concordance rate = 0.963 for total alleles). DEEP*HLA also achieved the highest accuracies in 212 

both JPT and EUR populations for total and rare alleles although the difference was relatively 213 

modest (Supplementary Fig. 2b). Thanks to a significant increase in the sample sizes of the 214 

reference panel, the accuracies in other populations were also improved. Notably, DEEP*HLA 215 

achieved the highest accuracies in the different populations, especially for rare alleles. Although 216 

the mixed panel used here is an experimental version that comprises genotypes from different 217 
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typing procedures, the present results would suggest the applicability of our method to a 218 

multi-ethnic reference panel.  219 

DEEP*HLA can define HLA amino acid polymorphisms consistently with classical alleles 220 

DEEP*HLA separately imputes classical alleles of each HLA gene, as a multi-class 221 

classification in the field of machine learning. Thus, it has an advantage that the sum of imputed 222 

allele dosages of each HLA gene is definitely set as an ideal value of 2.0. This enables us to 223 

define a dosage of amino acid polymorphisms from the imputed 4-digit allele dosages 224 

consistently with classical alleles. We compared this method of imputing amino acid 225 

polymorphisms with SNP2HLA, which imputes each allele as binary alleles. Although 226 

DEEP*HLA was equivalent to SNP2HLA in imputing amino acid polymorphisms in total alleles 227 

(sensitivity = 0.996, PPV = 0.996, r2 = 0.951, and concordance rate = 0.996 in the Japanese 228 

panel; sensitivity = 0.997, PPV = 0.995, r2 = 0.982, and concordance rate = 0.997 in T1DGC 229 

panel), it achieved more accurate imputation for rare alleles (sensitivity = 0.487, PPV = 0.811, r2 230 

= 0.665, and concordance rate = 0.487 in the Japanese panel; sensitivity = 0.775, PPV = 0.864, 231 

r2 = 0.826, and concordance rate = 0.775 in T1DGC panel for alleles with a frequency of < 1%; 232 

Fig. 2c, d). The improvement in performance in terms of PPV was remarkable.  233 

 We admit that this method is only applicable to the reference panel where 4-digit 234 

alleles are accurately determined. Therefore, our method could not eliminate the ambiguity in 235 

the genotyping that derived from incompleteness of the original reference panel. 236 

 237 

High performance of DEEP*HLA in computational costs 238 

We benchmarked the computational costs of DEEP*HLA against those of SNP2HLA and 239 

HIBAG using a subset of the GWAS dataset from BBJ containing n = 1,000, 2,000, 5,000, 240 
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10,000, 20,000, 50,000, and 100,000 samples (2,000 SNPs was consistent with the reference 241 

panel). A model-training process with reference data is required for DEEP*HLA and HIBAG but 242 

not for SNP2HLA. In addition, DEEP*HLA took an input of pre-phased GWAS data. Thus, we 243 

compared the total processing time including pre-phasing of GWAS data, model training, and 244 

imputation of DEEP*HLA, with the time of model training and imputation of HIBAG, and the 245 

running time of SNP2HLA. As shown in Fig. 2e, DEEP*HLA imputation had by far the fastest 246 

total processing time as the sample size increased. On comparing pure imputation times, it was 247 

faster than HIBAG (Supplementary Table 1). Furthermore, with a state-of-the-art GPU, the 248 

training time of DEEP*HLA was shortened from 153 min to 36 min. As for memory cost, all 249 

methods exhibited maximum memory usage scaling roughly linearly with sample size (Fig. 2e 250 

and Supplementary Table 1). HIBAG was the most memory-efficient across all sample sizes. 251 

Whereas SNP2HLA could not run within our machine’s 100 GB memory for sample sizes of 252 

>20,000, DEEP*HLA was able to perform imputation even for biobank-scale sample sizes of 253 

100,000.  254 

 255 

Characteristics of the alleles for which DEEP*HLA was advantageous to impute 256 

We focused on the characteristics of the HLA alleles of which accuracy was improved by 257 

DEEP*HLA compared with SNP2HLA, which is a gold-standard software. SNP2HLA runs 258 

Beagle intrinsically, which performs imputation based on a hidden Markov model of a localized 259 

haplotype-cluster. We hypothesized that this kind of methods shows better performance for 260 

imputing alleles for which LDs with the surrounding SNVs are stronger in close positions and 261 

get weaker as the distance from the target HLA allele increases (we termed this feature as 262 

distance-dependent LD decay). Conversely, it might show limited performance for imputing 263 
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alleles with sparse LD structures throughout the MHC region. We defined the area under the 264 

curve (AUC) representing distance-dependent LD decay to verify this hypothesis. AUC values 265 

increase when LDs with the surrounding SNVs get stronger as they get closer to the target HLA 266 

allele (Fig. 4b). We evaluated the degree by which the accuracies of DEEP*HLA and SNP2HLA 267 

were affected by the AUCs and allele frequency using multivariate linear regression analysis. 268 

When calculating AUCs, we tested two different window sizes of AUCs: bilateral 1,000 SNPs 269 

from a target HLA allele and input size of DEEP*HLA. As expected, all accuracy metrics of 270 

SNP2HLA were positively correlated with the AUCs. Although the accuracy metrics of 271 

DEEP*HLA were also correlated with AUC, the correlations were weaker than those in 272 

SNP2HLA for all the metrics in both reference panels (Fig. 4a and Supplementary Table 2). In 273 

addition, we assessed the correlation between a simple metric of the maximum value of LD 274 

coefficients within 100 SNPs from a target allele and the accuracy of each method to examine 275 

our assumption more robustly with another index. Similarly, the correlations in DEEP*HLA were 276 

weaker than those in SNP2HLA (Supplementary Table 2). 277 

Next, we used SmoothGrad to investigate our assumption that DEEP*HLA performs 278 

better imputation by recognizing distant SNVs as well as close SNVs of strong LD. SmoothGrad 279 

is a method for generating sensitivity maps of deep learning models.34 It is a simple 280 

approach based on the concept of adding noise to the input data and taking the mean of the 281 

resulting sensitivity maps for each sampled data. A trained DEEP*HLA model reacted to the 282 

noises of not only the surrounding SNVs with strong LD but also the distant SNVs as displayed 283 

in example HLA alleles (Fig. 4c). Interestingly, SNVs that reacted strongly were not always 284 

those of even moderate LD, but also spread across the entire the input region. While the validity 285 

of SmoothGrad for a deep learning model of genomic data is presently under investigation, one 286 
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probable explanation is that predicting an allele using our method also means predicting the 287 

absence of other alleles of the target HLA gene. Thus, any SNV positions in LD with any of the 288 

other HLA alleles could be informative. Another explanation is that DEEP*HLA might recognize 289 

complex combinations of multiple distinct SNVs within the region rather than the simple LD 290 

correlations between HLA alleles and -SNVs. 291 

 292 

Empirical evaluation of imputation uncertainty 293 

A common issue in deep learning models is quantification of the reliability of their predictions. 294 

One potential solution is uncertainty inferred from the concept of Bayesian deep learning.35 We 295 

experimentally evaluated imputation uncertainty by DEEP*HLA using Monte Carlo (MC) 296 

dropout, which could be applied following the general implementation of neural networks with 297 

dropout units.36,37 In MC dropout, uncertainty is presented as entropy of sampling variation with 298 

keeping dropout turned on. This uncertainty index corresponds not to each binary allele of a 299 

HLA gene, but to the prediction of genotype of each HLA gene of an individual. Thus, we 300 

evaluated whether the uncertainty could guess the correctness of best-guess genotypes of the 301 

target HLA genes. We compared this with a dosage-based discrimination, in which we assumed 302 

that a best-guess imputation of higher genotype dosage (probability) is more likely to be correct. 303 

The entropy-based uncertainty identified incorrectly-imputed genotypes with an areas under the 304 

curve of the receiver operating characteristic curve (ROC-AUC) of 0.851 in the Japanese panel 305 

and of 0.883 in the T1DGC reference panel in 4-digit alleles, which were superior to 306 

dosage-based discrimination (ROC-AUC = 0.722 and 0.754 in the Japanese T1DGC panels, 307 

respectively; Supplementary Fig. 3). Estimation of prediction uncertainty of a deep learning 308 
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model is still under development;37 however, our results might illustrate its potential applicability 309 

to the establishment of a reliability score for genotype imputation by deep neural networks.  310 

 311 

Trans-ethnic MHC fine-mapping of T1D 312 

We applied the DEEP*HLA models trained with our Japanese panel and the T1DGC panel to 313 

HLA imputation of T1D GWAS data from BBJ (831 cases and 61,556 controls) and UKB (732 314 

cases and 353,727 controls), respectively. T1D is a highly heritable autoimmune disease that 315 

results from T cell–mediated destruction of insulin-producing pancreatic β cells.38 We 316 

performed imputation for GWAS data of the cohorts separately and then combined them to 317 

perform trans-ethnic MHC fine-mapping (1,563 cases and 415,283 controls). We filtered 318 

imputed alleles in which r2 accuracy in 10-fold cross-validation was lower than 0.7 in the current 319 

application. 320 

Association analysis of the imputed HLA variants with T1D identified the most 321 

significant association at the HLA-DRβ1 amino acid position 71 (Pomnibus = P = 7.5 × 10−120; Fig. 322 

5a and Supplementary Table 3), one of the T1D risk-associated amino acid polymorphisms in 323 

the European population.12 As for T1D, the largest HLA gene associations were reported for a 324 

combination of variants in the HLA-DRB1, -DQA1, and -DQB1;12,39 thus, we further investigated 325 

independently associated variants within these tightly linked HLA genes before searching for 326 

other risk-associated loci. When conditioning on HLA-DRβ1 amino acid position 71, we 327 

observed the most significant independent association in HLA-DQβ1 amino acid position 185 328 

(Pomnibus = 3.1 × 10−69). Through stepwise forward conditional analysis in the class II HLA region, 329 

we found significant independent associations for Tyr30 in HLA-DQβ1 (Pbinary = 6.7 × 10−20), 330 
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HLA-DRβ1 amino acid position 74 (Pomnibus = 1.2 × 10−11), and Arg70 in HLA-DQβ1 (Pomnibus = 331 

3.3 × 10−9; Supplementary Fig. 4 and Supplementary Table 4).  332 

These results were different from those of a previous study of a large T1D cohort of 333 

European ancestries, which reported three amino acid polymorphisms, i.e., HLA-DQβ1 position 334 

57, HLA-DRβ1 position 13, and HLA-DRβ1 position 71, as the top-associated amino acid 335 

polymorphisms in the HLA-DRB1, -DQA1, and -DQB1 region. We then constructed multivariate 336 

regression models for individual populations that incorporated our T1D risk-associated HLA 337 

amino acid polymorphisms and classical alleles of HLA-DRB1 and HLA-DQB1, and compared 338 

the effects of these variants. The odds ratios of the risk-associated variants reported previously 339 

did not show any positive correlation between different populations (Pearson’s r = −0.59, P = 340 

0.058; Supplementary Fig. 5 and Supplementary Table 5). On the other hand, we identified a 341 

set of variants with significant positive correlation by trans-ethnic fine-mapping of the integrated 342 

cohort data (Pearson’s r = 0.76, P = 6.8 × 10−3; Supplementary Fig. 5). 343 

We further investigated whether the T1D risk was associated with other HLA genes 344 

independently of HLA-DRB1, -DQA1, and -DQB1. When conditioning on HLA-DRB1, -DQA1, 345 

and -DQB1, we identified a significant independent association at HLA-A amino acid position 62 346 

(Pomnibus = 5.9 × 10−13; Fig. 5b and Supplementary Table 3). After conditioning on HLA-A 347 

amino acid position 62, we did not observe any additional independent association in HLA-A 348 

alleles. When we conditioned on HLA-DRB1, -DQA1, -DQB1, and -A, we identified a significant 349 

independent association at HLA-B*54:01 (Pbinary = 1.3 × 10−9; Fig. 5c and Supplementary 350 

Table 8), and its unique amino acid polymorphisms (Gly45 and Val52 at HLA-B). When 351 

conditioned on HLA-DRB1, -DQA1, -DQB1, -A, and -B, no variants in the MHC region satisfied 352 

the genome-wide significance threshold (P > 5.0 × 10−8; Fig. 5d and Supplementary Table 3). 353 
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Multivariate regression analysis of the identified risk variants explained 10.3% and 27.6% of the 354 

phenotypic variance in T1D under assumption of disease prevalence of 0.014%40 and 0.4%.41 355 

for the Japanese and British cohorts, respectively. Their odds ratios on T1D risk were also 356 

correlated between different populations (Pearson’s r = 0.71, P = 4.4 × 10−3; Fig. 6 and Table 357 

1). 358 

To evaluate the advantage of the trans-ethnic fine-mapping, we performed 359 

fine-mapping for each cohort separately and compared the results with those of the trans-ethnic 360 

analysis. The most significant associations were observed in the HLA-DRB1 and -DQB1 in bot 361 

h cohorts (Supplementary Fig. 6 and Supplementary Fig. 7). The top signals were at the 362 

HLA-DQβ1 amino acid position 185 (P = 8.3 × 10−47) for the BBJ cohort and HLA-DRβ1 amino 363 

acid position 71 (P = 4.1 × 10−107) for the UKB cohort, both of which were consistent with the 364 

risk-associated variants identified through the trans-ethnic fine-mapping. On the other hand, the 365 

risk-associated variants pointed in subsequent conditional analyses within this region were not 366 

identical. Generally, parsimonious fine-mapping using a single population was challenging due 367 

to multiple candidate variants with similar degrees of LD (and thus associations) to the top 368 

signal in each iteration of the stepwise conditional analysis (Supplementary Fig. 8 and 369 

Supplementary Fig. 9). As a result of the trans-ethnic analysis, we successfully identified finer 370 

sets of the more variants, which exhibited clearer significance by interrogating the different LD 371 

patterns between the populations. When conditioning on HLA-DRB1, -DQA1, and -DQB1, we 372 

identified significant independent associations in HLA-B for the BBJ cohort with the top at 373 

HLA-B*54:01 (P = 4.1 × 10−10), and HLA-A for the UKB cohort with the top at HLA-A amino acid 374 

position 62 (P = 1.4 × 10−8), respectively (Supplementary Fig. 6 and Supplementary Fig. 7). 375 

Both variants were identical to those originally identified in the trans-ethnic analysis. This 376 
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observation indicates that the trans-ethnic analysis could discover more associated loci than 377 

single population-based analyses. Whereas HLA-B*54:01 was too rare and not assessed in 378 

Europeans, it is notable that the T1D risk of HLA-A amino acid position 62 was shared with East 379 

Asians. These observations should illustrate the value of the trans-ethnic MHC fine-mapping. 380 

  381 
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Discussion 382 

In this study, we demonstrated that DEEP*HLA, a multi-task convolutional deep learning 383 

method for HLA imputation, outperformed conventional HLA imputation methods in various 384 

aspects. DEEP*HLA was more advantageous when the target HLA variants, including classical 385 

alleles and amino acid polymorphisms, were low-frequent or rare. Our study demonstrated that 386 

the performance of a conventional method was reduced for alleles that did not exhibit 387 

distance-dependent LD decay with the target HLA allele. DEEP*HLA was less dependent on 388 

this point, and might comprehensively capture the relationships among multiple distinct variants 389 

regardless of LD. Taking advantage of the significant improvement of imputation accuracy in 390 

rare alleles, we conducted trans-ethnic MHC fine-mapping of T1D. This approach could be 391 

performed as well using the conventional HLA imputation methods. However, the results 392 

obtained using DEEP*HLA should be more reliable because there were several risk-associated 393 

alleles which were rare only in one population.  394 

To date, technical application of deep neural networks to population genetics data has 395 

been limited. In a previous attempt for genotype imputation, a sparse convolutional denoising 396 

autoencoder was only compared with reference-free methods.32 There might be two possible 397 

explanations for the success of our DEEP*HLA. First unlike genotype imputation by denoising 398 

autoencoders, which assumes various positions of missing genotypes in a reference panel to 399 

impute, the prediction targets were fixed to the HLA allele genotypes as a classification problem. 400 

Second, convolutional neural networks, which leverage a convolutional kernel that is capable of 401 

learning various local patterns, might be better suited for learning the complex LD structures in 402 

the MHC region.  403 
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We filtered alleles with poor imputation quality based on the results of cross-validation 404 

in the current application; however, an indicator of reliability could be further utilized. We 405 

demonstrated that the prediction uncertainty inferred from a Bayesian deep learning method 406 

had potential capability of identifying incorrectly-imputed alleles in a per-gene level. Our future 407 

work should establish a method to quantify per-allele imputation uncertainty that can be 408 

practically used as a filtering threshold for subsequent analyses. 409 

 As for the genetic features of the MHC region associated with T1D, the highest risk is 410 

conferred by DR3-DQA1*05-DQB1*02 and DR4-DQA1*03-DQB1*03:02 haplotypes in 411 

Europeans,39,42 and by DR9-DQA1*03-DQB1*03:03 and DR4-DQA1*03-DQB1*04:01 412 

haplotypes in Japanese.43 In a previous study for a large European cohort, Hu et al. 413 

demonstrated that the three amino acid polymorphisms of DRβ1 and HLA-DQβ1 explained the 414 

majority of the risk in the HLA-DRB1, -DQA1, and -DQB1 region with the top signal at 415 

non-Asp57 in HLA-DQβ1.12 Conversely, the risk haplotypes in Japanese population carry 416 

Asp57 of HLA-DQβ1.43 We obtained several additional insights in the present study. We initially 417 

conducted a trans-ethnic MHC fine-mapping of T1D, and successfully disentangled a set of 5 418 

risk-associated amino acid polymorphisms of position 71 and 74 in HLA-DRβ1, and 30, 70, and 419 

185 in HLA-DQβ1. Four of these positions compose the peptide-binding grooves, suggesting 420 

their functional contributions to antigen-presentation ability (Supplementary Fig. 10). While the 421 

association of HLA-DRβ1 amino acid position 71 was replicated in concordance direction with 422 

Europeans, the effects in the Japanese population were not preserved in the final model. 423 

Whereas the association of amino acid position 74 in HLA-DRβ1 has been reported in 424 

Han-Chinese and certain European populations,44,45 the European study did not report its 425 

independent association due to the rareness of its characterized classical 426 
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allele, HLA-DRB1*04:03. We successfully identified its independent association in trans-ethnic 427 

cohorts with a similar effect size between the diverse populations. Although amino acid position 428 

185 in HLA-DQβ1 does not compose the peptide-binding groove, the variation of Ile/Thr is 429 

suggested to alter DQ-DM anchoring by interacting with its neighboring residues, leading to the 430 

susceptibility to other autoimmune diseases.46,47 Variant Ile185 is tagged with HLA-DQA1*03, 431 

which composes the risk haplotypes in Japanese and European population respectively. A 432 

correspondence table of the amino acid polymorphisms and 4-digit classical HLA alleles is 433 

shown in Supplementary Table 6. As a result, the catalogue of the T1D risk-associated 434 

variants in this region identified by our trans-ethnic approach was different from that in the 435 

European study.12 We admit the possibility that the smaller sample size in our study and 436 

different definitions of the phenotypes (between studies, and between cohorts in our study) 437 

might contribute to this disparity. Particularly, we note the potential distinctiveness of Japanese 438 

T1D phenotypes.48 However, considering that our observed variants shared the effects on the 439 

T1D risk between different populations, we might gain a novel insight into the issue of 440 

inter-ethnic heterogeneity of T1D risk alleles in the MHC region. As for class I HLA genes, the 441 

independent association of amino acid position 62 in HLA-A was consistent with the previous 442 

European study.12 We found that it had similar effects on the T1D risk also in the Japanese 443 

population. HLA-B*54:01 has traditionally been suggested as a potential risk allele in Japanese 444 

by a candidate HLA gene approach,13 of which an independent association via the MHC 445 

region-wide fine-mapping was first proven here. 446 

While an advantage of trans-ethnic fine-mapping is the elucidation of truly 447 

risk-associated signals by adjusting confound by LD of each population,49 there are several 448 

potential limitations to note. First, we need to consider population-specific LD structures and 449 
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allele frequency spectra, which are important especially in the MHC region. Strong 450 

population-specificity may preclude removal of the effects of LD for the current purpose of 451 

trans-ethnic fine-mapping when few populations are available. Conversely, some HLA alleles 452 

exist only in a certain population, and fine-mapping in a single population could also be of 453 

importance. Second, modeling heterogeneity in effects among diverse populations could 454 

enhance the power of discovery of causal variants in trans-ethnic analysis.50 Since the purpose 455 

of the current trans-ethnic fine-mapping is to identify trans-ethnically risk-associated variants 456 

rather than to discover variants with a strong effect only in one population, we did not explicitly 457 

model heterogeneity. However, in an analysis using more cohorts from different populations, 458 

modeling heterogeneity might be more suitable because a bias by single population would be 459 

reduced. 460 

Therefore, multi-ethnic MHC fine-mapping that integrates further diverse ancestry 461 

should be warranted for robust prioritization of risk-associated HLA variants as a next step.15 462 

Given their high learning capacity of deep neural networks, our method will be helpful not only 463 

when integrating the imputation results from multiple references, but also when using a more 464 

comprehensive multi-ethnic reference. We expect that highly accurate imputation realized by 465 

learning of complex LDs in the MHC region using neural networks will enable us to further 466 

elucidate the involvement of common genetic features in the MHC region that affect human 467 

complex traits across ethnicities. 468 

 469 

  470 
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Methods 493 

The architecture of DEEP*HLA 494 

DEEP*HLA is a multi-task convolutional neural network comprising a shared part of two 495 

convolutional layers and a fully-connected layer, and individual fully-connected layers that 496 

output allelic dosages of individual HLA genes to simultaneously impute HLA genes of the 497 

same group (Fig. 1a). The grouping was based on the LD structure3 and physical distance in 498 

the current application: (1) {HLA-F, HLA-V, HLA-G, HLA-H, HLA-K, HLA-A, HLA-J, HLA-L, and 499 

HLA-E}, (2) {HLA-C, HLA-B, MICA, and MICB}, (3) {HLA-DRA, HLA-DRB9, HLA-DRB5, 500 

HLA-DRB4, HLA-DRB3, HLA-DRB8, HLA-DRB7, HLA-DRB6, HLA-DRB2, HLA-DRB1, 501 

HLA-DQA1, HLA-DOB, and HLA-DQB1}, and (4) {TAP2, TAP1, HLA-DMB, HLA-DMA, 502 

HLA-DOA, HLA-DPA1, and HLA-DPB1}. Genes not typed or with only single alleles in individual 503 

reference panels were excluded from the group. Comparisons with single-task neural networks 504 

or multi-task neural networks with random groupings are shown in Supplementary Note 1b 505 

and Supplementary Fig. 11. 506 

DEEP*HLA takes the input of each haplotype SNV genotypes from pre-phased data, 507 

and outputs the genotype dosages of individual alleles for each HLA gene. For each group, 508 

SNVs within its window are encoded to one-hot vectors based on whether each genotype is 509 

consistent with a reference or alternative allele. The window sizes on each side were fixed to 510 

500 kb for fair comparisons in the current investigation; using different window sizes might 511 

slightly change the accuracy for some loci (Supplementary Note 1c and Supplementary Fig. 512 

12). Two convolutional layers with max‐pooling layers and a fully-connected layer follow the 513 

input layer as a shared part. The fully-connected layer at the end of the shared part is followed 514 

by individual fully-connected layers which have nodes consistent with the number of alleles of 515 
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each HLA gene. Softmax activation was added before the last output to return an imputation 516 

dosage that ranges from 0.0 to 1.0 for each allele of one haplotype. Thus, an individual layer 517 

outputs the individual allelic dosages of the HLA gene of which the sum equals 1 for one 518 

haplotype. Dropout was used on the convolutional and fully-connected layers,51 and batch 519 

normalization was added to the convolutional layers.52 520 

During training, 5% of the data set were used for sub-validation to determine the point 521 

for early-stopping training. In 10-fold cross-validation, we separated sub-validation for 522 

early-stopping from a training fold to conduct valid benchmarking (Supplementary Fig. 13). A 523 

categorical cross entropy loss function for each HLA gene was minimized using the Adam 524 

optimizing algorithm.53 For a multi-task learning to find a Pareto optimal solution of all tasks, we 525 

used the multiple-gradient descent algorithm – upper bound (MGDA-UB), where the loss 526 

function of each task was scaled based on its optimization algorithms.54 To taking advantage of 527 

the hierarchical nature of HLA alleles (i.e. 2-digit, 4-digit, and 6-digit), we implemented 528 

hierarchical fine-tuning, in which parameters of the model of upper hierarchical structures were 529 

transferred to those of the lower one.55 We transferred the parameters of shared networks of 530 

2-digit alleles to 4-digit alleles, and of 4-digit alleles to 6-digit alleles successively during training. 531 

Although some HLA alleles in our reference panel were not determined in 4-digit or 6-digit 532 

resolution, we set their upper resolution instead to maintain equivalent hierarchical levels with 533 

other HLA genes. Hyperparameters, including the number of filters and kernel sizes of 534 

convolutional layers, and fully-connected layer size, were tuned using Optuna.56 The 535 

hyperparameters for each reference panel were determined using a randomly sampled dataset 536 

before cross-validation. Our deep learning architectures were implemented using Pytorch 1.4.1 537 

(see URLs), a Python neural network library. 538 
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 539 

Empirical evaluation of HLA imputation accuracy 540 

We used the accuracy metrics of sensitivity, PPV, and r2 for imputed allelic dosage, and 541 

concordance rate for best-guess genotypes to evaluate the imputation accuracy in various 542 

aspects.  543 

In the paper of SNP2HLA, per-locus accuracy was defined as a sum of the dosage of 544 

each true allele across all individuals divided by the total number of observations.33 This 545 

definition of accuracy counts positives that are correctly identified as such and it corresponds to 546 

sensitivity in a cross-tabulation table when decomposed to individual alleles (Supplementary 547 

Note 2 and Supplementary Fig. 14). Thus, we termed this as sensitivity (Se) to contrast with 548 

the PPV defined later 549 

����� �  
∑ 	
���1�,�� � 
���2�,����
���

2�  

where n denotes the number of individuals, Di represents the imputed dosage of an allele in 550 

individual i, and alleles A1i, L and A2i, L represent the true HLA alleles for individual i at locus L.  551 

The calculations were based on the condition that the imputed alleles are arranged to optimize 552 

for consistency with the truth alleles A1i, L and A2i, L. 553 

To evaluate the imputation performance in individual HLA alleles, we decomposed the 554 

Se (L) to evaluate the imputation performance of each allele as.  555 

����� �  ∑ 
�����
���

�  

This metric cannot evaluate the effect of false positives; thus, we defined PPV in the same 556 

manner as  557 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 10, 2021. ; https://doi.org/10.1101/2020.08.10.20170522doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.10.20170522
http://creativecommons.org/licenses/by-nc/4.0/


Naito T et al. 

28 

 

������ � ∑ 
�����
���

∑ 
�����
��� � ∑ 
	���
���

	��

 

where m denotes the number of true observations of allele A in the total sample, and Di 558 

represents imputed dosage of allele A in individual haplotype j that has allele A. Dk represents 559 

imputed dosage of allele A in individual haplotype k that has an allele other than allele A. This 560 

definition is also based on a cross-tabulation table (Supplementary Fig. 14a). 561 

In addition, we calculated r2 based on Pearson’s product moment correlation 562 

coefficient between imputed and typed dosages for each allele.22 563 

Further, to evaluate the accuracy of best-guess genotypes, we calculated the 564 

concordance rate (CR) of best-guess genotypes and true genotypes for each allele as 565 

����� �  
∑ 	����1�,�� � ����2�,����
���

2�  

where Bi represents the best-guess genotype of an allele in individual i. By definition, it was the 566 

same as the sensitivity, in which dosages were changed to best-guess genotypes. Thus, we 567 

decomposed it to CR(A) for accuracy for each allele in the same way. We did not evaluate PPV 568 

for best-guess genotype due to redundancy. 569 

 When determining accuracy metrics for each locus or a certain range of allele 570 

frequencies, we calculated the weighted-mean of individual allele-level accuracies based on 571 

individual allele frequencies. For r2, we applied Fisher’s Z transformation to individual values, 572 

and back-transformed them after averaging to reduce bias.57 573 

 574 

Estimation of HLA imputation uncertainty of DEEP*HLA using MC dropout method 575 

In order to estimate prediction uncertainty, we adopted the entropy of sampling variation of MC 576 

dropout method.36 In MC dropout, dropouts are kept during prediction to perform multiple model 577 
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calls. Different units are dropped across different model calls; thus, it can be considered as 578 

Bayesian sampling with treating the parameters of a CNN model as random variables of 579 

Bernoulli distribution. The uncertainty of a best-guess genotype inferred from the entropy of 580 

sampling variation is determined as 581 

� �  � ��
�
log

�
� � � � �

�
log

� � �
� � 

where T is the number of variational samplings and t is the number of times in which obtained 582 

genotype was identical to the best-guess genotype. We set T = 200 in the current investigation. 583 

 584 

AUC metric representing distance-dependent LD decay 585 

To evaluate whether the the strength of LD between an HLA allele and its surrounding SNVs 586 

weakens as the the distance between them increases, we calculated the AUC of the cumulative 587 

curve of r2 from the HLA allele (AUC for distance-dependent LD decay). When the LD of 588 

flanking SNVs of an HLA allele has such a characteristic, r2 of LD from the HLA allele tends to 589 

decrease. In other words, the bilateral cumulative curve of r2 from the HLA allele is more likely 590 

to be convex upward; then, the AUC tends to be higher. We determined the AUC by 591 

normalizing the maximum values of r2 sum and window sizes to 1. We evaluated the 592 

association of the AUC with allele-level accuracy metrics of each imputation method by linear 593 

regression models adjusted for an allele frequency. The window size of the AUC should be set 594 

to an input range for each imputation method. However, SNP2HLA does not have a clear input 595 

range. Thus, we tested two different window sizes as bilateral 1,000 SNPs from a target HLA 596 

allele and the input range of DEEP*HLA. We investigated the correlation between the 597 

imputation accuracy and the AUC of two different window sizes, respectively. 598 

 599 
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Regional sensitivity maps of DEEP*HLA 600 

We applied SmoothGrad to estimate which SNVs were important for DEEP*HLA imputation of 601 

each HLA allele.34 For each haplotype, we generated 200 samples which were added Gaussian 602 

noise to encoded SNV data and input them into a trained model. Sensitivity values for individual 603 

SNV positions were obtained by averaging the absolute values of gradients caused by the 604 

difference from the true label. When we obtained the sensitivity of an HLA allele, we averaged 605 

the maps of all haplotypes that have the target HLA allele.  606 

 607 

HLA imputation software and parameter settings 608 

We tested the latest version of the software available in Jun 2020 for comparison with our 609 

method. SNP2HLA (v1.0.3) first arranges the strand in its own algorithm; however, we removed 610 

this step data during cross-validation because the strands must be the same between training 611 

and test data. The other settings of SNP2HLA were set to the default values. For HIBAG 612 

(1.22.0.) the number of classifiers was set to 25, which is sufficient to achieve good 613 

performance58 for testing the Japanese data. For the T1DGC panel, the training time was 614 

extremely long with 25 classifiers; thus, we set 2 classifiers after we confirmed that the 615 

imputation accuracy was almost unchanged in the first set of cross-validation. The flanking 616 

regions on each side were set to 500 kb. The current version of HLA*IMP:02 did not support a 617 

function to generate an imputation model using own reference data in a publicly available form; 618 

thus, we did not evaluate its performance in this study for fair comparison. 619 

 620 

Measurement of computational costs 621 
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We measured the computational costs of imputation of a subset of BioBank Japan (BBJ) 622 

Project data set (n = 1,000, 2,000, 5,000, 10,000, 20,000, 50,000, and 100,000 samples) using 623 

our Japanese reference panel (2,000 SNVs were consistent). All our runtime analyses were 624 

performed on a dedicated server running CentOS 7.2.1511, with 48 CPU cores (Intel ® Xeon ® 625 

E5-2687W v4 @ 3.00 GHz) and 256 GB of RAM without GPU. Additionally, we measured the 626 

training time of DEEP*HLA with GPU using a machine with Ubuntu 16.04.6 LTS with 20 CPU 627 

cores (Intel ® Core ™ i9-9900X @ 3.50 GHz), 2 GPUs (NVIDIA ® GeForce ® RTX 2080 Ti), 628 

and 128 GB of RAM. DEEP*HLA requires pre-phased GWAS data and the models trained with 629 

reference data; thus, we measured the process of not only imputation, but also pre-phasing of 630 

GWAS data (conducted by Eagle) and training the models with a reference panel. Similarly, 631 

HIBAG requires the time for training a model, which was also measured. In SNP2HLA, the 632 

maximum of available memory was set to 100 GB. The processing time and maximum memory 633 

usage were measured using GNU Time software when running from a command line interface. 634 

 635 

HLA imputation reference data 636 

We used two HLA reference panels in cross-validation and HLA imputation for biobank GWAS 637 

data. The panels were distributed as a phased condition; thus, they were used as input for 638 

training a DEEP*HLA model as they were. When they were used as a validation set, we 639 

removed the target alleles (i.e. HLA alleles and amino acid alleles) to leave only phased SNP 640 

data. We discussed stricter cross-validation including the process of haplotype pre-phasing in 641 

Supplementary Note 1d. 642 

(i) Our Japanese reference panel and a validation dataset 643 
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Our Japanese reference panel contained NGS-based 6-digit resolution HLA typing data of 33 644 

classical and non-classical HLA genes, of which 9 were classical HLA genes (HLA-A, HLA-B, 645 

and HLA-C for class I; HLA-DRA, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, and 646 

HLA-DPB1 for class II) and 24 were non-classical HLA genes (HLA-E, HLA-F, HLA-G, HLA-H, 647 

HLA-J, HLA-K, HLA-L, HLA-V, HLA-DRB2, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DRB6, 648 

HLA-DRB7, HLA-DRB8, HLA-DRB9, HLA-DOA, HLA-DOB, HLA-DMA, HLA-DMB, MICA, MICB, 649 

TAP1, and TAP2), along with high-density SNP data in the MHC region by genotyped using the 650 

Illumina HumanCoreExome BeadChip (v1.1; Illumina) of 1,120 unrelated individuals of 651 

Japanese ancestry.3 It was phased using Beagle imputation software. We excluded 2 652 

individuals’ data of which sides of some HLA alleles were inconsistent among different 653 

resolutions. 654 

We used 908 individuals of Japanese ancestry with 4-digit resolution alleles of 655 

classical HLA genes (HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1) 656 

based on SSO method to benchmark the imputation performance when the Japanese panel 657 

was applied to an independent dataset. The dataset was used as an HLA reference panel in our 658 

previous study.6 It contains high-density SNP data genotyped using four SNP genotyping 659 

arrays (the Illumina HumanOmniExpress BeadChip, the Illumina HumanExome BeadChip, the 660 

Illumina Immunochip, and the Illumina HumanHap550v3 Genotyping BeadChip). It was 661 

distributed in a phased condition with Beagle format. Samples with missing genotype data for a 662 

locus were excluded in the accuracy evaluation of the locus. This study was approved by the 663 

ethics committee of Osaka University Graduate School of Medicine with written informed 664 

consent obtained from all participants. 665 

 666 
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(ii) The Type 1 Diabetes Genetics Consortium (T1DGC) reference panel.  667 

The T1DGC panel contains 5,868 SNPs (genotyped using Illumina Immunochip) and 4-digit 668 

resolution HLA typing data of classical HLA genes (HLA-A, HLA-B, and HLA-C for class I; 669 

HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, and HLA-DRB1 for class II) based on SSO 670 

method of 5,225 unrelated individuals of European ancestry.22 It was distributed in a phased 671 

condition with Beagle format. We excluded 103 individuals’ data of which sides of some HLA 672 

alleles were inconsistent among different resolutions. 673 

 674 

HLA imputation in 1000 Genomes Project data 675 

We used Phase III 1000 Genomes Project (1KGv3) cohort as independent data to evaluate 676 

imputation accuracy. It comprises 2,554 individuals of 5 different super populations (AFR, AMR, 677 

EAS, EUR, and SAS). We obtained NGS-based 4-digit resolution HLA typing data for classical 678 

HLA genes (HLA-A, HLA-B, and HLA-C for class I; HLA-DRB1 and HLA-DQB1 for class II). The 679 

process of HLA typing has been described elsewhere.59 We evaluated imputation accuracy for 680 

individual populations based on their allele frequencies. Samples containing ambiguous alleles 681 

for a locus were excluded in the accuracy evaluation of that locus.  682 

We experimentally constructed a mixed panel by merging the Japanese and T1DGC 683 

panels to assess imputation accuracy in diverse populations of 1KGv3. Considering the 684 

disparity in allele frequency of SNPs between two populations, we removed all palindromic 685 

SNVs to align the strands correctly when merging reference panels. We used 1,445 SNPs for 686 

imputation which were consistent with 1KGv3 genotype data. We used the same 1,445 SNPs 687 

for imputation to compare the accuracies in the same condition when we evaluated imputation 688 

accuracy using the Japanese panel. 689 
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 690 

T1D GWAS data in the Japanese population 691 

The BioBank Japan (BBJ) is a multi-institutional hospital-based registry that comprises DNA, 692 

serum, and clinical information of approximately 200,000 individuals of Japanese ancestry 693 

recorded from 2003 to 2007.60,61 We used GWAS data from 831 cases who had record of T1D 694 

diagnosis and 61,556 controls of Japanese genetic ancestry enrolled in the BBJ Project. The 695 

controls were same as those enrolled in our previous study that investigated the association of 696 

the MHC region with comprehensive phenotypes, and the number of T1D cases was 697 

increased.3 The process of patient registration, the GWAS data, and the QC process are 698 

described elsewhere.60–62 699 

 700 

T1D GWAS data in the British population 701 

The UK Biobank (UKB) comprises health-related information approximately 500,000 individuals 702 

aged between 40–69 recruited from across the United Kingdom from 2006 to 2010.63 We used 703 

GWAS data of 732 T1D patients and 353,727 controls of British genetic ancestry enrolled in 704 

UKB. We selected T1D patients as individuals who were diagnosed with insulin-dependent 705 

diabetes mellitus in hospital records, and eliminated individuals with non-insulin-independent 706 

diabetes mellitus in hospital records and type 2 diabetes in self-reported diagnosis. The controls 707 

were individuals with no record of any autoimmune diseases in hospital records or in 708 

self-reported diagnosis. We included only individuals of British ancestry according to 709 

self-identification and criteria based on principal component (PC).64 We excluded individuals of 710 

ambiguous sex (sex chromosome aneuploidy and inconsistency between self-reported and 711 

genetic sex), and outliers of heterozygosity or call rate of high quality markers. 712 
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 713 

Imputation of the HLA variants of GWAS data of T1D cases and controls 714 

In this study, we defined the HLA variants as SNVs in the MHC region, classical 2-digit and 715 

4-digit biallelic HLA alleles, biallelic HLA amino acid polymorphisms corresponding to the 716 

respective residues, and multiallelic HLA amino acid polymorphisms for each amino acid 717 

position. We applied DEEP*HLA to the GWAS data to determine classical 2-digit and 4-digit 718 

biallelic HLA alleles. The dosages of biallelic HLA amino acid polymorphisms corresponding to 719 

the respective residues and multiallelic HLA amino acid polymorphisms of each amino acid 720 

position were determined from the imputed 4-digit classical allele dosages. We applied 721 

post-imputation filtering as the biallelic alleles in which r2 accuracy in 10-fold cross-validation 722 

was lower than 0.7. The SNVs in the MHC region were imputed using minimac3 (version 2.0.1) 723 

after pre-phased with Eagle (version 2.3). We applied stringent post-imputation QC filtering of 724 

the variants (minor allele frequency ≥ 0.5% and imputation score Rsq ≥ 0.7). For trans-ethnic 725 

fine-mapping, we integrated results of the imputation of individual cohorts by including the HLA 726 

genes, amino acid position, and SNVs that were typed in both reference panels. Regarding the 727 

HLA alleles and amino acid polymorphisms, those present in one population were regarded as 728 

absent in the other population. Considering the disparity in allele frequency of SNVs among 729 

different populations, we removed all palindromic SNVs to correctly align the strands. 730 

 731 

Association testing of the HLA variants 732 

We assumed additive effects of the allele dosages on the log-odds scales for susceptibility to 733 

T1D; and evaluated associations of the HLA variants with the risk of T1D using a logistic 734 

regression model. To robustly account for potential population stratification, we included the top 735 
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10 PCs obtained from the GWAS genotype data of each cohort (not including the MHC region) 736 

as covariates in the regression model. We also included ascertainment centre and genotyping 737 

chip for UKB as covariates. For trans-ethnic analysis, PC terms for each other population were 738 

set to 0, and a categorical variable indicating a population was added as a covariate. We also 739 

included the sex of individuals as a covariate.  740 

 To evaluate independent risk among the HLA variants and genes, we conducted a 741 

forward-type stepwise conditional regression analysis that additionally included the associated 742 

variant genotypes as covariates. When conditioning on HLA gene(s), we included all the 4-digit 743 

alleles as covariates to robustly condition the associations attributable to the HLA genes, as 744 

previously described.3,14 When conditioning on the specific HLA amino acid position(s), we 745 

included the multiallelic variants of the amino acid residues. We applied a forward stepwise 746 

conditional analysis for the HLA variants and then HLA genes, based on a genome-wide 747 

association significance threshold (P = 5.0 × 10-8). A previous study reported that the T1D risk 748 

was strongly associated with a combination of variants in the region of HLA-DRB1, -DQA1, and 749 

-DQB1, where the variants have strong LD to each other.12 In such a situation, conditioning on 750 

all the 4-digit alleles of a single HLA gene might inadvertently blind the association of alleles of 751 

other HLA genes; therefore, we conditioned on a set of individual HLA variants rather than an 752 

each HLA gene when analyzing this region. 753 

We tested a multivariate full regression model by including the risk-associated HLA 754 

variants in HLA-DRB1, HLA-DQB1, HLA-A, and HLA-B, which were identified through the 755 

stepwise regression analysis. We excluded the most frequent residue in the British cohort from 756 

each amino acid position as the reference allele when we included amino acid polymorphisms 757 

in the model. Phenotypic variance explained by the identified risk-associated HLA variants was 758 
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estimated on the basis of a liability threshold model assuming a population-specific prevalence 759 

of T1D and using the effect sizes obtained from the multivariate regression model. 760 

 761 

URLs 762 

DEEP*HLA, https://github.com/tatsuhikonaito/DEEP-HLA 763 

Pytorch, http://pytorch.org/ 764 

SNP2HLA, http://software.broadinstitute.org/mpg/snp2hla/ 765 

HIBAG, https://www.bioconductor.org/packages/release/bioc/html/HIBAG.html 766 

Eagle, https://data.broadinstitute.org/alkesgroup/Eagle/ 767 

Minimac3, https://genome.sph.umich.edu/wiki/Minimac3 768 

BioBank Japan, https://biobankjp.org/english/index.html 769 

UK Biobank, https://www.ukbiobank.ac.uk/ 770 

UCSF Chimera, https://www.cgl.ucsf.edu/chimera/ 771 
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Figure Legends 918 

 919 

Figure 1. An overview of the study 920 

 921 

(a) DEEP*HLA is a deep learning architecture that takes an input of pre-phased genotypes of 922 

SNVs and outputs the genotype dosages of HLA genes. To train a model and benchmark its 923 

performance, we used Japanese and European HLA reference panels respectively. We 924 

evaluated its accuracies in cross-validation with other methods. For the Japanese panel, we 925 

also evaluated its accuracy by applying the trained model to an independent Japanese HLA 926 

dataset. Further, we experimentally generated a mixed panel and validated its accuracy using 927 

1KGv3 data. (b) We conducted trans-ethnic MHC fine-mapping in T1D GWAS data. We 928 

performed HLA imputation for the Japanese cohort from BBJ and the British cohort from UKB 929 
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using models specific for individual populations. We integrated the individual results of imputed 930 

genotypes and performed trans-ethnic association analysis. 931 

   932 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 10, 2021. ; https://doi.org/10.1101/2020.08.10.20170522doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.10.20170522
http://creativecommons.org/licenses/by-nc/4.0/


Naito T et al. 

47 

 

Figure 2. Performance evaluations of HLA imputation methods 933 

 934 
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(a-d) Sensitivity, PPV, and r2 of allelic dosage and concordance rate of best-guess genotypes 935 

for the 4-digit alleles (a, b) and amino acid polymorphisms (c, d) evaluated in our Japanese 936 

reference panel (a, c) and the T1DGC reference panel (b, d). For each metric, mean values of 937 

alleles with a frequency less than a value on the horizontal axis are shown on the vertical axis. 938 

DEEP*HLA was advantages especially for rare alleles. (e) Processing time (left) and maximum 939 

memory usage (right) evaluated on imputing BBJ samples using the Japanese panel. 940 

DEEP*HLA imputed by far the fastest in total processing time as the sample size increased. 941 

The dashed blue line in the processing time represents a case when DEEP*HLA used GPU 942 

only in training a model. All methods exhibited maximum memory usage scaling roughly linearly 943 

with sample size. SNP2HLA did not work within 100 GB in our machine for the sample sizes 944 

greater than 20,000. 945 
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Figure 3. Comparison of imputation accuracy between different HLA genes 947 

 948 

Each panel represents accuracy in 8 classical HLA genes evaluated in the Japanese panel in 949 

cross-validation (a, upper), the Japanese panel to the independent data (a, lower), and the 950 

European panel in cross-validation (b). Solid and dashed lines correspond to the accuracy of all 951 

allele and allele with frequency < 1%, respectively. The right two scatter plots represent the 952 

relation between the mean and variance of each metric among different HLA genes for 953 

individual methods. R2 metric is not shown because it is not an additive statistic. 954 
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Figure 4. Comparison between DEEP*HLA and SNP2HLA displayed with allele 955 

frequencies and AUC for distance-dependent LD decay 956 

 957 

(a) Comparisons of imputation accuracy between DEEP*HLA and SNP2HLA for 4-digit allele 958 

imputation for cross-validation with the Japanese panel (upper) and T1DGC panels (lower). 959 

Each dot corresponds to one allele, displayed with allele frequencies (size) and AUC for 960 

distance-dependent LD decay (color). The AUC was calculated based on bilateral 1,000 SNPs. 961 

Comparisons in concordance rate are not shown because they were almost the same as those 962 

in sensitivity. The performance of SNP2HLA was limited when imputing the alleles with 963 

low-frequency and low AUC; DEEP*HLA was relatively accurate even for the less frequent 964 

alleles regardless of AUC. (b) Example illustrations of AUC for distance-dependent LD decay. 965 

The left figures illustrate r2 of LD between an HLA allele (red dash line in the central) and 966 

flanking SNVs. HLA-DRB1*16:02 has strong LD in close positions and weaker LD in the distant 967 

positions. The cumulative curve of r2 of bilateral SNVs becomes convex upward; and the AUC 968 
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increases. In contrast, HLA-DRB1*07:01 has moderate LD in distant or sparse positions, the 969 

curve does not become convex upward, and the AUC becomes smaller. (c) Comparison 970 

between r2 (blue line) and sensitivity maps of DEEP*HLA (orange line) for example alleles (red 971 

dash line in the center). The sensitivities are normalized for visibility. In both examples, 972 

DEEP*HLA reacted to noise across an extensive area regardless of LD. 973 
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Figure 5. Trans-ethnic association plots of HLA variants with T1D in the MHC region. 975 

 976 

Diamonds represent −log10 (P values) for the tested HLA variants, including SNPs, classical 977 

alleles, and amino acid polymorphisms of the HLA genes. Dashed black horizontal lines 978 

represent the genome-wide significance threshold of P = 5.0 × 10−8. The physical positions of 979 

the HLA genes on chromosome 6 are shown at the bottom. (a–e) Each panel shows the 980 
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association plot in the process of stepwise conditional regression analysis: nominal results. (a) 981 

Results conditioned on HLA-DRB1, HLA-DQA1, and HLA-DRB1. (b) Results conditioned on 982 

HLA-DRB1, HLA-DQA1, HLA-DRB1, and HLA-A. (c) Results conditioned on HLA-DRB1, 983 

HLA-DQA1, HLA-DRB1, HLA-A, and HLA-B. (d) Our study identified the independent 984 

contribution of multiple HLA class I and class II genes to the T1D risk in a trans-ethnic cohort, in 985 

which the impacts of class II HLA genes were more evident. Detailed association results are 986 

shown in Supplementary Table 3. 987 
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Figure 6.  HLA variants associated with the T1D risk identified through trans-ethnic 989 

fine-mapping. 990 

 991 

Forest plots for individual risk-associated alleles are displayed along with a location map of 992 

classical HLA genes. Each forest plot shows the estimated odds ratio (OR) and 95% confidence 993 

interval from cohort-specific logistic model for BBJ and UKB, and the trans-ethnic logistic model. 994 

Red dashed lines indicate OR in trans-ethnic cohorts. Black solid lines represent OR = 1. 995 

Colored square boxes represent amino acid polymorphisms of the same position or a classical 996 

allele. 997 
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Tables 1. Associations of the HLA variants with the T1D risk identified through 999 

trans-ethnic fine-mapping study. 1000 

  Frequency (BBJ) Frequency (UKB)         

  Case Control Case Control OR (95% CI) P† 

HLA variant n = 831 n = 61,556 n = 732 n = 353,727 BBJ UKB BBJ UKB 

HLA-DRβ1 amino acid position 71             

Alanine 0.10 0.18 0.04 0.15 0.85 (0.66-1.10) 1.34 (0.89-1.99) 0.23 0.16 

Arginine 0.82 0.73 0.33 0.45 (reference)     

Glutamic acid 0.073 0.074 0.083 0.12 1.26 (0.89-1.77) 0.72 (0.56-0.93) 0.019 0.0013 

Lysine 0.0096 0.011 0.54 0.28 1.31 (0.71-2.24) 2.11 (1.77-2.53) 0.035 1.9 × 10-16 

HLA-DQβ1 amino acid position 185           

Isoleucine 0.39 0.57 0.68 0.83 2.74 (2.21-3.40) 4.12 (3.49-4.99) 3.5 × 10-20 7.0 × 10-55 

Threonine 0.61 0.43 0.32 0.17 (reference)     

HLA-DQβ1 amino acid position 30           

Histidine 0.16 0.19 0.18 0.23 1.36 (0.97-1.93) 4.16 (2.86-5.96) 0.0078 3.0 × 10-14 

Serine 0.0042 0.0038 0.34 0.25 inf 3.82 (2.53-5.87) 0.079 3.8 × 10-10 

Tyrosine 0.83 0.80 0.48 0.52 (reference)     

HLA-DRβ1 amino acid position 74           

Alanine 0.56 0.59 0.59 0.65 (reference)     

Arginine 0.0018 0.00088 0.28 0.15 0 (0-0.045) 0.64 (0.42-0.96) 0.08 0.0036 

Glutamic acid 0.32 0.27 0.021 0.036 0.77 (0.64-0.93) 0.57 (0.38-0.82) 0.00065 0.0004 

Glutamine 0.0024 0.0030 0.0795 0.15 0 (0-0.0029) 0.31 (0.21-0.44) 0.079 4.5 × 10-10 

Leucine 0.12 0.14 0.023 0.023 0.97 (0.81-1.16) 2.20 (0.85-4.84) 0.074 0.0077 

HLA-DQβ1 amino acid position 70           

Arginine 0.60 0.62 0.79 0.63 (reference)     

Glutamic acid 0.26 0.17 0.020 0.020 0.73 (0.59-0.9) 0.27 (0.11-0.71) 0.00020 0.0052 

Glycine 0.14 0.20 0.19 0.35 0.95 (0.72-1.25) 0.50 (0.36-0.70) 0.073 3.1 × 10-5 

HLA-A amino acid position 62           

Arginine 0.19 0.20 0.06 0.09 1.25 (1.05-1.49) 0.93 (0.74-1.16) 0.0012 0.53 

Glutamic acid 0.39 0.37 0.09 0.09 1.40 (1.21-1.63) 1.33 (1.10-1.60) 9.2 × 10-6 0.0025 

Glutamine 0.15 0.19 0.46 0.49 (reference)     

Glycine 0.26 0.24 0.33 0.29 1.44 (1.23-1.68) 1.27 (1.12-1.44) 6.6 × 10-6 1.6 × 10-4 

Leucine 0 0 0.055 0.044 - 2.01 (1.57-2.55) 1.5 × 10-12 1.9 × 10-8 

HLA-B*54:01 0.14 0.073 0 0 1.78 (1.51-2.08) - - - 
HLA, human leucocyte antigen; OR, odds ratio; 95% CI, 95% confidence interval. 
†Obtained from the multivariate regression model that included all the variants listed here. 
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