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Abstract 
This paper presents a discrete event simulation model to support the decision-making concerned 

with the short-term planning of the necessary hospital resources, especially Intensive Care Unit 
(ICU) beds, to face outbreaks, as the SARS-CoV-2. Being used as a short-term forecasting tool, 
the simulation model requires an accurate representation of the current system state and high 
fidelity in mimicking the system dynamics from that state. The two main components of the 
simulation model are the stochastic modeling of the admission of new patients and the patient 
flow through the hospital facilities. For the patient arrival process, we analyze different models 
based on growth curves of the twenty most affected countries (until June 15) and propose the use 
of the Gompertz curve. The length of stay is divided into several stages, each one modeled 
separately. We analyze the starting of the simulation model, which requires different procedures 
depending on the information available about the patients currently hospitalized. We also report 
the use of this simulation model during the COVID-19 outbreak in the Autonomous Community 
of Navarre, in Spain. Every day, the research team informed the regional logistic team in charge 
of planning the health resources, who programmed the ward and ICU beds based on the resulting 
predictions. 
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1 Introduction 
COVID-19 pandemic presents an important threat to global health. Since the outbreak in China 

in early December 2019, the number of patients confirmed to have the disease has exceeded 
seventeen million, and more than 650,000 people have died from COVID-19 infection (up to 30 
July 2020 https://coronavirus.jhu.edu/map.html). Regularly updated information on the COVID-
19 outbreak is also available on the European Centre for Disease Prevention and Control’s 
(ECDC) website [1], the European Commission’s (EC) website [2], and the World Health 
Organization’s (WHO) website [3]. This outbreak has changed how health care is delivered, and 
it has affected the operation in hospitals, which have experienced an increase in demand. The 
pandemic has impacted on the Intensive Care Units (ICU), which involve highly specialized 
personnel and expensive technical sanitary material, that require time to their planning and 
acquisition. Therefore, an accurate prognosis of the necessary resources is needed to efficiently 
manage the scarce resources and to provide the best possible care to patients. The precision of the 
predictions allows preparing the response and helping to save lives. Usually, the hospitalization 
bed is still widely used as a hospital (ICU) management parameter both at the strategic and 
operational levels. 

Hospitals are complex systems evolving in a stochastic environment whose uncertainty is even 
higher in pandemic periods because of the lack of knowledge about the spread of the disease and 
its consequences on patients. In this unsettle context, simulation emerges as a suitable analytical 
tool, since it can represent the complexity of the analyzed system and the variability and 
uncertainty of its environment. Besides, simulation can be used in combination with other 
analytical techniques. The literature contains numerous bibliographical references relating to the 
use of simulation models for decision making in the healthcare context, as it is exposed in Section 
2. Most of the applications use the simulation to support strategic decisions, usually for 
dimensioning of resources, for their scheduling, or for their management. All these cases require 
the design of a simulation model to reproduce the performance of the health system in its 
stationary state and evaluate the resource levels, the patient flow management policies, and the 
decision making process in the long term. The recommendations obtained from the simulation 
analysis are meant to be implemented in the health system and last for a certain time horizon. 

However, a simulation model designed to help to make tactical decisions related to the provision 
of specialized health resources during the current outbreak has to focus on the transition period, 
to project in the future the current state of the hospital. A discrete event simulation (DES) model 
is presented in this research that combines a dynamic forecast method to predict (simulate) the 
new incoming patients and the reproduction of the patient flow through the health system. The 
simulation output provides scenarios of future utilization of resources that keep informed the 
health authorities of future needs and give them time for their planning. Therefore, the main 
feature of the simulation model presented here is its capacity of reproducing the evolution of the 
health system from its current state to be used as a forecasting tool. The correct representation of 
the current state of the hospital and the methodology used to start the simulation plays a crucial 
role in the accuracy of the simulation results. Nevertheless, these two aspects strongly depend on 
the available information about the hospital and its admitted patients. In some cases, there could 
be data to the patient level, that is, with knowledge of the admission and discharge dates 
(including transferring dates between facilities or departments inside the hospital) while in other 
cases only aggregated information is available, for example, the total number of admitted patients 
each day. The simulation model we have developed is flexible enough to handle the different 
levels of information. 

The main contribution of this paper is the proposal of a new simulation framework to enable 
the prediction in the short term (from days to one month) the need for critical resources to provide 
healthcare to COVID-19 patients. The simulation framework can be adapted to be applied to other 
future outbreaks. To reach this main contribution our research includes: 

• A simulation method of patient arrivals based on population growth (PG) models. 
• A statistical analysis of four different PG models to analyze their accuracy to represent 

the expansion of the pandemic and their forecasting capacity. 
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• The representation of the current state of the health system and the beginning of the 
simulation from this state by considering four different information levels for the 
admitted patients. 

• A dynamic statistical analysis of the patient flow through the health facilities. 
• The combination of all elements in a DES model flexible enough to recreate scenarios 

based on stochastic models fitted to data (data-driven prediction), scenarios defined by 
expert judgment, and a mixture of both. 

• From a practical point of view, this paper also reports a successful real application of 
simulation to support an important decision-making process essential for the health of 
patients in an Autonomous Community of Spain (Navarre). 

The rest of the paper is organized as follows. Section 2 presents a literature review of papers 
dealing with the use of quantitative methods to predict needs in health care systems and improve 
their management. Section 3 studies the adequacy of PG models to predict the evolution of the 
spread of a pandemic. The modeling of the patient flow through the hospital is presented in 
Section 4. The structure of the DES model and the methodology to begin the simulation under 
different available data are included in Section 5. Section 6 describes the simulator, with its inputs 
and outputs. Results of the application of the simulation model to the Autonomous Community 
of Navarre (Spain) are included in Section 7. Finally, Section 8 ends the paper with the 
conclusions of this work. 

 

2 Related literature 
Simulation is one of the most suitable analytical tools for the analysis of complex systems, as 

the health systems are, which is reflected in numerous articles in the specialist literature describing 
the use of simulation models for decision-making in the healthcare context. DES has been applied 
to model and analyze all aspects of logistics management in healthcare. In particular, it has been 
used to improve patient flow management, bed-planning, waiting list management, health service 
design, medical staff scheduling, etc. For reviews of the use of simulation models in healthcare, 
we refer to [4–7]. Usually, these simulation models focus on studying the stationary state of the 
health system to support strategic decisions related to the dimensioning of resources or designing 
management policies. 

The ultimate goal of these models is to reconcile resource availability with demand in order to 
provide high-quality healthcare to patients while maintaining a reasonable level of human and 
technological resources. Problems analyzed into this framework are patient flow [8, 9], bed 
planning [10–12], health service design [13] and medical staff scheduling [14], among others. 
Although discrepancies between assumptions made in mathematical simulation models and 
behavior of real health systems reported in the medical literature have been pointed out [15], there 
is no doubt about the usefulness of simulation models for the analysis of relevant problems in 
complex health systems. 

However, simulation not only helps to ensure that medical staff and facilities are offering the 
highest quality services but also increases the likelihood of following best practices. Since the 
pandemic began, all national governments and the World Health Organization have extensively 
used simulation modelling to decide the best strategies to reduce the impact of COVID-19.Currie 
et al. [16] identify challenges from this disease and discuss how simulation modelling could help 
to support decision-makers in making the most informed decisions. 

The accuracy of a simulation model to predict the necessary resources during a pandemic 
depends on an accurate model to predict the arrival of new patients to the health service. Infectious 
disease prediction models mainly include differential equation prediction models based on 
population dynamics [17, 18]. These mathematical models are essential to understand the course 
of the epidemic and to plan effective control strategies [19–21]. One of the most widely used 
models in the human-to-human transmission is the SIR model [22]. The individuals of the 
population are divided into different categories, each one considered as a possible state for the 
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individual: S (Susceptible), I (Infected), and R (Remove). The population in each state is 
calculated over time from the estimation of the transition rates among these states. By increasing 
the complexity of this model, it is possible to recreate the spread of specific epidemics. In fact, 
for the COVID-19 pandemic, extensions of the classical SIR model have been developed [23–
27], as well as stochastic transmission models [28, 29]. However, this kind of models are 
complicated and need strong assumptions and simplifications, because they are based on a set of 
few differential equations with initial conditions and a number of adaptive parameters [30–33]. 

Therefore, growth population models suppose a simpler alternative to model the accumulated 
number of infected people. Growth curves are found in a wide range of areas, such as fishery 
research [34, 35], biology [36] or other infectious disease outbreaks [37–40]. Specifically, 
Logistic, Gompertz, Rosenzweig, and Richards models have been already used to model the 
spread of outbreaks such as A/H1N1 and Ebola in [41]. In relation to COVID-19 disease, several 
papers have been found in the literature which develop a growth model to predict new positive 
cases in different countries such as China [42], India [43], Spain [44], and other European 
countries [45]. These mathematical models present a set of mathematical equations that include 
some adaptive parameters that can be determined numerically based on available real data [46]. 
So, the model can be used daily (by updating the number of positive cases) and automatically 
adapt to the evolution of each parameter. 

If all the mathematical models mentioned in the previous paragraphs are capable of fitting well 
to the real data, it would be possible to predict quite accurately what might happen in the future 
(e.g., emergency planning, resource allocation) [47–49]. This is very important especially for 
those resources that are normally scarce in a hospital, such as ICU beds. Manca et al. [50] present 
and discuss a few regression models developed using historical data of ICU patients and deaths 
during COVID-19 pandemic. They are capable of reproducing the bed occupancy curve using 
mathematical models, which can be very useful from the point of view of decision-making and 
emergency planning in future pandemics. 

Besides, in recent decades, simulation in healthcare has become a new way of learning through 
experiences with advanced technology [51, 52] With this modern education and training 
technique, healthcare professionals can learn new cognitive, technical, and behavioral skills. 
Before working in real-world scenarios, where real patients are treated, both professionals and 
students can use this experimental learning style to develop their skills and expand knowledge 
without taking any risk in their decision-making processes [53]. Simulation models, as the one 
presented in this paper, can serve also for learning the management of health care services in 
emergencies. One of the most critical decisions in periods of scarcity of resources is their 
assignment to patients, especially when these decisions can make the difference between recovery 
and death, as it could happen with the admission of patients to ICUs. This triage is difficult to 
implement during pandemics where the situations of a scarcity of resources are further 
aggravated. Different protocols for ICU triage during a pandemic have been suggested in [54–
56]. Foreseeing the increasing need for beds is essential to avoid ethical dilemmas [15, 57]. 
According to Utley et al. [58], “the impact of triage is dependent on the level of demand and on 
the scale of achievable differences between included and excluded groups in terms of anticipated 
length of stay and critical care survival”. A simulation model can help better planning of critical 
resources, during a pandemic; and as an off-line tool, it can be used as a learning tool to test new 
protocols for triage, because sometimes triage is not as effective as might be expected, and other 
hard-to-anticipate factors must be considered. 

 

3 Modelling the patient arrival pattern 
In this section, the adequacy of population models to predict new cases is studied. First, four 

different models are compared statistically to select the more suitable model. Then, we described 
the simulation of patient arrival to the hospital. 
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3.1 Population growth models 
The simulation model needs to include a stochastic model representing the pandemic evolution 

to predict (simulate) the number of patients arriving at the health system. Because of their 
simplicity, we propose the use of PG models. A number of growth models are found in the 
literature, such as the models of Gompertz [59], Richards [60], Stannard [61], and logistic model 
and others [62]. They start with exponential growth but gradually decrease their specific growth 
rates. The equations that relate the number of cases in the population (infected, patients needing 
hospitalization, etc..) and the time are shown in Table 1. 

Model Equation 

Logistic 𝑦𝑦 =  
𝑎𝑎

[1 + exp(𝑏𝑏 − 𝑐𝑐𝑐𝑐)] 

Gompertz 𝑦𝑦 =  𝑎𝑎 · exp[−exp(𝑏𝑏 − 𝑐𝑐𝑐𝑐)] 

Richards 𝑦𝑦 =  𝑎𝑎{1 + 𝑣𝑣 · exp[𝑘𝑘(𝜏𝜏 − 𝑐𝑐)]}(−1 𝑣𝑣⁄ ) 

Stannard 𝑦𝑦 = 𝑎𝑎 �1 + exp �−
(𝑙𝑙 + 𝑘𝑘𝑐𝑐)

𝑝𝑝
��

(−𝑝𝑝)

 

Table 1. Models considered for the data fitting and their equations. 

In this section, we carry out two statistical analysis for elucidating the adequacy of the PG 
models to represent and predict the evolution of the pandemic caused by the SARS-CoV-2 virus. 
The first analysis evaluates the capacity of the PG models to fit complete sets of real data 
representing positive cases registered in different countries. Specifically, PG models have been 
fitted to data coming from the 20 most-affected countries by COVID-19 on June 15, as it was 
recorded in Worldometer [63]. The parameter estimation of the PG models is done by minimizing 
the sum of squared errors. There are functions implemented in free software that perform this 
estimation of parameters, for instance, the curve_fit() function in the optimize module of SciPy in 
Python [64] or the growthrates package in R [65]. The fit quality is measured by the Mean 
Absolute Errors (MAE). Table 2 includes all MAE values calculated for each country and model. 
The best fits are marked in bold (differences less than 0,1% are not distinguished). Additional 
information in this table is the total population of each country and the total number of positive 
cases on June 15. 

These results show that similar fitting quality of Gompertz, Richards, and Stannard models, 
while the Logistic PG model underperforms the other three. 

 

# Country Population 

Total 
positive 

cases 
(2020-06-

15) 

Logistic Gompertz Richards Stannard 

1 USA 330,922,877 2,094,069 47,128.9 21,461.2 21,464.4 21,466.7 
2 Brazil 212,496,348 867,624 3,182.3 3,245.1 2,754.7 2,754.7 
3 Russia 145,932,063 528,964 5,667.4 1,688.7 1,689.0 1,689.2 
4 India 1,379,418,901 332,424 1,392.9 537.9 538.0 538.2 
5 UK 67,871,466 295,889 4,758.0 1,046.6 1,046.9 1,047.2 
6 Spain 46,754,084 245,194 5,676.2 2,261.7 2,262.1 2,262.6 
7 Italy 60,465,149 236,989 4,928.0 1,061.2 1,061.6 1,061.7 
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8 Peru 32,951,046 229,736 2,399.4 1,255.3 1,256.6 1,257.6 
9 Iran 83,944,885 187,427 8,105.8 6,176.3 6,176.6 6,176.9 

10 Germany 83,773,297 186,461 4,091.4 1,519.2 1,519.5 1,519.7 
11 Turkey 84,299,464 178,239 5,335.7 2,418.3 2,418.8 2,419.1 
12 Chile 19,109,226 174,293 1,132.5 1,601.2 1,068.5 1,068.5 
13 France 65,267,844 157,220 3,396.4 1,547.0 1,547.2 1,547.3 
14 Mexico 128,873,820 153,507 1,418.9 1,641.0 1,535.5 1,535.5 
15 Pakistan 220,685,460 144,478 1,631.5 1,324.5 1,301.0 1,321.6 
16 Saudi Arabia 34,788,836 127,541 1,709.0 814.9 814.9 814.9 
17 Canada 37,728,057 98,776 1,494.6 331.0 331.1 331.1 
18 Bangladesh 164,618,467 87,520 655.6 315.5 315.6 315.7 
19 China 1,439,323,776 84,335 1,166.6 1,133.0 1,097.6 1,097.7 
20 Qatar 2,807,805 79,602 417.7 369.2 263.6 263.6 

Table 2. The 20 most-affected countries by COVID-19 until June 15. The last four columns show the MAE calculated 
for the fit with each of the applied models. Bold values represent the best scores. 

The second statistical analysis is designed to test the predictive capacity in the short-medium 
term of the PG models. The accurate prediction of future cases of the disease is crucial for the 
accurate prediction of the resources needed. Three experiments have been carried out to determine 
which model has a better predictive capacity. For each country, the dates in which the data exceed 
25%, 40%, and 65% of positive cases registered on June 15 are selected. The rationale behind this 
choice is the following: 25% represents an early stage of the pandemic but with enough 
information to fit the curves; however, when few data are available, they lie in the exponential 
growth phase and lead usually to overestimations of the maximum of the function. This problem 
is accentuated in countries where the pandemic has a strong impact at the beginning, such as in 
Spain or Italy. In Section 3.2 it is explained how we deal with this problem. In addition, the values 
40% and 65% are chosen to observe how each model predicts as more information becomes 
available. 

The prediction of the fitted curves for the next 5, 10, and 15 days is assessed by calculating the 
MAE. These time horizons are considered as sufficient for the hospital managers to adapt extra 
resources for new needs. As new positive case data is added every day, and predictions are 
refreshed also every day, the long-term predictive capacity of the model will not be analyzed. The 
results of these analyzes are collected in Appendix A. On the one hand, we present fits to the 
curves until the selected days, obtaining an MAE for each model and country. On the other hand, 
the tables of the MAEs made in the predictions are shown. To facilitate the comparison of results, 
MAEs are normalized by the total number of positive cases on the selected days. From these 
results, we can conclude that the Gompertz model outperforms in predictive capacity the other 
PG models. 

Table 3 summarizes the relevant information from all the tables in Appendix A. It indicates the 
number of countries in which each model is the best in terms of predictive capacity (as before, 
differences smaller than 0.1% have been considered equal). It is observed that the Gompertz 
model is the one that more accurately predicts future values, specifically in all the situations 
analyzed except for one. For this reason, the Gompertz model is recommended to predict new 
cases of COVID-19. 

Model 
25% 40% 65% 

5 days 10 
days 

15 
days 5 days 10 

days 
15 

days 5 days 10 
days 

15 
days 

Logistic 4 5 5 4 4 3 2 1 2* 
Gompertz 11 12 13 13 14 14 14 15 13* 
Richards 11 9 7 13 9 10 15 15 11* 
Stannard 11 8 7 13 9 10 15 15 11* 

Table 3. The number of countries in which each model is equal or better than the others in terms of predicting new 
positive cases for the next 5, 10, and 15 days. Bold values represent the best scores. *These values are of 18 countries 
because 2 of them have no real data for that period. 
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3.2 Patient arrival pattern simulation 
The Gompertz growth model can be used to simulate both the number of positive cases and the 

entry of patients to the health system. The parameters of the original equation of this model (Table 
1) have a more mathematical than biological interpretation (𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ...), like most equations that 
describe a sigmoidal growth curve. Therefore, before using it in our modeling, it is convenient to 
carry out a transformation to easily interpret the results obtained in the fit. Zwietering et al. [66] 
rewrite the Gompertz growth model as it is shown in equation (1). 

 𝑐𝑐(𝑡𝑡) = 𝐴𝐴exp�−exp �
𝜇𝜇𝑚𝑚 · 𝑒𝑒
𝐴𝐴

(𝜆𝜆 − 𝑡𝑡) + 1�� (1) 

where, 
• 𝑒𝑒 = exp(1) 
• 𝑐𝑐(𝑡𝑡) is the cumulative number of positive cases or hospitalized patients until time 𝑡𝑡. 
• 𝐴𝐴 is a parameter of the growth model that represents the total number of positive cases 

or hospitalized patients at the end of the outbreak. 
• 𝜇𝜇𝑚𝑚 is the maximum specific growth rate of the curve. 
• 𝜆𝜆 is the lag time, defined as the 𝑡𝑡-axis intercept of the tangent through the inflection 

point. 
Once the curve 𝑐𝑐(𝑡𝑡) is fitted, for example to cumulative hospitalized patients, it is used to 

simulate the number of new hospitalized patients of each of the following days. Let consider 𝑡𝑡i 
and 𝑡𝑡i+1 two consecutive days in the future, the number of expected arrivals for the day 𝑡𝑡i+1 is 
calculated as 𝑐𝑐(𝑡𝑡i+1) − 𝑐𝑐(𝑡𝑡i). Then, the simulation model samples the number of hospitalized 
patients for that day 𝑡𝑡i+1 from a Poisson distribution with mean 𝑐𝑐(𝑡𝑡i+1) − 𝑐𝑐(𝑡𝑡i). This procedure 
is applied to simulate the hospitalized patients each future day. The Gompertz curve is fitted each 
time a new datum is observed. 

At the first stages of the outbreak could not be enough data to fit the Gompertz model, overall 
in terms of hospitalized patients. In this case, we propose two alternatives that rely also on the use 
of PG models: 

The first one consists of fitting the growth model to cumulative positive cases registered in a 
greater area, for example, the whole country when only a region of it is considered. Two factors 
are required to transform the predicted positive cases of the greater area into arrivals to hospitals 
in the subarea: the first one is a population factor that relates the population of both areas (e.g. the 
region of Navarre in Spain represents the 1.3% of the whole country population), and the second 
one transforms the new cases into patients requiring hospitalization (at first stages about 40% of 
detected cases needed hospitalization). Denoting by 𝑓𝑓𝑔𝑔 and 𝑓𝑓ℎ both geographic and hospitalization 
factors, and by 𝐶𝐶(𝑡𝑡) the fitted Gompertz curve to the positive cases in the bigger area, then 𝑐𝑐(𝑡𝑡) =
𝑓𝑓𝑔𝑔𝑓𝑓ℎ𝐶𝐶(𝑡𝑡). Given that in this first period there is a data shortage, 𝑓𝑓ℎ can be estimated by experts 
according to data published in the literature referred to the behavior of the disease in countries 
where it is more spread. This indirect technique could be applied also to the detected cases in the 
same area and apply only the 𝑓𝑓ℎ factor. 

Secondly, when the hospitalization cases begin to accumulate significantly (meaning the 
observed cumulative cases are starting its exponential growth) then we propose to fix (by expert 
opinion) the maximum population parameter (𝐴𝐴 in equation (1)) and to estimate the other two 
parameters by minimizing the sum of squared errors. 
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4 Modelling the patient flow 
This section focusses on modelling the patient flow through the health system. In the first 

subsection, we describe all considered paths that a patient can take through the hospital. In the 
second subsection, we explain how the length stay of each patient is modelled. 

 

4.1 Hospital patient path 
COVID-19 patients can access the health system in different ways: a person can be diagnosed 

with COVID-19 illness in a primary healthcare facility, in the hospital emergency department, in 
a nursing home, after undergoing a SARS-CoV-2 test control (as a Polymerase chain reaction 
(PCR) test), etc. Depending on the severity of the illness the person is kept “isolated” at home or 
is admitted to the health care system as a COVID-19 patient, either in a hospital ward or in the 
ICU. 

Treatment of COVID-19 patients requires dedicated resources, material, and personnel. We 
focus our study in the ward beds and ICU beds because they are scarce resources. Other necessary 
resources, as nurses and physicians, can be calculated from the number of required beds. The 
COVID-19 patient path through the hospital does not differ from other hospital patients. Fig. 1 
shows the patient flow through the health system, highlighting the transitions between the hospital 
ward and the ICU. Patients can be admitted either into the ICU or into the hospital ward. A patient 
admitted to a hospital ward can be transferred to the ICU due to a health worsening. The discharge 
of the hospital ward is because of death or health improvement. Patients are discharged from the 
ICU to a hospital ward either because of death or because of health improvement. 

 
Fig. 1 Representation of the COVID-19 patient flow in the health system. 

 

4.2 Stochastic modelling of hospital length of stay 
The following variables allow the modeling of the length of stay in the hospital: 
• 𝑋𝑋1, the length of stay of a patient in the hospital ward not needing the ICU 
• 𝑌𝑌, the length of stay of a patient in the ICU. 
• 𝑊𝑊, time spent by a patient in the hospital ward before being admitted to the ICU. 
• 𝑋𝑋2, the length of stay of a patient in the hospital ward after being discharged from the 

ICU. 
• 𝑋𝑋, the length of stay of a patient from its admission to a hospital ward or to the ICU 

until the discharge of the hospital facilities. 
Besides, the following probabilities determine the patient-path through the healthcare 

facilities: 
• 𝑝𝑝𝐼𝐼, the probability that a patient is admitted to the ICU. 
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• 𝑝𝑝𝐼𝐼0, the probability that a patient needing the ICU is admitted just after being detected 
positive. Then, 1 − 𝑝𝑝𝐼𝐼0 is the probability that a patient is admitted to the ICU after being 
admitted first to a hospital ward. 

• 𝑝𝑝𝑊𝑊𝐼𝐼, the probability that a patient admitted to a hospital ward ultimately needs to be 
transferred to the ICU.  𝑝𝑝𝑊𝑊𝐼𝐼 = 𝑝𝑝𝐼𝐼(1 − 𝑝𝑝𝐼𝐼0)/(1 − 𝑝𝑝𝐼𝐼𝑝𝑝𝐼𝐼0) 

• 𝑝𝑝𝐼𝐼𝑊𝑊, the probability that a patient is discharged from the ICU to a hospital ward. Then, 
1 − 𝑝𝑝𝐼𝐼𝑊𝑊 is the probability that a patient dies in the ICU. 

The estimation of both the probability distributions and the set of probabilities depends on the 
available data, which, in turn, depends on the pandemic development stage. During the first stages 
of the outbreak, when no patient hospitalization data or very few exist the model uses the 
triangular distribution family. The triangular is a popular family to estimate the time to accomplish 
a task because it embodies the idea of ‘three-point estimation’ where subjective judgment is used 
to estimate a minimum, a ‘best guess’, and a maximum value of the variable [67]. In the case of 
variable 𝑋𝑋1, these three values correspond to the minimum, most probable, and maximum times 
of hospitalization in a ward for patients not needing ICU, which are provided by expert opinion 
(hospital managers and the medical staff). Experts can rely on values reported in the literature 
corresponding to countries where the pandemic spread earlier (for example the China and the 
Italian situation are described in [68–71]). 

As the pandemic progresses and there are more data on hospitalized COVID-19 patients, they 
can be used to estimate the probability distributions parameters. One main feature of these data is 
their high level of censorship; that is, only a small percentage of patients that have been admitted 
so far to the hospital ward and the ICU has been discharged after few weeks of the outbreak. This 
fact motivates the need for re-estimating the distribution fitting daily by adding the new data 
collected. The use of probability plots facilitates the selection of the parametric probability 
distribution family that best fits the data. The parameters of the selected family are estimated by 
fitting the updated health electronic recorded data on admission and discharge dates by the 
maximum likelihood method. Weibull and Lognormal distribution families have proved to be 
good probability models for the length of stay related variables, as we show in Section 7. 

At the beginning of a new pandemic, there is insufficient knowledge of the illness and no 
effective treatments exist, as it has happened with the COVID-19 outbreak. As the medical and 
biological research progresses, new drugs and therapeutic protocols are discovered, which benefit 
the care of patients, affecting their length of stay in both hospital ward and ICUs. This observation 
reinforces the need for gathering every new data about patient admission and discharge to use 
them to update the estimation of the distribution parameters and bifurcation probabilities. 

 

5 The discrete event simulation model 
In this section, the mathematical modelling of the hospital dynamics is presented. First, we 

define a DES model to simulate the arrivals and the length of stay of patients. Then, a 
methodology is described that allows the simulation to start considering different levels of known 
information. 

 

5.1 Entities, processes, events, and flowchart 
DES model is defined by the set of state variables, which provide at any time a complete 

description of the simulated system, and the set of events, which modify the value of state 
variables. The simulation model represents the patient flow through the different ways of 
hospitalization, that is, the part inside the box with dashed lines in Fig. 1. In this subsection, we 
propose the state variables that describe the health system and a set of events grouped into three 
different categories. 

Only one set of variables is considered in this model, which is composed of two variables, 𝐻𝐻 =
(𝐻𝐻𝑊𝑊 , 𝐻𝐻𝐼𝐼). These variables describe the number of patients hospitalized in hospital wards (𝐻𝐻𝑊𝑊) 
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and the number of patients in the ICU (𝐻𝐻𝐼𝐼). Observe that the number of total patients admitted in 
the hospital (𝑁𝑁) due to COVID-19 at time 𝑡𝑡 is the sum of these two state variables (𝑁𝑁 = 𝐻𝐻𝑊𝑊   +
𝐻𝐻𝐼𝐼). 

There are three different types of events that modify through time the value of state variables. 
They have been classified according to how the value of 𝑁𝑁 changes, if there is an increase, a 
decrease, or if its value does not change after the event occurs. The first set of events 𝐸𝐸𝐴𝐴 are 
associated with the patient’s arrival times classified in hospital arrivals and ICU arrivals. In this 
group, we only consider external arrivals, i.e., patients who are not in the hospital and directly 
arrive after being detected with the disease. These arrivals occur as we mentioned in Section 3.2 
distinguishing with a percentage what type of patients they are. 

The second category of events 𝐸𝐸𝐵𝐵 produces a decrease in the state variables. They are related 
to the end of the patient hospitalization time. In wards, we consider both discharges for 
improvement and death, but in ICU only death cases are included here. In this way, these events 
only reduce the values of 𝐻𝐻𝑊𝑊 or 𝐻𝐻𝐼𝐼, and therefore the value of 𝑁𝑁 decreases. In Section 4.2 it is 
explained how the length of stay is assigned to each patient, and therefore, the discharge times. 

The third set of events 𝐸𝐸𝐶𝐶  is associated with the transfer of patients between the hospital wards 
and the ICU, which can be bidirectional (see Section 4.2). On the one hand, a patient who is in 
the hospital may worsen his health of status and have to be transferred to the ICU. On the other 
hand, ICU patients who improve and are discharged do not go directly home but are first treated 
in wards. Observe that in both cases, only the values of 𝐻𝐻𝑊𝑊 and 𝐻𝐻𝐼𝐼 are affected, but the value of 
𝑁𝑁 remains constant since with these actions neither patients enter nor leave the system. Fig. 2 
outlines the simulation model of the health system. 
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Fig. 2 Flow diagram of the health system simulation model. Three types of events are considered (patient’s arrival, 
patient’s discharge, and patient’s transfer). 

 

5.2 How to get the simulation started? 
The purpose of the simulation model is the short-term necessary resources prediction. 

Therefore, the precision of the predictions strongly depends on the model accuracy in both 
representing the health system's initial state and the initial time evolution of the already occupied 
resources. Usually, this last aspect of the mathematical modeling is not such important when the 
simulation is intended to investigate the behavior of systems in the long term, in its stationary 
state, which is usually independent of the system's initial state. However, when the simulation is 
used as a prediction tool to support tactical decisions, the initial state of the simulation model and 
the system dynamic at the initial moments are the main factors to determine the health system 
state in the near future. The number of patients in the hospital wards and in the ICU, as well as 
the available information about the time since their admission, define the initial state of the health-
system simulation model. 

The simulation clock is set to zero at the time of the EHR-file's last update. Before that time, it 
is the past that can be reproduced by the simulator by reading the records in the EHR file, and 
ahead, it is the future that needs to be simulated. The transition from the past to the future is done 
at the moment the simulation starts, which requires to initialize the event calendar [67]. There are 
three types of events, admission to hospital, transferring between hospital facilities (ward and 
ICU) and discharge from hospital. The simulation of the event type “arrival of a new patient” was 
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explained in Section 3.2. Now we expose how to simulate the other two types of events to those 
patients already admitted in the hospital at time zero. 

The simulation of these events depends on the available information about the patients. 
Basically, the main difference is whether there is access to patient-level information or only 
aggregated information about daily admissions and discharges is available. Zero time for the 
simulation model is considered to be the end of the 𝑘𝑘𝑡𝑡ℎ day of the pandemic. That is, the 
simulation model begins to simulate what will happen from day (𝑘𝑘 + 1)𝑡𝑡ℎ, using the information 
collected during the first 𝑘𝑘 days of the pandemic and considering patients admitted to the health 
system at the end of the 𝑘𝑘𝑡𝑡ℎ day as the initial state. The following notation, together with the 
notation introduced in Section 4.2, is used in the subsequent analysis: 

 𝐻𝐻𝑊𝑊𝑊𝑊: the number of hospitalized patients in hospital wards at the end of the day 𝑘𝑘. 
 𝐻𝐻𝐼𝐼𝑊𝑊: the number of admitted patients at the ICU at the end of the day 𝑘𝑘. 
 𝐼𝐼𝑗𝑗 and 𝑂𝑂𝑗𝑗 number of new patients admitted, and number of patients discharged the day 𝑗𝑗, 

 respectively. 
They will refer to the hospital wards or to the ICU depending on the context of the analysis. 
 𝑢𝑢: an observation from a Uniform [0,1] random variable. 
 

A. Information at the patient level available: The admission date of each hospitalized 
patient is known. Therefore, for each currently hospitalized patient the time 𝑠𝑠𝑖𝑖 already spent 
at the hospital ward or the ICU is known. 

Patient admitted to the ICU: The discharge date is calculated by sampling from the random 
variable 𝑌𝑌 conditioned to a stay longer than 𝑠𝑠𝑖𝑖, the number of days already spent at the hospital. 
Let 𝑦𝑦𝑖𝑖 be a value sampled from the conditional distribution 𝑌𝑌/𝑌𝑌 > 𝑠𝑠𝑖𝑖, then the value 𝑦𝑦𝑖𝑖 − 𝑠𝑠𝑖𝑖 is 
the ICU discharge time simulated for patient 𝑖𝑖.  

Patient admitted to a hospital ward: A patient occupying a ward bed can ultimately be 
discharged from the hospital or be transferred to the ICU. The probability that a patient 
hospitalized for 𝑠𝑠𝑖𝑖 days is transferred in the future to the ICU, denoted by 𝑝𝑝𝐼𝐼𝐶𝐶𝐼𝐼/𝑠𝑠𝑖𝑖 , is calculated 
by using Bayes theorem: 

𝑝𝑝𝐼𝐼𝐶𝐶𝐼𝐼 𝑠𝑠𝑖𝑖⁄ = 𝑃𝑃(𝑝𝑝𝑎𝑎𝑡𝑡𝑖𝑖𝑒𝑒𝑝𝑝𝑡𝑡 𝑖𝑖𝑝𝑝 𝑤𝑤𝑎𝑎𝑤𝑤𝑤𝑤 𝑝𝑝𝑒𝑒𝑒𝑒𝑤𝑤𝑠𝑠 𝐼𝐼𝐶𝐶𝑈𝑈 𝑋𝑋 > 𝑠𝑠𝑖𝑖⁄ )

=
𝑃𝑃(𝑋𝑋 > 𝑠𝑠𝑖𝑖 𝑝𝑝𝑎𝑎𝑡𝑡𝑖𝑖𝑒𝑒𝑝𝑝𝑡𝑡 𝑖𝑖𝑝𝑝 𝑤𝑤𝑎𝑎𝑤𝑤𝑤𝑤 𝑝𝑝𝑒𝑒𝑒𝑒𝑤𝑤𝑠𝑠 𝐼𝐼𝐶𝐶𝑈𝑈⁄ ) 𝑃𝑃(𝑝𝑝𝑎𝑎𝑡𝑡𝑖𝑖𝑒𝑒𝑝𝑝𝑡𝑡 𝑖𝑖𝑝𝑝 𝑤𝑤𝑎𝑎𝑤𝑤𝑤𝑤 𝑝𝑝𝑒𝑒𝑒𝑒𝑤𝑤𝑠𝑠 𝐼𝐼𝐶𝐶𝑈𝑈)

𝑃𝑃(𝑋𝑋 > 𝑠𝑠𝑖𝑖)
 

=
�1 − 𝐹𝐹𝑊𝑊(𝑠𝑠𝑖𝑖)�𝑝𝑝𝑊𝑊𝐼𝐼

�1 − 𝐹𝐹𝑋𝑋(𝑠𝑠𝑖𝑖)�
 

Therefore, for each patient 𝑖𝑖, a random number 𝑢𝑢 is used to classify each patient into one out of 
two categories: patient to be transferred to ICU, when  𝑢𝑢 ≤ 𝑝𝑝𝐼𝐼𝐶𝐶𝐼𝐼 𝑠𝑠𝑖𝑖⁄ , or patient to be discharged 
from the hospital, when 𝑢𝑢 > 𝑝𝑝𝐼𝐼𝐶𝐶𝐼𝐼 𝑠𝑠𝑖𝑖⁄ . 

In the case of a patient transfer to the ICU, the event transfer time is simulated by sampling a 
value 𝑤𝑤𝑖𝑖 from the conditional distribution 𝑊𝑊/𝑊𝑊 > 𝑠𝑠𝑖𝑖. The value 𝑤𝑤𝑖𝑖 − 𝑠𝑠𝑖𝑖 is the simulated transfer 
time from hospital ward to the ICU. Similarly, the discharge time from the hospital ward is 
simulated by sampling a value 𝑐𝑐𝑖𝑖 from the conditional distribution 𝑋𝑋1/𝑋𝑋1 > 𝑠𝑠𝑖𝑖, then the value 
𝑐𝑐𝑖𝑖 − 𝑠𝑠𝑖𝑖 is the simulated discharge time. 

 
B. The series of new admitted patients 𝑰𝑰𝒋𝒋, 𝒋𝒋 = 𝟏𝟏, … ,𝒌𝒌 and the number 𝑯𝑯𝑾𝑾𝒌𝒌 of hospitalized 

patients are known at the moment of running the simulation model. However, individual 
arrival dates are not known for the admitted patients and the method developed for the case A 
can not be applied. 
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Let 𝑝𝑝𝑖𝑖𝑗𝑗 be the probability that a patient admitted the day 𝑖𝑖 is discharged the day 𝑗𝑗, and 𝑞𝑞𝑖𝑖𝑗𝑗 the 
probability that a patient admitted the day 𝑖𝑖 is discharged later than day 𝑗𝑗. The end of day 𝑘𝑘 is the 
present time at which the simulation model is run. The probability that a patient arriving the day 
𝑖𝑖 is still hospitalized is 𝑞𝑞𝑖𝑖𝑊𝑊. Every past day 𝑖𝑖, 𝑖𝑖 = 1, … , 𝑘𝑘, 𝐼𝐼𝑖𝑖 new patients are admitted, which 
account for ∑ 𝐼𝐼𝑖𝑖𝑊𝑊

𝑖𝑖=1  patients of which 𝐻𝐻𝑊𝑊𝑊𝑊 are still hospitalized. The method sketched in Fig. 3 
selects 𝐻𝐻𝑊𝑊𝑊𝑊 patients out of ∑ 𝐼𝐼𝑖𝑖𝑊𝑊

𝑖𝑖=1  by a sampling process without replacement that uses the set of 
probabilities {𝑞𝑞𝑖𝑖𝑊𝑊; 𝑖𝑖 = 1, … , 𝑘𝑘}. 

 
Fig. 3 The algorithm implemented to select which patients are hospitalized at the beginning of the simulation. For the 
ICU the algorithm is the same but referring all the parameters to the ICU (arrivals, bed occupation...). 

The application of this method results in the simulation of the admission date of each admitted 
patient.  Therefore, the simulation of the discharge and transfer events can be performed according 
to the method of case A. 

The probabilities 𝑞𝑞𝑖𝑖𝑊𝑊 are calculated for patients admitted in the ICU from the probability 
distribution of variable 𝑌𝑌, and for patients admitted to a hospital ward from the probability 
distribution of variable 𝑋𝑋. 

 
C. For each day 𝒋𝒋,  𝒋𝒋 = 𝟏𝟏, … ,𝒌𝒌, the number 𝑰𝑰𝒋𝒋 of new admitted patients and the number 𝑶𝑶𝒋𝒋 of 

discharged patients are known. We use this information (see Fig. 4) to estimate for each 
patient the probability of being one of the 𝐻𝐻𝑊𝑊𝑊𝑊 admitted patients at the end of day 𝑘𝑘 and the day 
of admission 𝑖𝑖. Once these probabilities are calculated, the procedures exposed in cases A and 
B can be applied. 

 
Fig. 4 Diagram that illustrates the number of new admitted patients (𝐼𝐼𝑗𝑗) and the number of discharged patients (𝑂𝑂𝑗𝑗) 
per day (𝐷𝐷𝑗𝑗). 

Using, as before, the notation 𝑝𝑝𝑖𝑖𝑗𝑗 for the probability of a patient being admitted the day 𝑖𝑖 and 
discharged the day 𝑗𝑗, and 𝑞𝑞𝑖𝑖𝑗𝑗 for the probability of a patient being admitted day 𝑖𝑖 and discharged 
later than day 𝑗𝑗, then the expected number of discharge patients the day 𝑗𝑗 is ∑ 𝑝𝑝𝑖𝑖𝑗𝑗𝐼𝐼𝑖𝑖

𝑗𝑗
𝑖𝑖=1  and the 

observed number 𝑂𝑂𝑗𝑗. Let 𝑔𝑔𝑗𝑗 be the factor verifying 𝑔𝑔𝑗𝑗 ∑ 𝑝𝑝𝑖𝑖𝑗𝑗𝐼𝐼𝑖𝑖
𝑗𝑗
𝑖𝑖=1 =  𝑂𝑂𝑗𝑗, so that 𝑝𝑝𝑖𝑖𝑗𝑗 = 𝑔𝑔𝑗𝑗𝑝𝑝𝑖𝑖𝑗𝑗𝐼𝐼𝑖𝑖 is 

the updated expected number of patients arriving the day 𝑖𝑖 that are discharged the day 𝑗𝑗. 
Similar calculation is performed for the number of admitted patients at the end of day 𝑘𝑘: 

∑ 𝑞𝑞𝑖𝑖𝑊𝑊𝐼𝐼𝑖𝑖𝑊𝑊
𝑖𝑖=1  is the expected number of admitted patients at the end of day 𝑘𝑘 that arrived the day 𝑖𝑖 

 

𝑓𝑓𝑖𝑖 ←
𝑞𝑞𝑖𝑖𝑘𝑘

∑ 𝐼𝐼𝑗𝑗𝑘𝑘
𝑗𝑗=1 𝑞𝑞𝑗𝑗𝑘𝑘

 

 
𝐹𝐹𝐹𝐹𝑤𝑤 𝑗𝑗 = 1, … ,𝐻𝐻𝑊𝑊𝑘𝑘  𝑤𝑤𝐹𝐹 

 
{𝑢𝑢𝑠𝑠𝑒𝑒 𝑎𝑎 𝑤𝑤𝑎𝑎𝑝𝑝𝑤𝑤𝐹𝐹𝑟𝑟 𝑝𝑝𝑢𝑢𝑟𝑟𝑏𝑏𝑒𝑒𝑤𝑤 𝑢𝑢 → 𝑈𝑈(0,1) 𝑡𝑡𝐹𝐹 𝑠𝑠𝑒𝑒𝑙𝑙𝑒𝑒𝑐𝑐𝑡𝑡 𝑎𝑎 𝑝𝑝𝑎𝑎𝑡𝑡𝑖𝑖𝑒𝑒𝑝𝑝𝑡𝑡 𝑎𝑎𝑐𝑐𝑐𝑐𝐹𝐹𝑤𝑤𝑤𝑤𝑖𝑖𝑝𝑝𝑔𝑔 𝑡𝑡𝐹𝐹 𝑝𝑝𝑤𝑤𝐹𝐹𝑏𝑏𝑎𝑎𝑏𝑏𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡𝑖𝑖𝑒𝑒𝑠𝑠 𝑓𝑓𝑖𝑖  
 

𝑠𝑠𝑢𝑢𝑝𝑝𝑝𝑝𝐹𝐹𝑠𝑠𝑒𝑒 𝑝𝑝𝑎𝑎𝑡𝑡𝑖𝑖𝑒𝑒𝑝𝑝𝑡𝑡 𝑎𝑎𝑤𝑤𝑤𝑤𝑖𝑖𝑣𝑣𝑖𝑖𝑝𝑝𝑔𝑔 𝑤𝑤𝑎𝑎𝑦𝑦 𝑗𝑗 𝑖𝑖𝑠𝑠 𝑠𝑠𝑒𝑒𝑙𝑙𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑤𝑤, 𝑡𝑡ℎ𝑒𝑒𝑝𝑝 𝑢𝑢𝑝𝑝𝑤𝑤𝑎𝑎𝑡𝑡𝑒𝑒 𝑝𝑝𝑤𝑤𝐹𝐹𝑏𝑏𝑎𝑎𝑏𝑏𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡𝑖𝑖𝑒𝑒𝑠𝑠 𝑓𝑓𝑖𝑖 
 

𝑓𝑓𝑖𝑖 ←
𝑓𝑓𝑖𝑖

1 − 𝑓𝑓𝑗𝑗
     } 
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and 𝐻𝐻𝑊𝑊𝑊𝑊 the actual number of admitted patients. Let 𝑔𝑔𝑊𝑊∗  be the factor verifying 𝑔𝑔𝑊𝑊∗ ∑ 𝑞𝑞𝑖𝑖𝑊𝑊𝐼𝐼𝑖𝑖𝑊𝑊
𝑖𝑖=1 =

 𝐻𝐻𝑊𝑊𝑊𝑊, and therefore 𝑝𝑝𝑖𝑖𝑊𝑊∗ = 𝑔𝑔𝑊𝑊∗𝑞𝑞𝑖𝑖𝑊𝑊𝐼𝐼𝑖𝑖 is the updated expected number of patients arriving the day 𝑖𝑖 
that still are hospitalized at the end of day 𝑘𝑘. 

The estimated new expected values 𝑝𝑝𝑖𝑖𝑗𝑗 , 𝑗𝑗 = 𝑖𝑖, … , 𝑘𝑘 𝑎𝑎𝑝𝑝𝑤𝑤 𝑝𝑝𝑖𝑖𝑊𝑊∗  are used to rescale the probabilities 
𝑞𝑞𝑖𝑖𝑊𝑊: let 𝛾𝛾𝑖𝑖 the factor satisfying that 𝛾𝛾𝑖𝑖(∑ 𝑝𝑝𝑖𝑖𝑗𝑗 +  𝑝𝑝𝑖𝑖𝑊𝑊∗ ) = 𝐼𝐼𝑖𝑖𝑊𝑊

𝑗𝑗=𝑖𝑖 , that is, 𝛾𝛾𝑖𝑖�∑ 𝑔𝑔𝑗𝑗𝑝𝑝𝑖𝑖𝑗𝑗𝐼𝐼𝑖𝑖
𝑗𝑗
𝑖𝑖=1 + 𝑔𝑔𝑊𝑊∗𝑞𝑞𝑖𝑖𝑊𝑊𝐼𝐼𝑖𝑖� =

𝐼𝐼𝑖𝑖 and then, 𝛾𝛾𝑖𝑖�∑ 𝑔𝑔𝑗𝑗𝑝𝑝𝑖𝑖𝑗𝑗
𝑗𝑗
𝑖𝑖=1 + 𝑔𝑔𝑊𝑊∗𝑞𝑞𝑖𝑖𝑊𝑊� = 1,. Therefore, 𝛾𝛾𝑖𝑖𝑔𝑔𝑊𝑊∗𝑞𝑞𝑖𝑖𝑊𝑊 is the updated estimation of the 

probability that a patient arriving the day 𝑖𝑖 is still hospitalized at the end of day 𝑘𝑘. 
 

D. Only the number 𝑯𝑯𝑾𝑾𝒌𝒌 of hospitalized patients is known. This case happens when the 
forecasting of daily hospitalized patients is performed from the series of aggregated positive 
cases in the local area, 𝑐𝑐(𝑡𝑡), and a hospitalization factor 𝑓𝑓ℎ is applied. In this situation the arrival 
date of the patients currently admitted at the hospital (end of day 𝑘𝑘) is simulated by first 
simulating the arrival of patients each day before (𝑖𝑖 = 1, … , 𝑘𝑘) and then by applying the method 
of paragraph B. The number of hospitalized patients each day 𝑖𝑖 = 1, … , 𝑘𝑘 is simulated by 
sampling values from a binomial distribution with parameters 𝑐𝑐(𝑖𝑖) − 𝑐𝑐(𝑖𝑖 − 1), the total number 
of new positive cases in day 𝑖𝑖, and 𝑓𝑓ℎ, the probability that a positive case needs to be 
hospitalized. 
 
Once a discharge time or a transfer time between ward and ICU has been simulated for each 

hospitalized patient, the event calendar records those times, together with the arrival time of the 
next COVID-19 patient. The fitted Gompertz curve provides the number of patients arriving each 
day. These arrivals can be uniformly distributed during the next 24 hours or following a non-
stationary pattern when, for example, a significant decrease of arrivals occurs at night. The clock 
of the simulation is advanced from zero to the minimum of the times recorded in the event 
calendar vector. 

 

6 The simulator 
The simulator developed for this work is presented in this section. The types of inputs required 

to start the simulator are described first, depending on the level of information known. 
Subsequently, the results obtained with this tool are shown graphically. 

 

6.1 Input data 
The developed simulator has a lot of flexibility to simulate a large number of scenarios and in 

different conditions. This allows medical staff to adapt the model to their particular hospital while 
testing different results by modifying some parameters. There are two types of input data to the 
simulator, depending on whether they are input parameters that are configured on the simulator 
screens before predictions are made or if they are external files to the program that the simulator 
needs to read to perform the simulation. 

Simulator parameters 
The simulator allows the user to modify the factors mentioned in Section 3.2 (𝑓𝑓𝑔𝑔 and 𝑓𝑓ℎ). As 

explained in this section, in the early stages of the pandemic, it can be difficult to fit the curve of 
hospitalized patients directly due to the scarcity of data. In that phase, the cases of a larger region 
are fitted, and the predictions are scaled with both factors. These factors can be introduced 
following the experts' criteria (overall 𝑓𝑓ℎ) or based on the proportion of the population when 
scaling cases of positives from a larger region to a smaller one. When fitting the hospitalized 
patient curve, the factors mentioned must be 1. 

Another parameter to introduce is the probability that a patient who arrives at the hospital needs 
special care in the ICU (𝑝𝑝𝐼𝐼𝐶𝐶𝐼𝐼). The percentage of such patients who are directly admitted is also 
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indicated (𝑝𝑝𝐼𝐼𝐶𝐶𝐼𝐼_0), distinguishing them from those who spent a few days in wards before (𝑝𝑝𝐼𝐼𝐶𝐶𝐼𝐼_1). 
In turn, it is possible to define the distribution that the length of stay of the COVID-19 patients 
follows (Weibull, lognormal ...). For each selected distribution, the simulator allows the user to 
configure its parameters. 

Finally, the simulator allows the user to select one of the four types of simulation outlined in 
Section 5.2 (A, B, C, D), depending on the amount of information available to the user. He or she 
should consider the simulation type selected to provide the correct input files. 

External files 
One of the input files required by the simulator is the accumulated historical series, either of 

positive cases or patients admitted to the hospital. One series or another will be used depending 
on the phase of the pandemic or the amount of information available. These series are used to 
obtain the best fitting Gompertz curve, which allows the patient arrivals pattern to be estimated. 

The other input files are related to the type of simulation to be run. If full information is required 
(A), the simulator is fed by an input data file obtained from the hospital electronic health record 
(EHR) system. The information needed for each COVID-19 patient arriving at the health system 
is the dates of hospital admission and discharge and the dates of ICU admission and discharge. If 
a field is empty, then the associated event has not occurred. For example, an already discharged 
patient from hospital with empty fields in the ICU fields means that this patient did not need 
intensive healthcare. A patient will be admitted in the health system at the beginning of the 
simulation when they have an admission date, but their discharge date field is empty. 

The input data file records the information of all COVID-19 patients from the first day of the 
outbreak to the present day. Therefore, in this modality, the simulator can reproduce the 
occupancy of the hospital and ICU from the beginning of the outbreak until the present, and at 
this moment it is known the number of patients in the health system (in all hospitalization 
modalities) and the date of admission of those patients. This information is used to start the 
simulation run as it is explained in Section 5.2. 

Finally, the simulation could also be run without specifying all the disaggregated information 
of each patient in the health system, just by knowing the number of patients admitted in wards 
and in the ICU (D). Or knowing, in addition to this, both the number of daily admissions and 
patient discharges (C) or only the admissions (B). These series are provided as external input files. 
In these cases, the simulator is not able to reproduce the past and get a very accurate representation 
of the health system at time zero of the simulation clock, but it can be estimated. 

 

6.2 Simulation output 
During the simulation, the program generates arrivals and discharges of patients of both the 

hospital and the ICU. The system evolves and the number of necessary beds is recorded at any 
time. In this simulation model, there are two sources of randomness. On the one hand, the number 
of patients arriving at the system (hospital and ICU), and on the other, the length of stay of 
patients, according to the distributions mentioned in Section 4.1. In each program run, the 
configured scenario is simulated many times (thousands), and thus a distribution of the number 
of beds needed each day is obtained since, in each simulation, the occupancy curve varies. The 
simulator calculates percentiles, which are stored in an Excel file, specifically the 5th percentile 
(P5), the 50th percentile (P50), and the 95th percentile (P95). Also, these percentiles, which 
represent confidence bands, are plotted on a graph. 

Fig. 5 shows the graphic outputs that are obtained with the program. On the left side, the 
necessary hospitalization beds are observed, while on the right side the same graph is shown but 
for the ICU occupation. The green-colored line represents the real evolution of the occupation, 
and the black dot indicates the Simulation Starting Point (SSP), that is, the moment from which 
it is simulated. 
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Fig. 5 Number of necessary hospitalization and ICU beds respectively for the following days. From the SSP, 3 lines 
corresponding to the 5th, 50th, and 95th percentiles are plotted. 

 

7 Application to real cases 
In this section, a case study is presented, in which the explained methodology has been applied 

to a region of Spain (Navarre). Firstly, we briefly introduce how the virus has affected Navarra 
globally, and then, some predictions of beds obtained with the program in different moments are 
presented and compared with the real bed occupancy curve. 

 

7.1 Incidence of COVID-19 disease in Navarre (Spain) 
Navarre is a small community of the north of Spain. Its population is around 650,000 

inhabitants, with more than a half gathered around the capital (Pamplona) and its surroundings, 
an area that represents 5% of the total surface. With this distribution of population, the Health 
Services of Navarre has a main hospital located in Pamplona, with more than 1,000 available 
hospital beds, and two secondary hospitals in two of the most populated cities (Estella and 
Tudela). In total, the public health system in Navarra has 1,466 hospital beds and 45 ICU beds, 
with the possibility of increasing these quantities if necessary. 

Navarre was among the five Spanish autonomous communities with a higher cumulative 
incidence rate of COVID-19 confirmed cases at the beginning of the pandemic, according to the 
data collected by the Government of Navarre [72]. By May 12, 7,752 COVID-19 cases (11.9 per 
1,000 inhabitants) had been confirmed in Navarre, and among them, 1,704 had been admitted to 
public hospitals (2.6 per 1,000). Fig. 6 shows four graphs with daily and cumulative data about 
positive cases and patients who have been admitted to public hospitals in Navarre. It is observed 
that time trends peaked on March 25 and 27 and decreased after April 1 and 2. 

Observe that as of April 28 there seems to be a rebound in the number of positive cases, (see 
red-colored values), which are not reflected in the number of hospitalized patients. This is because 
in the first stage of the pandemic the system's ability to perform tests was limited, and 
symptomatic patients were those who approached the system. However, as cases have decreased, 
the health system has reached out to patients to prevent further outbreaks, and far more cases of 
asymptomatic individuals have been detected than previously accounted for. This shows that 
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when adjusting the Gompertz model based on positive cases, there are parameters, such as the 
hospitalization factor (𝑓𝑓ℎ), that vary dynamically and must be updated. 

 
Fig. 6 Daily and cumulative data of positive cases and hospitalized patients recorded in Navarre from February 29 to 
May 12. 

 

7.2 Predictions of both hospitalization and ICU bed occupancy 
7.2.1 Fitting the cumulative positive cases 

In the early stages of a pandemic, there is a scarcity of data on both the number of people 
infected with the virus and hospitalized patients, as well as in the length of stays observed in the 
hospital. Therefore, the involvement of experts is very important and necessary to estimate these 
parameters at these stages. In this way, a first approach can be made to simulate the evolution of 
the pandemic in the following days. 

Navarre was one of the first communities in Spain to be infected, so at the beginning, the 
historical series of people infected with the virus was used to estimate the patient arrival pattern. 
Another possibility would be to use the cumulative positive cases of Spain and apply the 
appropriate geographic factor (𝑓𝑓𝑔𝑔). The problem that usually appears at the beginning of the 
outbreak is that the trend may lead to an exponential growth of the series. To avoid this, the total 
number of expected positive cases (𝐴𝐴 in equation (1)) is fixed, to obtain a realistic output from 
the Gompertz growth model fit. 

Fig. 7 shows different results after applying the Gompertz growth model fit to the cumulative 
positive cases in Navarre. In the early stages of the pandemic (03-16), two curves can be seen, 
one of them obtained using the cumulative positive cases of Spain (03-16(Spain)). In addition, 
three more fits made on March 31 (03-31), April 15 (04-15), and April 30 (04-30) are exposed. 
Note that the last values in the series are not predicted very accurately and this is due to what was 
discussed in Section 7.1. These results demonstrate that accounting for positive cases has 
changed. 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.12.20173328doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.12.20173328


 
Fig. 7 Cumulative positive cases of Navarre from February 29 to May 12 and different fitted curves obtained from 
the Gompertz growth model. 

The first two curves on March 16 were obtained after setting parameter 𝐴𝐴. For the case of Spain, 
𝐴𝐴 =  175,000 was established according to the cumulative incidence observed in China and 
reported in the bibliography, and comparing the evolution with Italy, where the pandemic 
outbroke a few weeks earlier. Then 𝑓𝑓𝑔𝑔 scales the curve. The criterion for choosing its value was 
the rate of positive cases between Navarre and Spain at that time (3%) rather than the rate of 
populations between both regions (1.3%). In the case of the cumulative positive cases in Navarra, 
𝐴𝐴 =  6,500 was set (1% of the total population of Navarre), since the population in this region is 
more concentrated than in the rest of Spain, and this makes the infection more aggressive. 

At the initial stage of the outbreak when there is not enough data to estimate the length of stay 
of patients, a triangular distribution is used. Experts fix the minimum, maximum, and most 
probable time as 10, 18, and 13 days respectively. In addition, a hospitalization factor (𝑓𝑓𝑔𝑔) must 
be applied (0.35 for hospitalized patients and 0.04 for ICU patients), because the arrival pattern 
is based on positive cases. Fig. 8 shows both the prediction of the number of beds occupied in the 
hospitals and in the ICUs of Navarre simulated on March 16 for the next days. On the upper side, 
the predictions based on the cumulative positive cases of Navarre are observed, while those on 
the lower side are based on the cumulative positive cases of Spain. In each graph, the real 
evolution of bed occupancy in each area is shown in green. 
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Fig. 8 Comparison between the predictions made on March 16 for the number of beds occupied in the hospitals and 
the ICUs of Navarre and the real occupancies. The cumulative positive cases of Navarre have been used for 
predictions in the two graphs at the top, while the cumulative positive cases of Spain in those at the low. 

Note that the most important predictions for the medical staff are for the short-medium term 
(yellow-colored area in Fig. 8), and the results obtained are very similar to the real ones 
concerning both hospital and ICU occupancies. Fig. 9 shows a zoom of these parts of the graphs. 
The simulator's ability to obtain accurate predictions for the next 15 days, even in the early stages 
of the pandemic, is demonstrated here. 

 
Fig. 9 Expanded part of the predictions (for both hospitalization and ICU) made on March 16 for the next 15 days 
using the cumulative positive cases of Navarre. 
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7.2.2 Fitting the cumulative hospitalized patients comparing levels of information 
As the pandemic spreads, the amount of information increases, which makes it possible to 

improve the simulation model. Since March 26, the arrival pattern is calculated from the series of 
patients admitted to the hospital. In the first few days, it was required to fix the total number of 
expected hospitalized patients (𝐴𝐴), as with the positive cases, due to the curve fitted by the 
Gompertz growth model increases exponentially. According to experts, about 2,000 patients were 
expected to be admitted to public hospitals during the pandemic. Fig. 10 shows different results 
after applying the Gompertz growth model fit to the cumulative hospitalized patients in Navarre. 
It can be seen that the curve obtained on March 26 overestimate hospitalizations, so it was 
replaced in the simulation by that in which the maximum is set at 2,000 (03-26 (2,000)). 

 
Fig. 10 Cumulative hospitalized patients of Navarre from February 29 to May 12 and different fitted curves obtained 
from the Gompertz growth model. 

Regarding the length of stay of patients both in hospital and ICU, there were already enough 
data to estimate them every day, as it is explained in Section 4.2. At the beginning of the 
pandemic, the length of stay of patients showed a reasonable fit to a Weibull distribution, 
although, as time goes by and more data has been obtained, the lognormal distribution has shown 
to be a better model. Each time the data was analyzed, the parameters of the distribution were 
configured for the simulation. Table 4 lists those parameters used in the simulations at different 
moments of the pandemic, as well as some of the variables entered manually in the simulator 
defined in Section 4.2. 

With all this information updated day by day, and the curves shown in Fig. 10, it is possible to 
simulate the evolution of the bed occupancy from a specific day. Fig. 11 shows two types of 
simulations carried out on March 26 and April 4. The difference between them lies in the amount 
of information used for the simulation. On the one hand, all the information was available, such 
as series of hospitalized patients and detailed information of the patients admitted (dates of 
admission and discharge of each patient, admission to the ICU, etc.). On the other hand, only the 
information about the series of hospital and ICU admissions, and the number of patients admitted 
at the beginning of the simulation (𝐻𝐻𝑊𝑊𝑊𝑊 y 𝐻𝐻𝐼𝐼𝑊𝑊) were used. These assumptions correspond to 
scenarios A and B respectively, which are developed in Section 5.2. 
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Date 𝑿𝑿 (days) 𝑿𝑿� 
(days) 𝒀𝒀 (days) 𝒀𝒀� 

(days) 𝒁𝒁 (days) 𝒁𝒁� 
(days) 𝒑𝒑𝑰𝑰 𝒑𝒑𝑰𝑰𝑰𝑰 𝒑𝒑𝑰𝑰𝑾𝑾 

03-26 
Weibull 
(1.223, 
18.470) 

17.291 
Weibull 
(1.450; 
22.707) 

20.589 
Weibull 
(2.337, 
3.802) 

3.369 0.075 0.390 0.444 

03-29 
Weibull 
(1.204, 
18.489) 

17.376 
Weibull 
(1.450; 
24.663) 

22.363 
Weibull 
(2.424, 
4.016) 

3.560 0.046 0.310 0.308 

04-01 
Weibull 
(1.261, 
15.421) 

14.334 
Weibull 
(1.450; 
25.423) 

25.423 
Weibull 
(1.670; 
4.410) 

3.939 0.043 0.310 0.353 

04-04 
Weibull 
(1.030, 
15.000) 

14.821 
Weibull 
(1.430; 
28.677) 

26.053 
Weibull 
(1.691; 
4.445) 

3.967 0.042 0.272 0.36 

04-10 
Weibull 
(1.050; 
14.914) 

14.627 
Weibull 
(1.500; 
23.948) 

21.619 
Weibull 
(1.652; 
4.436) 

3.966 0.042 0.272 0.500 

04-16 
Weibull 
(1.000; 
14.844) 

14.844 
Weibull 
(1.400; 
24.304) 

22.151 
Weibull 
(1.646; 
4.385) 

3.921 0.040 0.309 0.619 

04-26 
Lognormal 

(2.275; 
1.070) 

17.241 
Weibull 
(1.050; 
26.006) 

25.507 
Weibull 
(1.464; 
4.565) 

4.134 0.042 0.331 0.628 

Table 4. The parameters used in the simulation at different moments during the pandemic. The distributions of the 
different lengths of stay considered as well as the probabilities related to ICU patients are shown. 

 

 
Fig. 11 Comparative graphs on the predictions made with different levels of information (scenarios A and B). Each 
graph shows the predictions made for the number of beds occupied in the hospitals and the ICUs of Navarre and the 
real occupancies. The four predictions at the top side were made on March 26, while those four at the low were made 
on April 4. 
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In view of the results, it can be seen that there is no great difference between the two types of 
simulation, which is very encouraging since the usefulness of the simulator is demonstrated even 
when all the disaggregated information on patients is not available. In addition to this, it is 
observed that the results are more accurate on the second date because more information is 
available and it is somewhat easier to predict the occupation of beds once the peak occupancy has 
been exceeded. 

8 Conclusions 
Healthcare systems are overburdened due to a large demand for healthcare services from 

COVID-19 patients that leads to strained ICU’s capacity and overworked healthcare workers. 
Having accurate predictions of the resources needed for taking care of these patients are essential 
for planning in advance the necessary resources and reduce the pressure on the system and stress 
on the healthcare staff. 

Normally, managers can create contingency plans to deploy sufficient resources to meet the 
increase in demand based on the predictions made about one week in advance. In this paper, we 
have developed a DES model for predicting the need for hospital resources, particularly ward and 
ICU beds. The simulation model is fed by the predictions of new hospitalizations made, directly 
or indirectly, through a PG model. The Gompertz growth model has been selected after analyzing 
the fitting and forecasting properties of four PG models: logistic, Richards, Stannard, and 
Gompertz. An ensemble of these models could improve predictions, but this research is out of the 
scope of this paper and it is left for future work. Besides, other factors influencing the 
consumption of resources are the age and the Adjusted Morbidity Group (AMG) whose inclusion 
in the stochastic models for the length of stay can provide more accurate predictions. 

The structural simplicity of the simulation model makes it appropriate for general use, i.e., it 
can be adapted to estimate the bed needs in any geographic area. The growth model is simple 
enough to fit it to available data or, in the absence of it, to be estimated by educated guesses of 
experts. 

It is worthy to mention the strength of simulation models in this context of uncertainty: their 
capability to run what-if scenarios that allow decision-makers to explore the consequences of 
different policy choices, like the location and number of additional healthcare resources needed 
for COVID-19 patients given the uncertainty in demand. The simulation model is data-driven, 
patients arrivals and length of stays can be estimated from data, but it has also the flexibility of 
allowing the simulation from the input determined by the user to explore additional scenarios. 

From a technical and methodological point of view, a distinct feature of the simulation model 
is its focus on the transition period of the health system instead of the stationary state as it is usual 
in the simulation studies or transition periods but after regeneration points. This transition period 
reproduced by the simulator is unique as the outbreak evolves with no regeneration points. 
Therefore, the accurate representation of the initial health system state plays an important role. 
The simulation of the remaining length of stay of each patient already admitted in the hospital has 
shown to be a key point to project smoothly the dynamics of the health system and linking it (and 
mixing it) with the new dynamics obtained from the simulation of the arrivals and stays of the 
new incoming patients. However, the simulation of the remaining length of stay depends on the 
information level about the admitted patients. In this paper, we have considered four different 
levels of information that grades from the complete information to the patient level (knowing 
exactly the dates of admission and discharge) to the only knowledge of the number of admitted 
patients. The simulation model can work with any of these information levels, making it a tool of 
very general application. 

This simulation paradigm is most suitable for the realistic representation of processes in health 
services, which makes it more credible and easier to understand by the managers that will have 
to rely on their results to make their decisions. The involvement in the development of the 
simulation model of the person in charge of the hospital system logistic person has been crucial 
to obtaining a user-centered simulator, which was daily feed with the new data gathered by the 
hospital administrative information system.  
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APPENDICES 
A. Results of positive cases predictions for the following 5, 10, 

and 15 days, at 25%, 45%, and 65% of total cases detected. 
25% 

# Country Date 
Total positive 

cases 
Logistic Gompertz Richards Stannard 

1 USA 2020-04-12 529,951 2,233.0 554.9 553.7 553.7 
2 Brazil 2020-05-16 218,223 1,497.5 1,099.9 1,098.4 1,100.4 
3 Russia 2020-05-04 134,687 564.2 381.8 357.2 357.2 
4 India 2020-05-16 85,940 601.4 350.0 350.0 350.1 
5 UK 2020-04-12 78,991 320.6 249.7 209.7 209.7 
6 Spain 2020-03-26 66,460 297.1 147.8 147.8 147.9 
7 Italy 2020-03-24 63,927 269.7 150.8 156.7 156.7 
8 Peru 2020-05-08 58,526 608.4 385.0 385.1 385.1 
9 Iran 2020-04-02 47,593 1,192.5 969.6 969.6 969.7 
10 Germany 2020-03-28 48,582 269.9 315.8 287.4 287.4 
11 Turkey 2020-04-11 47,029 639.9 272.4 272.5 272.6 
12 Chile 2020-05-18 43,781 741.7 732.2 735.8 735.8 
13 France 2020-03-30 40,174 163.2 92.6 93.0 94.6 
14 Mexico 2020-05-06 40,186 207.8 130.5 128.3 128.3 
15 Pakistan 2020-05-15 37,218 304.3 223.5 223.1 223.5 
16 Saudi Arabia 2020-05-07 31,938 194.3 281.4 195.2 195.2 
17 Canada 2020-04-14 25,663 97.0 83.7 57.3 57.3 
18 Bangladesh 2020-05-18 22,268 270.9 134.5 134.5 134.5 
19 China 2020-02-05 24,320 164.3 114.1 114.1 114.1 
20 Qatar 2020-05-09 20,201 147.6 206.0 139.2 139.2 

Table 5. MAE calculated for the fit of each model at 25% of total cases detected. 

# Country L_5 G_5 R_5 S_5 L_10 G_10 R_10 S_10 L_15 G_15 R_15 S_15 
1 USA 6.840% 2.234% 2.090% 2.091% 15.771% 1.732% 1.558% 1.559% 26.066% 2.473% 2.646% 2.645% 
2 Brazil 5.154% 1.565% 1.596% 1.567% 12.003% 3.820% 3.899% 3.827% 20.594% 4.942% 5.080% 4.956% 
3 Russia 14.866% 7.418% 8.145% 8.145% 27.301% 12.043% 13.585% 13.585% 40.983% 15.807% 18.525% 18.525% 
4 India 6.100% 2.053% 2.055% 2.056% 13.805% 5.244% 5.247% 5.248% 24.003% 8.760% 8.765% 8.768% 
5 UK 8.099% 1.903% 1.089% 1.089% 16.215% 3.978% 1.343% 1.343% 26.289% 6.670% 2.387% 2.387% 
6 Spain 3.502% 10.295% 10.283% 10.284% 9.853% 31.939% 31.899% 31.898% 19.188% 65.792% 65.700% 65.691% 
7 Italy 1.865% 10.643% 7.881% 7.881% 5.990% 24.930% 17.171% 17.171% 13.465% 44.691% 28.294% 28.295% 
8 Peru 1.806% 3.482% 3.480% 3.480% 5.851% 5.624% 5.619% 5.618% 12.624% 8.101% 8.092% 8.089% 
9 Iran 2.635% 1.778% 1.777% 1.777% 2.157% 7.030% 7.027% 7.028% 3.204% 16.013% 16.006% 16.007% 
10 Germany 10.915% 3.847% 2.470% 2.470% 30.272% 3.495% 12.258% 12.258% 50.039% 4.967% 23.066% 23.066% 
11 Turkey 15.075% 4.756% 4.761% 4.764% 29.363% 6.250% 6.261% 6.268% 45.514% 7.633% 7.652% 7.666% 
12 Chile 5.868% 8.082% 5.183% 5.183% 10.310% 13.948% 8.985% 9.253% 12.393% 18.030% 9.969% 20.650% 
13 France 9.720% 4.424% 4.396% 4.302% 15.968% 17.090% 16.910% 16.324% 26.496% 37.173% 36.735% 35.309% 
14 Mexico 6.396% 0.895% 2.187% 2.187% 13.397% 2.498% 5.044% 5.044% 23.518% 5.093% 9.494% 9.494% 
15 Pakistan 0.886% 4.092% 4.063% 4.089% 1.968% 5.827% 5.779% 5.823% 3.048% 10.311% 10.236% 10.303% 
16 Saudi Arabia 5.616% 2.142% 6.813% 6.814% 12.669% 2.608% 14.917% 14.917% 24.360% 2.470% 27.770% 27.770% 
17 Canada 11.915% 3.656% 6.871% 6.871% 24.599% 10.482% 16.277% 16.277% 38.866% 19.003% 27.603% 27.603% 
18 Bangladesh 13.722% 8.747% 8.748% 8.750% 25.468% 15.608% 15.610% 15.613% 40.500% 24.279% 24.283% 24.288% 
19 China 13.144% 5.681% 5.669% 5.663% 44.477% 12.518% 12.528% 12.534% 75.439% 11.828% 11.796% 11.775% 
20 Qatar 8.920% 1.879% 11.294% 11.294% 19.084% 5.653% 23.360% 23.360% 31.546% 9.641% 37.870% 37.870% 

Table 6. Normalized MAEs obtained for each prediction and model at 25% of total cases detected. 
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40% 

# Country Date 
Total positive 

cases 
Logistic Gompertz Richards Stannard 

1 USA 2020-04-23 842,629 6,372.8 1,421.9 1,422.8 1,433.3 
2 Brazil 2020-05-24 347,398 2,085.6 1,422.1 1,413.6 1,422.7 
3 Russia 2020-05-12 221,344 1,316.9 521.2 521.3 521.5 
4 India 2020-05-25 138,845 882.2 480.3 480.4 480.5 
5 UK 2020-04-20 120,067 617.4 320.3 257.3 257.3 
6 Spain 2020-03-31 104,267 351.9 438.7 343.9 343.9 
7 Italy 2020-03-30 97,689 374.7 343.5 205.8 205.8 
8 Peru 2020-05-18 92,273 759.3 483.2 482.1 482.1 
9 Iran 2020-04-16 76,389 1,071.3 1,201.7 1,043.0 1,043.0 
10 Germany 2020-04-03 79,696 486.0 339.2 338.2 338.2 
11 Turkey 2020-04-17 74,193 795.4 345.4 345.5 345.7 
12 Chile 2020-05-26 73,997 854.4 858.2 854.4 854.4 
13 France 2020-04-04 64,338 260.8 200.4 219.2 219.2 
14 Mexico 2020-05-15 62,527 438.7 151.8 151.8 151.9 
15 Pakistan 2020-05-27 59,151 335.9 276.6 285.4 285.4 
16 Saudi Arabia 2020-05-17 52,016 360.6 273.4 256.6 256.6 
17 Canada 2020-04-23 40,179 405.1 175.7 175.7 175.7 
18 Bangladesh 2020-05-26 35,585 434.7 270.4 270.4 270.5 
19 China 2020-02-08 34,625 185.9 130.2 126.6 126.6 
20 Qatar 2020-05-18 32,604 274.1 216.8 216.8 216.8 

Table 7. MAE calculated for the fit of each model at 40% of total cases detected. 

 
# Country L_5 G_5 R_5 S_5 L_10 G_10 R_10 S_10 L_15 G_15 R_15 S_15 
1 USA 9.702% 3.501% 3.503% 3.525% 15.921% 6.527% 6.531% 6.567% 22.590% 10.112% 10.117% 10.167% 
2 Brazil 1.165% 3.163% 2.984% 3.161% 2.858% 3.924% 3.617% 3.919% 6.209% 6.041% 5.547% 6.032% 
3 Russia 3.420% 2.303% 2.301% 2.299% 5.698% 6.093% 6.090% 6.085% 9.245% 10.728% 10.721% 10.714% 
4 India 4.669% 1.331% 1.334% 1.333% 9.212% 2.274% 2.278% 2.277% 16.059% 3.695% 3.701% 3.700% 
5 UK 6.330% 1.005% 0.710% 0.711% 11.831% 0.913% 2.210% 2.210% 19.098% 1.746% 5.344% 5.344% 
6 Spain 6.632% 5.630% 5.905% 5.906% 13.015% 11.927% 11.725% 11.725% 20.529% 18.121% 18.794% 18.795% 
7 Italy 3.211% 6.294% 1.096% 1.096% 8.347% 9.938% 1.571% 1.571% 14.945% 13.137% 4.334% 4.334% 
8 Peru 6.317% 0.817% 1.035% 1.035% 11.975% 1.669% 2.145% 2.146% 22.254% 6.073% 6.872% 6.873% 
9 Iran 0.582% 6.097% 1.628% 1.628% 1.757% 8.452% 3.338% 3.337% 3.372% 10.640% 5.413% 5.413% 

10 Germany 11.428% 2.083% 2.224% 2.220% 19.849% 2.095% 2.390% 2.381% 27.383% 1.755% 1.802% 1.801% 
11 Turkey 7.319% 1.436% 1.432% 1.429% 13.559% 3.472% 3.463% 3.457% 19.637% 6.500% 6.486% 6.476% 
12 Chile 1.645% 1.636% 1.645% 1.645% 5.823% 5.639% 5.823% 5.817% 14.435% 14.059% 14.432% 7.991% 
13 France 2.158% 12.580% 6.941% 6.940% 3.202% 22.970% 9.453% 9.451% 7.545% 35.881% 10.903% 10.900% 
14 Mexico 7.023% 2.499% 2.501% 2.503% 12.126% 3.558% 3.563% 3.566% 19.255% 5.141% 5.149% 5.154% 
15 Pakistan 3.195% 1.697% 1.489% 1.489% 11.675% 4.830% 7.837% 7.837% 23.909% 11.558% 17.595% 17.595% 
16 Saudi Arabia 9.921% 4.418% 5.822% 5.822% 15.880% 5.955% 8.499% 8.499% 20.963% 5.429% 9.512% 9.512% 
17 Canada 12.339% 6.475% 6.477% 6.478% 19.244% 9.745% 9.749% 9.751% 27.788% 14.521% 14.526% 14.529% 
18 Bangladesh 4.289% 1.024% 1.025% 1.025% 11.261% 3.951% 3.955% 3.954% 20.791% 7.544% 7.550% 7.550% 
19 China 11.511% 10.730% 10.225% 10.225% 37.831% 12.943% 16.756% 16.756% 52.069% 10.778% 15.505% 15.506% 
20 Qatar 5.565% 1.188% 1.204% 1.211% 9.960% 1.348% 1.379% 1.392% 16.349% 1.774% 1.827% 1.849% 

Table 8. Normalized MAEs obtained for each prediction and model at 40% of total cases detected. 
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65% 

# Country Date 
Total positive 

cases 
Logistic Gompertz Richards Stannard 

1 USA 2020-04-13 1,369,964 20,036.0 7,343.8 7,345.7 7,346.8 
2 Brazil 2020-05-31 584,016 2,654.8 1,857.5 1,908.6 1,908.4 
3 Russia 2020-05-19 344,481 1,469.0 1,097.0 846.3 846.3 
4 India 2020-04-13 216,919 1,113.0 511.4 511.6 511.7 
5 UK 2020-04-30 194,990 2,136.8 593.2 593.2 593.3 
6 Spain 2020-06-04 163,472 917.7 639.9 382.2 382.2 
7 Italy 2020-04-15 156,363 1,420.8 585.3 526.1 526.1 
8 Peru 2020-05-27 155,671 1,757.1 792.6 792.9 793.1 
9 Iran 2020-06-06 122,492 3,124.1 1,912.6 1,912.7 1,912.8 
10 Germany 2020-05-31 123,016 907.9 419.2 400.3 400.3 
11 Turkey 2020-05-08 117,589 1,222.6 528.2 463.3 463.3 
12 Chile 2020-06-05 113,628 1,011.6 1,038.2 844.2 844.2 
13 France 2020-02-13 103,573 495.0 525.4 350.4 350.4 
14 Mexico 2020-05-30 101,238 746.9 237.1 237.2 237.3 
15 Pakistan 2020-04-13 93,983 918.8 565.8 565.8 566.0 
16 Saudi Arabia 2020-05-31 83,384 683.4 453.3 430.7 430.7 
17 Canada 2020-05-19 64,922 836.0 346.9 346.9 347.0 
18 Bangladesh 2020-04-13 57,563 534.4 310.3 310.4 310.4 
19 China 2020-04-30 59,865 841.5 556.6 556.6 556.7 
20 Qatar 2020-06-04 52,907 352.0 199.7 199.6 199.6 

Table 9. MAE calculated for the fit of each model at 65% of total cases detected. 

 
# Country L_5 G_5 R_5 S_5 L_10 G_10 R_10 S_10 L_15 G_15 R_15 S_15 
1 USA 7.840% 3.355% 3.356% 3.356% 10.822% 4.910% 4.911% 4.911% 13.993% 6.696% 6.698% 6.698% 
2 Brazil* 2.720% 1.445% 1.396% 1.397% 3.898% 3.799% 3.153% 3.156% 4.007% 4.631% 3.863% 3.867% 
3 Russia 4.285% 1.705% 0.901% 0.902% 7.670% 1.598% 2.524% 2.524% 11.790% 1.254% 4.822% 4.822% 
4 India* 4.293% 0.859% 0.861% 0.861% 7.276% 0.607% 0.609% 0.610% 8.062% 0.575% 0.577% 0.578% 
5 UK 9.641% 4.441% 4.443% 4.444% 12.914% 5.616% 5.618% 5.620% 16.050% 6.681% 6.684% 6.687% 
6 Spain 6.365% 0.354% 2.477% 2.477% 9.902% 0.485% 4.430% 4.430% 13.199% 1.001% 6.451% 6.451% 
7 Italy 7.789% 2.131% 3.037% 3.037% 11.523% 3.678% 4.993% 4.993% 15.241% 5.390% 7.116% 7.116% 
8 Peru 10.445% 6.119% 6.121% 6.122% 12.525% 5.208% 5.210% 5.212% 15.847% 4.811% 4.815% 4.818% 
9 Iran 14.856% 10.700% 10.702% 10.702% 18.765% 13.960% 13.962% 13.963% 23.212% 17.807% 17.809% 17.810% 

10 Germany 4.053% 2.415% 1.864% 1.864% 7.360% 2.354% 1.473% 1.473% 10.611% 2.080% 1.118% 1.118% 
11 Turkey 4.858% 1.079% 0.484% 0.484% 7.419% 0.972% 1.333% 1.333% 10.097% 0.817% 2.504% 2.504% 
12 Chile* 6.750% 9.179% 7.516% 7.517% 11.535% 16.538% 17.398% 17.400% 12.420% 18.133% 19.826% 19.827% 
13 France 5.234% 1.690% 1.813% 1.813% 7.530% 2.840% 2.534% 2.534% 9.905% 3.784% 3.530% 3.530% 
14 Mexico 5.207% 1.082% 1.084% 1.085% 8.908% 1.584% 1.587% 1.588% 11.785% 2.536% 2.537% 2.538% 
15 Pakistan** 11.997% 9.348% 9.351% 9.351% 18.651% 14.243% 14.246% 14.247% - - - - 
16 Saudi Arabia 0.598% 4.724% 3.395% 3.395% 4.029% 4.289% 2.612% 2.612% 10.167% 3.939% 4.547% 4.547% 
17 Canada 5.661% 0.861% 0.862% 0.863% 7.801% 0.674% 0.676% 0.677% 10.379% 0.791% 0.793% 0.794% 
18 Bangladesh 5.516% 2.097% 2.099% 2.099% 9.975% 3.061% 3.064% 3.065% - - - - 
19 China 14.044% 5.492% 5.495% 5.495% 14.165% 8.987% 8.976% 8.973% 14.158% 16.806% 16.781% 16.776% 
20 Qatar 4.045% 0.780% 0.777% 0.775% 5.683% 2.302% 2.293% 2.286% 7.766% 4.616% 4.600% 4.589% 

Table 10. Normalized MAEs obtained for each prediction and model at 65% of total cases detected. 
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