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Abstract 
 

Breast cancer (BC) is the leading cause of cancer deaths in women in the world. Genome-wide 

association studies have identified numerous genetic variants (SNPs) independently associated with BC. 

The effects of such SNPs can be combined into a single polygenic risk score (PRS).  Stratification of 

women according to PRS could be introduced to primary and secondary prevention. Our aim was to 

revalidate a PRS model and to develop a pipeline for individualizing breast cancer screening. 

 

Previously published PRS models for predicting the risk of breast cancer were collected from the 

literature. Models were validated on the Estonian Biobank (EGC) dataset consisting of 32,548 quality-

controlled genotypes with 315 prevalent and 365 incident BC cases and on 249,062 samples in the UK 

Biobank dataset consisting of 8637 prevalent and 6825 incident cases. The best performing model was 

selected based on the AUC in prevalent data and independently validated in both incident datasets. 

Using Estonian BC background information, we performed absolute risk simulations and developed 

individual risk-based recommendations for prevention. 

 

The best-performing PRS included 2803 SNPs. The C-index of the Cox regression model associating BC 

status with PRS was 0.656 (SE = 0.05) with a hazard ratio of 1.66 (95% confidence interval 1.5 - 1.84) on 

the incident EGC dataset. The PRS is able to stratify individuals with more than a 3-fold risk increase. 

The observed 10-year risks of individuals in the 99th percentile exceeded the 1st percentile more than 

10-fold. 

 

PRS is a powerful predictor of breast cancer risk. Currently, PRS scores are not implemented in routine 

BC screening. We have developed PRS-based recommendations for personalized primary and 

secondary prevention and our approach is easily adaptable to other nationalities by using population-

specific background data of other genetically similar populations. 
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Introduction 
 

Breast cancer (BC) is the leading cause of cancer deaths in women. Every year adds 2 million new 

diagnoses and more than 600 000 deaths (1).  Among women of European ancestry, the probability of 

BC onset before the age of 85 is approximately 1 in 8, and 20% of cases occur in women younger than 

50 (2).  Around 30% of the total BC risk has been shown as hereditary (3). Genetic factors include 

pathogenic mutations in high and moderate-risk cancer predisposition genes (BRCA1, BRCA2, ATM, 

CHEK2, TP53, PTEN, STK11, CDH1, PALB2, NBN, NF1, and BARD1), having effects large enough to 

warrant monogenic testing (4-6). However, only a fraction (5-10%) of BC cases are caused by these rare 

genetic variants (7). A considerable part of BC variation is explained by variants outside these high-risk 

genes in the form of BC-associated common single-nucleotide polymorphisms (SNPs) (8). It has only 

recently become possible to aggregate information across many common SNPs to predict disease risk 

and to develop applications with potential clinical utility.  

 

Several studies have combined SNPs with genome-wide significance into a summary estimate of BC risk 

using a polygenic risk score (PRS) approach (9-11). Initial attempts by Mavaddat et al. (10) and Sieh et al. 

(12) demonstrated a strong effect of the score in predicting future BC cases. Other major efforts such as 

those by Mavaddat et al., Khera et al. and Hughes et al. additionally elucidated the use of PRS as a BC 

predictor (9, 13, 14). 

 

BC screening with mammography reduces breast cancer mortality risk 20-40% (15-17). Current BC 

screening guidelines in Estonia are based on age and do not support regular screening of women 

below the age of 50. This protocol disregards younger women with a higher genetic risk. Breast cancer 

PRSs identify differences in genetic risks and provide a straightforward basis for designing personalized 

screening programs by accounting for individual genetic susceptibility (18). Currently, PRS scores have 

not been implemented in routine BC screening but simulations have suggested that risk profile 

informed behavioral adjustments could provide cost-savings to screening and guide risk-based follow-

up actions (19, 20). High-risk estimation could be also the indication for the use of hormonal 

chemoprevention (21). 

 

This study aims to evaluate the risk prediction performance of several published PRS and to assess its 

use as a risk stratification approach in the context of Estonia. Concretely, we aim to use information 

from polygenic risk stratification to propose individual follow-up actions based on current screening on-

boarding strategies. 
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Methods 
 

Biobank participant data 
 

BC datasets were acquired from two population biobanks: the Estonian Biobank of the Estonian 

Genome Center at the University of Tartu (EGC) and the UK Biobank (UKBB). Quality controlled samples 

were divided into prevalent and incident datasets. The prevalent dataset included BC cases diagnosed 

before Biobank recruitment with 5 times as many controls without the diagnosis. Incident data included 

cases diagnosed in any of the linked databases after recruitment to the Biobank and all controls not 

included in the prevalent dataset. Prevalent datasets were used for identifying the best candidate 

model and the incident datasets were used to obtain an independent PRS effect estimate on BC status.  

 

Participant data of Estonian Genome Center 
	
BC cases and controls in retrospective data of EGC were defined by breast cancer ICD-10 code (C50) 

status derived from questionnaires filled at recruitment of the gene donors and from linked data from 

Estonian Cancer Registry (data until 2013), National Health Insurance Fund (data until the end of 2018) 

and Causes of Death Registry (data until 2017 May).  

 

All EGC samples were genotyped in Core Genotyping Lab of Institute of Genomics, University of Tartu, 

using Illumina GSAMD-24v1-0 arrays. Individuals were excluded if their call-rate was < 95% or sex 

defined based on X chromosome heterozygosity did not match declared sex. Variants were filtered by 

call-rate < 95% on the whole EGC dataset, Hardy-Weinberg equilibrium (HWE) test p-value < 1e-4 

(autosomal variants only) and minor allele frequency < 1%. Variant positions were updated to b37 and 

all variants were changed to the TOP strand (https://www.well.ox.ac.uk/~wrayner/strand/). Phasing was 

done using Eagle (v. 2.3) software (22) and imputation with Beagle (v. 28Sep18.793) (23) using the 

Population-specific imputation reference of 2297 WGS samples (24).  

 

Participant data of UK Biobank 
	
This study used genotypes from the UK Biobank cohort (version v3, obtained 07.11.2019) and made 

available to Antegenes under application reference number 53602. The data was collected, genotyped 

using either the UK BiLEVE or Affymetrix UK Biobank Axiom Array. Breast cancer cases in the UK 

Biobank cohort were retrieved by the status of ICD-10 code C50. We additionally included cases with 

self-reported UK Biobank code “1022”. 

 

Quality control steps and in detail methods applied in imputation data preparation have been 

described by the UKBB and made available at 
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http://www.ukbiobank.ac.uk/wp-

content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf. We applied additional 

quality controls on autosomal chromosomes. First, we removed all variants with allele frequencies 

outside 0.1% and 99.9%, genotyping call rate <0.1, imputation (INFO) score <0.4 and Hardy-Weinberg 

equilibrium test p-value < 1E-6.  Sample quality control filters were based on several pre-defined UK 

Biobank filters. We removed samples with excessive heterozygosity, individuals with sex chromosome 

aneuploidy, and excess relatives (> 10). Additionally, we only kept individuals for whom the submitted 

gender matched the inferred gender, and the genotyping missingness rate was below 5%. 

 

Model selection from candidate risk models 
 

We searched the literature for PRS models in the public domain. The requirements for inclusion to the 

candidate set were the availability of the chromosomal location, reference and alternative allele, minor 

allele frequency, and an estimator for the effect size either as odds ratio (OR) or its logarithm (log-OR) 

specified for each genetic variant. In cases of iterative model developments on the same underlying 

base data, we retained chronologically newer ones. The search was performed with Google Scholar and 

PubMed web search engines by working through a list of articles using the search [“Polygenic risk 

score” or “genetic risk score” and “breast cancer”], and then manually checking the results for the 

inclusion criteria. We additionally pruned the PRS from multi-allelic, non-autosomal, non-retrievable 

variants based on bioinformatics re-analysis with Illumina GSA-24v1 genotypes and non-overlapping 

variants between EGC and UKBB data. 

 

PRSs were calculated as 𝑃𝑅𝑆 = 𝛽! 𝜔!"𝑥𝑗!
!!!

!
! , where 𝜔!"  is the probability of observing genotype j, 

where j∈{0,1,2) for the i-th SNP; m is the number of SNPs, and 𝛽! is the effect size of the i-th SNP 

estimated in the PRS. The mean and standard deviation of PRS in the cohort were extracted to 

standardize individual risk scores to Gaussian. We tested the assumption of normality with the mean of 

1000 Shapiro-Wilks test replications on a random subsample of 1000 standardized PRS values. 

 

Next, we evaluated the relationship between BC status and standardized PRS in the two prevalent 

datasets with a logistic regression model to estimate the logistic regression-based odds ratio per 1 

standard deviation of PRS (ORsd), its p-value, model Akaike information criterion (AIC) and Area Under 

the ROC Curve (AUC). The logistic regression model was compared to the null model using the 

likelihood ratio test and to estimate the Nagelkerke and McFadden pseudo-R2. We selected the 

candidate model with the highest AUC to independently assess risk stratification in the incident 

datasets.  
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Independent performance evaluation of a polygenic risk score model 
 

The main aim of the analyses in the incident datasets was to derive a primary risk stratification estimate, 

hazard ratio per 1 unit of standardized PRS (HRsd), using a right-censored and left-truncated Cox-

regression survival model. The start of time interval was defined as the age of recruitment; follow-up 

time was set as the time of diagnosis for cases and at the time of last health data linkage for controls. 

Scaled PRS was used as the only independent variable of BC diagnosis status. 95% confidence intervals 

were created using the standard error of the log-hazard ratio. We also assessed the goodness-of-fit of 

the survival model using Harrell’s C-index and the likelihood ratio test. 

 

Further, we evaluated the concordance between theoretical hazard ratio estimates derived with the 

continuous per unit PRS (HRsd) estimate and the hazard ratio estimates inferred empirically from data. 

For this, we binned the individuals by PRS to 5%-percentiles and estimated empiric hazard ratio of BC 

directly between those classified in each bin and those within the 40-60 PRS percentile. Theoretically 

estimated hazard ratio estimates assume a multiplicative effect of the mean in a PRS bin on the unit 

based hazard ratio. This relationship between HRsd and the expected mean in the truncated Gaussian 

PRS distribution is expressed as 𝐻𝑅!"
!!!(!,!), where the exponent is the mean of a truncated Gaussian 

distribution between two percentiles a and b (bounded between 0 and 1, a<b), and 

Φ!!(𝑎, 𝑏)=(f(Q b ) − f(Q a ))
(𝑎 − 𝑏), where Q(b) is the Gaussian quantile function on a percentile b 

and f(Q(b)) is the Gaussian probability density function value at a quantile function value. We compared 

the two approaches by using the Spearman correlation coefficient and the proportion of distribution-

based 𝐻𝑅!"
!!!(!,!) estimates in empirical confidence intervals. 

 

Absolute risk estimation 
 

Individual 𝜏-year (e.g. 10-year) absolute risk calculations are based on the risk model developed by Pal 

Choudhury et al. (25). Individual absolute risks are estimated for currently a-year old individuals in the 

presence of known risk factors (Z) and their relative log hazard-ratio parameters (𝛽). 95% uncertainty 

intervals for the hazard ratio were derived using the standard error and z-statistic 95% quantiles 

CIHR=exp(𝛽 ±1.96*se(HRsd)), where se(HRsd) is the standard error of the log-hazard ratio estimate. Risk 

factors have a multiplicative effect on the baseline hazard function. The model specifies the next 𝜏-year 

absolute risk for a currently a-year old individual as 

 

𝜆! 𝑡
!!!

!
exp 𝛽!𝑍 𝑒𝑥𝑝 − 𝜆! u exp 𝛽!𝑍 +𝑚 𝑢

!

!
𝑑𝑢 𝑑𝑡,  
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where m(t) is age-specific mortality rate function and 𝜆!(t) is the baseline-hazard function, 𝑡 ≥ 𝑇 and T is 

the time to onset of the disease. The baseline-hazard function is derived from marginal age-specific BC 

incidence rates (𝜆!(t)) and distribution of risk factors Z in the general population (F(z)).   

 

𝜆!(𝑡) ≈ 𝜆! 𝑡 exp 𝛽!𝑍 𝑑𝐹(𝑧) 

 

This absolute risk model allows disease background data from any country. In this analysis, we used 

Estonian background information. We calculated average cumulative risks using data from the National 

Institute of Health Development of Estonia (26) that provides population average disease rates in age 

groups of 5-year intervals. Sample sizes for each age group were acquired from Statistics Estonia for 

2013-2016. Next, we assumed constant incidence rates for each year in the 5-year groups. Thus, 

incidence rates for each age group were calculated as IR=Xt/Nt, where Xt is the number of first-time 

cases at age t and Nt is the total number of women in this age group. Final per-year incidences were 

averaged over time range 2013-2016.  

 

Age-and sex-specific mortality data for the year 2016 was retrieved from World Health Organization (27) 

and competing mortality rates were constructed by subtracting yearly age- and sex-specific disease 

mortality rates from general mortality rates. Breast cancer mortality estimates were derived from the 

Global Cancer Observatory (1). 

 

We applied this model to estimate absolute risks for individuals in the 1st, 10th, 25th, 50th, 75th, 90th and 

99th PRS quantiles, eg. an individual on the 50th percentile would have a standardized PRS of 0. 

Confidence intervals for the absolute risk are estimated with the upper and lower confidence intervals of 

the continuous per unit log-hazard ratio. Similarly, we used the absolute risk model to estimate lifetime 

risks (between ages 0 and 85) for the individuals in the same risk percentiles.  

 

PRS based risk-stratification and individual screening recommendations 
 

Next, we evaluated PRS risk stratification in the Estonian BC screening context and simulated the extent 

of risk separation in the Estonian population. Females in Estonia currently start BC screening at age 50.  

Our analysis first established the 10-year risk of a 50-year old female with a population average of PRS 

(“average female”) using the model by Pal Choudhury (25): the reference for the level of risk that 

initiates population-level screening.  Here, we assessed the differences in ages where individuals in 

various PRS risk percentiles attain 1 to 3-fold risk increases of risk compared to the 10-year risk of an 

average female. 
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Based on these analyses, we developed recommendations for a BC screening attendance program 

based on pre-screening PRS testing. This approach uses both relative risks, fold difference of 10-year 

risks compared to a genetically average woman of the same age, and also her absolute 10-year risk.  

 

Results 
 

Polygenic risk score re-validation in population cohort datasets 
	
In the EGC cohort, we retained a total of 32,548 quality-controlled female samples. All samples were 

divided into prevalent and incident datasets. The prevalent dataset contained 315 cases of breast 

cancer that were diagnosed before Biobank recruitment and 1602 controls. The incident dataset 

contained 365 cases of breast cancer that were diagnosed after Biobank recruitment and 30,266 

controls. The UKBB dataset contained 249,062 samples that passed the quality controls. In the UKBB, 

we identified 8637 prevalent cases and 6825 incident cases that were complemented with 44,952 

controls and 188,648 controls, respectively.  

 

Altogether, 4 models from 3 different articles were evaluated (9, 10, 28). Normality assumption of the 

standardized PRS was not violated with any tested models (Shapiro-Wilks test p-values in EGC data BC1 

= 0.45, BC3 = 0.40, BC4 = 0.28, BC16 = 0.46). The best performing model was selected based on AUC, 

ORsd, AIC, and pseudo-R2 metrics in both EGC and UKBB data. The BC16 model that was based on 

Mavaddat et al. (9) performed the best (Table 1). The Corresponding AUC under the ROC curve (Figure 

1) for the association between the PRS and BC diagnosis was 0.615 (SE = 0.039) in EGC and 0.632 (SE = 

0.0072) in UKBB.  

 

Table 1. Comparison metrics of BC PRS models based on the prevalent Estonian Genome Center 

dataset. 

 

  

BC1 (9) BC3 (10) BC4 (28) BC16 (9) 

Variants in original PRS 
  

313 77 78 3820 

Variants included in our 
model 
  

257 73 78 2803 

Estonian 
Genome 
Center 

 

AUC (SE) 0.604 (0.039) 0.591 (0.004) 0.573 (0.039) 0.615 (0.039) 

ORsd ((SE [log 
ORsd])) 

1.43 (0.06) 1.37 (0.06) 1.27 (0.06) 1.47 (0.06) 

AIC 1681.2 1689.6 1701.7 1674.1 
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 McFadden / 
Nagelkerke 
Pseudo-R2 

2.1% / 3.1% 1.9% / 2.0% 0.8% / 1.3% 2.5% / 3.7% 

 
 

UK Biobank 

 
 
 
 
 

AUC (SE) 0.625 (0.0073) 0.607 (0.0075) 0.584 (0.0073) 0.632 (0.0072) 

ORsd ((SE [log 
ORsd])) 

1.55 (0.012) 1.48 (0.012) 1.36 (0.012) 1.62 (0.012) 

AIC 45 900 46 273 46 705 45 695 

McFadden / 
Nagelkerke 
Pseudo-R2 

3.0% / 4.5% 2.2% / 3.3% 1.3% / 2.0% 3.5% / 5.1% 

 

 

 

Figure 1. ROC plot of BC cases and controls in prevalent Estonian Genome Center dataset. 

 

Next, we evaluated the performance of the best performing BC16 model in the independent incident 

datasets with the main aim of estimating the hazard ratio per unit of PRS. Table 2 presents the 

performance estimation metrics. Hazard ratio per 1 unit of standard deviation (HRsd) of model BC16 was 

1.66 with standard error (log (HR)) = 0.05) in the incident EGC dataset. The concordance index (C-index) 

of the survival model testing the relationship between PRS and BC diagnosis status in the incident EGC 

dataset was 0.656 (se = 0.015) and slightly lower in the UK Biobank. 
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Table 2. Performance metrics of Cox regression model on the disease status and BC16 based polygenic 

risk scores calculated in the incident datasets. 

 

  HRsd (95% confidence 

interval) 

C-index (SE) -2 x log 

likelihood 

Likelihood ratio 

test p-value 

BC16 (9) Estonian 

Genome 

Center 

1.66 (1.5 – 1.84) 0.656 (0.015) 95.3 < 2e-16 

UK 

Biobank 

1.56 (1.53-1.6) 0.625 (0.003) 1351 < 2e-16 

	
 

Hazard ratio estimates compared to individuals in the 40-60 percentile of PRS are visualized in Figure 2. 

In panel A with EGC data, the lowest 5% bin includes 1496 controls and 9 cases, whereas in the top 5%, 

we observed 1490 controls and 48 cases. With EGC the theoretical hazard ratio matched empirical 

estimate's confidence intervals in 14 out of 16 comparisons. Alternatively, in panel B with UKBB data, 

the Spearman correlation coefficient between the empiric and theoretical hazard ratio estimates is 

0.996, indicating very strong association, and the much narrower confidence bands match in 15 out of 

16 cases. 

 

Polygenic risk score in breast cancer screening stratification  
 

We used a model by Pal Choudhury et al. to derive individual 10-year risks (25) and specified F(z) as the 

distribution of PRS estimates in the whole EGC cohort. The log-hazard ratio (𝛽) is based on the estimate 

of the log-hazard ratio in the BC16 model of the incident EGC dataset. Age-specific BC incidence and 

competing mortality rates provided the background for BC incidences in the Estonian population. 

 

In the Estonian population, the absolute risk of developing breast cancer in the next 10 years among 50-

year old women in the 1st percentile is 0.466% (0.349% - 0.616%) and 4.83% in the 99th percentile 4.83% 

(4.00 – 5.77%). At age 70, corresponding risks become 0.59% (0.445% - 0.778%) and 6.08% (5.03% – 

7.30%) respectively. The relative risks between the most extreme percentiles are therefore >10.3x fold. 

At the same time, competing risk accounted cumulative risks reach 19.2% by age 85 (16.1% - 22.6%) for 

those in the 99th percentile but remain 2.00% (1.51% - 2.64%) for those in the 1st percentile (Figure 3). 
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Figure 2.  Hazard ratio estimates between quantiles 40-60 of the PRS and categorized 5% bins in the 

incident dataset.  White dots and blue lines represent empirically estimated hazard ratio estimates and 

corresponding confidence intervals. Black dashes represent the theoretical hazard ratio for the 5%-

quantile bins derived from the hazard ratio of per unit PRS. (A) Estonian Genome Center (B) UK Biobank. 
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Figure 3. Cumulative risks (%) of BC between ages 20 to 85 in various risk percentiles. 

 

A genetically average 50-year old female has a 10-year absolute risk of around 1.51%. BC16 model can 

identify 34-year-old females in the 99th percentile of PRS that have a larger risk than this average risk of 

50-year-olds. At the same time, 50-year-old females in the 32nd percentile and lower attain average risk 

of 50-year-olds by their 70th birthday. In effect, individual women could be at the risk that currently 

initiates population-level screening between ages 34 and 70. Similarly, 50-year old females above 92nd 

PRS percentile have a more than 2-fold risk and around 1.3% of females attain a 3-fold risk compared to 

those at average risk (Figure 4).    
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Figure 4. Ages when Estonian females in different risk percentiles attain 1-3 fold multiples of 10-year risk 

compared to 50-year old females with population average PRS (Risk level: “average”). 

 

Based on PRS induced risk differences, we developed personalized recommendations that are based on 

relative risks compared to an individual of the same nationality, age, and sex, and also the estimated 

absolute risks. Recommendations presented below are based on the age when an individual attains the 

risk of genetically average 50-year old women. Mammography attendance procedures are also 

accompanied by general guidelines for reducing the risk of BC. It should be noted that we do not 

recommend individuals to join public screening programs later than standard starting time as the 

potential benefits and losses from decreased intervals have not been separately validated. 

 

1. Relative risk is less than the population average 

a. Standard mammography screening starting from age 50* 

2. Relative risk increases up to 2-fold 

a. Recommended mammography screening initiation (2-year interval) at the age of 

attaining 10-year risk equivalent to that of a genetically average 50-year old* 
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3. Relative risk increases 2 to 3-fold 

a. Recommend 2a 

b. Recommend mammography screening initiation with 1-year interval starting from an 

age where 10-year risk attains 2-fold of a genetically average 50-year old’s risk* 

c. Besides to 3.a and 3.b, we recommend discussing the usage of BC risk-reducing 

hormonal chemoprevention (tamoxifen, aromatase inhibitors) with a specialist	

 

4. Relative risk increases more than 3-fold 

a. Recommend 3a and 3b 

b. At the age of attaining more than 3-fold of a genetically average 50-year old’s risk 

then recommend magnetic resonance imaging (MRI) every 1-2 years* 

c. Besides, to 4.a and 4.b, we recommend discussing the usage of BC risk-reducing 

hormonal chemoprevention (tamoxifen, aromatase inhibitors) with a specialist	

 

* If the recommended age is below the individual's current age, then recommend current age 

 

Discussion 
	
Numerous full clinical prediction models incorporate traditional risk factors such as demographics, 

reproductive history, menopausal status, family history, previous biopsies, carrier status of high-risk 

monogenic mutations and mammographic density (29, 30). The practical routine application of such 

compounded models is complicated due to the non-availability and quality of data about individual risk 

factors. In practical settings, the data collection difficulties need to be weighed with expected gains. 

PRS alone has been shown to predict the risk of BC in European descent individuals more accurately 

than current clinical models (31). Additionally, Maas et al. looked at a large number of factors in risk 

stratification that yielded average absolute risk from 4.4% to 23.5% for women in the bottom and top 

10% of risk distribution. ROC curves for prediction models showed a relatively modest increase of AUC 

for the model including a large number of clinical factors and PRS, compared to the PRS only model 

from 0.623 to 0.648 (20). Läll et al. demonstrated that the inclusion of family history improved the 

performance by around 1% compared to the PRS only model (32). Carriers of monogenic mutations 

such as BRCA1 have a severely increased lifetime risk but testing only provides utility for less than 1% of 

individuals. PRS is based on common variation and provides a single best estimate based on an un-

modifiable measurable for all females, thus, incorporating PRS to screening strategy is reasonable. 

	
In this study, we validated different publicly available PRS models to find the best performing model for 

predicting the risk of breast cancer. Models in this analysis have been previously validated in Estonia by 

Läll et al. (32). They compared several PRS risk scores including Mavaddat et al. (10) and Michailidou et 

al. (11) and their combinations in two population-based biobank cohorts. The best model by Läll et al. 
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yielded a hazard ratio of 1.65 (95% CI 1.48 to 1.86) with a corresponding AUC of 0.636 (32). Mavaddat et 

al. (BC16, 3820 SNPs) estimated the mean of odds ratio for overall BC in several independent 

populations as 1.66 (95%CI: 1.61–1.79) and area under receiver-operator curve (AUC) = 0.636 (95%CI: 

0.628–0.651 (9). In the UK Biobank, the estimated hazard ratio (HR) for overall BC per unit PRS for 

another model included in this study (BC1, 313 SNPs) was HRsd = 1.59. These risk discrimination results 

are consistent with our estimates. 

	
Our best-performing model, named BC16, was a pruned version of Mavaddat et al 3820 PRS model 

containing a total of 2803 SNPs out of 3820. Its performance was consistent with the author's results. 

Our model was used to design a novel absolute risk-based screening strategy. It is based on Estonian 

screening information and background data to identify the extent of more than 10-fold PRS-based risk 

differences between the extremes. Our analysis showed that one percent of women would need to join 

screening by the age of 34 and more than 30% of individuals do not ever attain the risks of a genetically 

average 50-year old woman (the age when women conventionally starting screening). 

	
Our approach is easily adaptable to other nationalities by using population background information 

data of other genetically similar populations. Similarly, the clinical screening recommendations can be 

adapted to locality specific screening environments as long as we can infer the absolute risk of the 

average female in that locality. 

 

In conclusion, we have used a PRS based model to develop a novel model for BC screening. Our 

adapted model identifies individuals at more than 3-fold risk and elucidated large differences in 

attaining the same level of absolute risk. The genetic risk-based recommendations can be applied 

prospectively by individuals and also by institutions aiming to make screening provision more efficient. 
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