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Abstract 
 

The COVID-19 pandemic has sparked an intense debate about the factors underlying the dynamics of 
the outbreak. Mitigating virus spread could benefit from reliable predictive models that inform effective 
social and healthcare strategies. Crucially, the predictive validity of these models depends upon 
incorporating behavioral and social responses to infection that underwrite ongoing social and healthcare 
strategies. Formally, the problem at hand is not unlike the one faced in neuroscience when modelling 
brain dynamics in terms of the activity of a neural network: the recent COVID-19 pandemic develops 
in epicenters (e.g. cities or regions) and diffuses through transmission channels (e.g., population fluxes). 
Indeed, the analytic framework known as “Dynamic Causal Modeling” (DCM) has recently been 
applied to the COVID-19 pandemic, shedding new light on the mechanisms and latent factors driving 
its evolution. The DCM approach rests on a time-series generative model that provides — through 
Bayesian model inversion and inference — estimates of the factors underlying the progression of the 
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pandemic. We have applied DCM to data from northern Italian regions, which were the first areas in 
Europe to contend with the COVID-19 outbreak. We used official data on the number of daily 
confirmed cases, recovered cases, deaths and performed tests. The model — parameterized using data 
from the first months of the pandemic phase — was able to accurately predict its subsequent evolution 
(including social mobility, as assessed through GPS monitoring, and seroprevalence, as assessed 
through serologic testing) and revealed the potential factors underlying regional heterogeneity. 
Importantly, the model predicts that a second wave could arise due to a loss of effective immunity after 
about 7 months. This second wave was predicted to be substantially worse if outbreaks are not promptly 
isolated and contained. In short, dynamic causal modelling appears to be a reliable tool to shape and 
predict the spread of the COVID-19, and to identify the containment and control strategies that could 
efficiently counteract its second wave, until effective vaccines become available.   

 

1 Introduction 
 

The recent COVID-19 pandemic has engendered a key debate about the factors underlying the outbreak, 
with the aim of finding efficient solutions to limit coronavirus dispersion. In this setting, the fight 
against the virus would benefit from reliable predictive models that could explain the wealth of 
epidemiological data in terms of a limited number of latent causes that could inform social and 
healthcare strategies. Italy was the first country severely hit by the outbreak outside China, particularly 
in its Northern part, and — similarly to, and perhaps more than other countries — has promptly adopted 
a tight lockdown strategy and other specific public health measures, which were successful in curbing 
the outbreak [Vinceti el al 2020, Bonaccorsi et al 2020]. Notably, northern Italian regions were more 
affected than others, with variable severity raising several questions that remain so far unanswered: i) 
How did the tight lockdown impact the local dynamics of SARS-CoV2 spread? ii) Why were there 
substantial differences across regions, despite the similar public health measures adopted? iii) Will there 
be a second wave? If yes, how and when should we should expect it? iv) In case of a second wave, will 
a further lockdown be necessary, or will efficient testing and other confinement strategies be sufficient? 

Meanwhile, relevant epidemiological data have accumulated that can now be used to model future 
scenarios concerning the impact of COVID-19 on human lives and stress on the healthcare system [Di 
Domenico et al 2020, Kucharski et al 2020, Metcalf et 2020], and to identify appropriate prevention 
measures. In particular, epidemiological models are employed in the study of a variety of infectious 
diseases. Compartmental models, such as SIR-based (Susceptible - Infected - Recovered) or SEIR-
based (Susceptible - Exposed - Infectious - Recovered), are commonly used to estimate transmission 
dynamics, the number of unreported cases and the efficacy of interventions, and have been used during 
the SARS-CoV-2 outbreak [Van Kleef et al 2013, Chowell et al 2016, Paiva et al 2020, Hauser et al 
2020, Karnakov et al 2020, Maugeri et al 2020]. The extension of SIR models with network linkages, 
in which the dependencies between contacts are part of model structure demonstrates a notable 
improvement in the estimates of transmission parameters [Koopman 2004]. These models are generally 
based on differential equations modelling the rate of transition between states and effectively describe 
the pandemic as a dynamic system.  

 

Recently, Friston and colleagues have proposed the application of Dynamic Causal Modelling (DCM) 
[Friston et al 2003] to the COVID-19 pandemic, allowing for novel interpretative perspectives on the 
latent factors driving the pandemic through different countries and phases [Friston et al 2020 a,b,c,d]. 
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DCM is a flexible statistical procedure, originally designed to infer the nature of connectivity in brain 
networks. While its origins are in the field of neuroimaging, DCM is a generic theoretical-computational 
framework, which can be applied to a variety of non-linear dynamical systems, where different causal 
sources interact in complex ways [Friston et al. 2003]. In detail, the DCM approach involves positing 
an architecture of coupled causes that interact in generating observable quantities. The causes 
themselves are not directly observable (they are ‘hidden’ or latent), but are probabilistically inferred by 
the model, so to explain the observable data in a Bayes optimal fashion (i.e., as simply and accurately 
as possible). This methodology has the advantage of modelling the temporal trajectory of several 
quantities related to the process under study and simultaneously allowing a probabilistic estimation of 
the impact of the underlying latent factors on observable data. In DCM, compartmental models are 
implemented as generative models, where transitions among compartments are equivalent to pathways 
of information transfer within the connectome. DCM, therefore, can be aptly used to study the behavior 
of a network of compartments, allowing their dynamical interaction, along with the estimation of a large 
set of hidden parameters, under standard frameworks of Bayesian inference and parameter 
optimization.     

 

The DCM approach has recently been applied to model the COVID-19 pandemic in different countries 
on a worldwide scale, demonstrating remarkable performance in terms of goodness of fit and predictive 
validity [Friston et al 2020 a,b,c,d]. Notably, DCM predicted the ongoing upsurge of cases in several 
European countries such as Spain, France and Germany, preluding a second wave [Friston et al 2020d]. 
In the present study, we adopted a similar procedure—on a finer-grain scale—by adapting it to northern 
Italian regions, which are characterized by a high degree of heterogeneity [Amato et al 2017]. Arguably, 
a DCM analysis of COVID-19 pandemic in these regions—which have been among the earlier and 
most strongly affected in Europe—is of special interest. We used the official epidemiological data 
available for each Italian region to inform model parameter estimates, while an independent data set 
was reserved for model validation. Using this model, in addition to characterizing the latent causes of 
regional differences, we aimed at predicting different scenarios for the possible second wave of COVID-
19 in northern Italian regions, evincing their dependency on the efficacy of testing and tracing of 
infected subjects.  

 

The present study addresses the following main aims: (1) establishing the validity of DCM in modelling 
the spread of COVID-19 in northern Italy, (2) inferring the unknown causal factors influencing the 
evolution of the pandemic in the Northern Italian regions, (3) predicting the evolution of the pandemic 
according to factors such as testing and tracing policies, (4) providing a reliable predictive tool that can 
be used to evaluate strategic interventions and implement public health measures. 

2 Materials and Methods 
 

2.1 Data sources 
 

2.1.1 Daily pandemic figures 
The data reporting the pandemic evolution were obtained from the official repository of the “National 
Civil Protection Agency” (https://github.com/pcm-dpc/COVID-19). Specifically, we used the daily 
number of confirmed positive cases, deaths and recovered cases from January 22nd to August 09th. This 
dataset was split into two subsets (dataset 1: from January 22nd to July 20th; dataset 2: from January 22nd 
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to August 09th) to accommodate differences in the social and movement patterns before and after the 
end of July, a period when the great majority of the Italian population leaves home for the summer 
vacations. 
 

2.1.2 Cellphone-based estimates of daily movements 
We also used data on daily individual movements collected anonymously via mobile cellphone 
networks, in order to assess the ability of the DCM to infer the probability of leaving home [Vinceti et 
al 2020]. Based on the position of cellphones in the six investigated regions — as available through the 
Call Detail Records (CDR) of SIM cards data of around 27 million Italian residents — we computed 
the regional daily number of cellphone movements, weighted by the provincial population. Only 
changes in cellphone position greater than 2 Km were considered for the computation of the movement 
estimates.  
 
2.1.3 Serological tests 
In order to assess the validity of serological model estimates, we used the data recently made available 
by the Italian Ministry of Health1 on the seroprevalence of SARS-CoV-2 antibody positive individuals 
in Italy, as identified through a serological population-based survey performed by the “Italian Croce 
Rossa” from May 25th to July 15th. 
  

2.2 The dynamic causal model  
 

2.2.1 Basic structure of the model and its applications 
 

The DCM methodology [Friston et al 2003] was recently applied to the worldwide COVID-19 diffusion 
based on an epidemiological compartmental model—readers are referred to the original technical 
reports for details [Friston et al 2020 a,b,c,d]. In summary, the requisite generative model rests upon a 
mean field approximation to population dynamics, where individuals can be probabilistically 
characterized by their state within 4 factors, representing respectively their location, infection, 
symptoms, and testing state (LIST model, Fig. 1). These factors are coupled through probabilistic 
transitions specified by state probability transition matrices. There are 26 model parameters in total, 
which parameterize the initial probability of occupying each state and transitions among states. These 
parameters are initialized with a priori expectations and variances (see Table SM-1). The DCM model 
inversion maps from the observed data to the estimated parameter values using gradient ascent until the 
marginal likelihood of the data (a.k.a., model evidence) is maximized. Technically, the gradient ascent 
is on a variational bound on model evidence, known as evidence lower bound (ELBO) in machine 
learning, and variational free energy in physics. The posterior densities of the parameters returned by 
the procedure can be used to simulate the impact of various parameters on the dynamics of the process. 
 
 

 

1http://www.salute.gov.it/portale/news/p3_2_1_1_1.jsp?lingua=italiano&menu=notizie&p=dalministe
ro&id=4998; http://www.salute.gov.it/imgs/C_17_notizie_4998_0_file.pdf 
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Fig 1 Model. The DCM model employed in this study comprises 4 distinct factors (Location, Infection, 
Symptoms and Testing), divided into states that characterize each individual in a population. The states 
within any factor are mutually exclusive, thus every individual must be in one and only one of the states 
associated with the each of the four factors. The transition probabilities from one state to another depend 
on the model parameters, which are initially specified with prior densities and are then updated through 
model inversion to yield posterior estimates. In the following, we provide a brief description of each 
factor. Location. Each individual can be located i) at home (a low contact risk location), ii) at work (a 
high contact risk location), iii) in a Critical Care Unit (CCU), iv) in isolation or v) in the 
morgue.  Infection. Each individual can be i) susceptible to being infected by virus; ii) exposed to the 
virus (the individual is in contact with infected subjects) iii) infectious (the individual has contracted 
the virus and can infect other subjects), iv) immune (the infected individual has acquired immunity), or 
v) resistant (this is a category of people that are shielded, by virtue of host or geographical factors, from 
the infection). Symptoms. Individuals can be i) healthy, ii) symptomatic, iii) exhibiting ARDS (acute 
respiratory distress syndrome), or iv) deceased. Testing. Individuals can be i) untested, ii) waiting for 
the test outcome, iii) positive, or iv) negative on PCR testing. The factors (white rectangles) are divided 
into segments (states – green disks), while the orange boxes represent the observable outputs generated 
by the dynamic causal models (in A, daily reports of positive tests and deaths; in B, daily reports of the 
number of tests performed, of positive cases and deaths. In particular, the model in A is parametrized 
with the effective population size, which represents people actually in contact with contagious 
individuals, while the model in B is parametrized with the total (census) population size (which includes 
the effective population size). (Figures adapted from Friston et al 2020 c, d). 

 
We adopted the same approach to model the pandemic evolution in the six Italian regions showing the 
maximum number of deaths during the first three months of the outbreak, namely, Lombardy, Veneto, 
Emilia Romagna, Liguria, Piedmont, and Tuscany. More specifically, we used DCM to the following 
aims: 
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Verifying the predictive ability of the model.  

Initially, we assessed the model’s forecast against the actual data. In order to do this, we obtained the 
posterior estimates of model parameters (Fig. 2A) based upon a subset of the available data, namely, 
the number of daily positive cases, deaths and recovered cases from January 22nd  to June 30th and 
compared the model forecast to the actual data for the time points from June 30th to July 20th.  This 
temporal window was chosen so to exclude, for the purpose of model validation, the last week of 
July.  Traditionally, the great majority of Italian people leave home for vacation at the end of July or 
the beginning of August, marking a period with significant changes in social interactions and movement 
patterns that could not be predicted by the model. 

Estimating the duration of immunity and its impact on the expected onsets of second waves.  

For this purpose, we used Bayesian Model Comparison, as described in Friston et al. 2020c. A total of 
32 DCM models were specified with data comprising the number of daily positive cases and deaths 
(Fig. 1A) on the time interval from January 22nd to August 09th (dataset 2, see Methods). Each model 
differed in the prior assumption about the duration of immunity from 1 to 32 months in monthly 
increments. The model evidence for each of the 32 models was pooled over the six Italian regions under 
consideration, yielding a marginal likelihood of each period of potential immunity loss (PIL). It is 
important to note that, as explained in Friston et al 2020d, the period of immunity is not a hard threshold 
denoting a sudden loss of immunity. Rather, it represents instead the time constant of an exponential 
waning of immunity, which can depend on several factors such as population fluxes that can change the 
size of the susceptible pool, or factors depending on virus and hosts (see Friston et al 2020d for a 
detailed explanation).  Since the PIL is a crucial factor in determining outbreak recurrences, its posterior 
estimate was used to forecast the onsets of second waves in the various Italian regions. 
 
Testing and tracking strategies  
 
This procedure (Friston et al 2020b) was used to model different aspects of testing and surveillance. 
The posterior estimates of model parameters (Fig. 1B) are based upon dataset 2 on daily positive cases, 
death and performed tests in all the six Italian regions under consideration. Crucially, the total number 
of tests allows a more informed parameter estimation (see Fig. SM-1). 
 
Evaluating the effect of varying degrees of efficacy of the testing and tracking strategy on second-wave 
outbreaks.   
 
The efficacy of a testing and tracking policy is defined as the probability that a subject will be offered 
a test if infected and asymptomatic (Friston et al 2020b). Efficacy varies from 0 — where the probability 
of being offered a test when infected and asymptomatic is null — to 100% if the subject will certainly 
be tested and subsequently self-isolate. We performed a series of simulations by incrementing in 16 
steps the testing and tracking efficacy from 0 to 100%. For the purpose of the simulation, the testing 
and tracking strategy was assumed to be introduced 20 weeks after the first outbreak. 
 
 
2.2.2 Model parameters and latent causes 
 

The model we used is formally identical to the one described in (Friston et al., 2020 c,d) and the full 
list of model parameters can be found in Table SM-1. Here, we describe in greater detail the hidden 
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states that are particularly relevant for the present purposes (‘hidden’ means that these quantities were 
not directly observed but were inferred by the model):  
 
• The probability of leaving home (Location factor) given the condition of being asymptomatic, 
has a prior baseline rate (see ‘probability of going out’ parameter in Table SM-1) multiplied by a 
decreasing function of the proportion of infected people.  The social distancing, modeled as “the 
propensity to leave home and expose oneself to interpersonal contacts” [Friston et al 2020a]”, is an 
exponential threshold parameter (see social distancing threshold Table SM-1). 
• The proportion of infected people (Infection factor) represents the proportion of people that are 
infected at a certain time. The probability of being infected depends upon the number of social contacts, 
and the proportion of time spent at home. These dependencies are parametrized by the “effective 
number of contacts being home and being out” and the “probability of getting contagion for each 
contact” (Table SM-1)  
• The proportion of immune people (Infection factor) represents the amount of people that are 
probabilistically immune at a certain time. 
• The proportion of resistant people (Infection factor) represents individuals that are resistant to 
virus exposure. They represent a portion of the effective population that are not susceptible to infection 
because they are relatively protected from the infection by immunity such as cross-reactivity [Grifoni 
et al 2002, Ng et al 2020] or protective hosts factors [Bunyavanich et al., 2020; Zheng et al., 2020]. 
Notably during the epidemic, people can transit from a state of exposure to a state of resistance through 
a mild illness that does not entail seroconversion (recovery is mediated by T-cell response [Chau et al., 
2020]. The resistant state thus corresponds to the immune state for subjects who never became 
contagious. 
• The proportion of people showing symptoms (Symptoms factor) represents the proportion of 
subjects developing symptoms after being exposed. 
 

The results were obtained by using MATLAB code available as part of the free and open source 
academic software SPM (https://www.fil.ion.ucl.ac.uk/spm/), released under the terms of the GNU 
General Public License version 2 or later. 
 
2.2.3 Correlational analyses 
 

In order to evaluate the capacity of the model of inferring latent variables, we assessed how well the 
probability of leaving home tracked the time series of cellphone movements in the latest period available 
(from February 1th to March 27th), via a Pearson’s correlation analysis. 

 

3 Results 
 

3.1 Model validation and predictive validity 
 

The time series of estimated daily number of positive cases and daily number of deaths, as compared 
with the actual data are reported in Fig 2-3. The predictive capability of the model was assessed by 
withholding data from the last 20 days during model inversion (see Methods). The time series 
considered included data from January 22nd to June 30th. This choice reflects a peculiar social habit 
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characterizing Italian population (a strong tendency to go on vacation in a period ranging from early 
July to late August). The model forecast was then compared to the actual data for these time points (Fig 
2-3 insets; model forecast: black lines; actual data: red dots). If we used data up to July 20th one can see 
that while the model predicted a slight increase for the number of daily positive cases—which is 
arguably due to starting of decaying the immunity— inaccurate predictions are most likely due to 
isolated local outbreaks typically occurring during vacation periods, people returning from foreign 
countries after vacations or migrants fluxes (for a full description of the effects of vacations see 
Supplementary Material). In all cases the data trends related to dataset 1 (see Methods) fall within the 
Bayesian confidence interval both for the positive cases and for the daily deaths. 

 

 
 

Figure 2: Predictive validity of the model (Lombardy, Veneto and Emilia-Romagna). Left. Black dots 
represent daily data of positive cases reported by the “National Civil Protection Agency” for the six 
regions under investigation. Black lines represent the posterior expectations following model inversion. 
Gray bands represent the 90% Bayesian confidence intervals. Red dots correspond to data of reported 
positive cases from June 30th to July 20th that were excluded from data fitting, in order to validate the 
model prediction on the time interval shown in the inset. Right. Similarly, plots show the reported daily 
deaths from January 22nd to June 30th (black dots) and the corresponding fitting with 90% confidence 
interval (black lines and gray bands). Red dots represent daily deaths in the subsequent 20 days along 
with model prediction and 90% interval (inset).  
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Fig. 3. Predictive validity of the model (Liguria, Piedmont and Tuscany). This figure uses the same 
format as figure 2. 
 
 

Estimation of the duration of immunity and second-wave forecast 
 

The Bayesian model comparison procedure, within a set of models with varying periods of immunity 
(PIL) from 1 to 32 months (see Methods), yielded a PIL best estimate of 7 months (Fig. SM-4a). This 
estimate was used to generate a long-term prediction for recurrences of COVID-19 epidemic in the 
different Italian regions. As shown in Fig. 4, a second wave is expected for all regions under 
consideration, although with different probability and intensity. The peaks of the second waves range 
from September-October 2020 (Veneto, Emilia-Romagna and Lombardy) to December 2020 
(Piedmont). It should be noted that a 7-month PIL best estimate was also obtained with dataset 1 (data 
not shown), suggesting that this value is not significantly influenced by the recently observed outbreaks. 
Furthermore, both simulations predict the occurrence of second waves for all the six regions, variably 
peaking from late summer to early winter. 
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Fig. 4. Long-term prediction following Bayesian model comparison. Comparison of data fitting and 
prediction for the six regions under consideration, obtained following a Bayesian model comparison of 
32 models for each region.  Dots (different colors for each region) represent data on daily positive cases 
reported by the “National Civil Protection Agency”. The lines reproduce posterior expectations 
(different color for each region) with the corresponding 90% Bayesian confidence bands (shaded). Note 
the different timings of the peak of the second wave and its relative intensity in the different regions. 
 

Latent causes driving the pandemic 
 

The salient factors determining the differences between regions were considered in some detail. The 
model was inverted using the daily number of tests available in the official repository of the “Italian 
Civil Protection”, together with daily number of positive cases and deaths. Additionally, on the basis of 
the Bayesian model comparison results, the prior estimate of the PIL was fixed to 7 months. The 
posterior estimates of this simulations are shown in Table 1. 

 

 
Table1 
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The model was able to fit data accurately (see Fig. SM-1) and to generate predictions of the daily deaths 
and positive cases over the long-term. Furthermore, the model was able to estimate many hidden 
parameters that underwrite epidemic dispersion. In Fig. 5 the probability of leaving home during the 
pandemic is shown for all regions under consideration. Interestingly, the probability of leaving home 
reflects changes in behavior, due to the lockdown strategies progressively imposed by the Italian 
government, which increased lockdown severity from February 23rd, when the initial so-called ‘soft’ 
lockdown was applied to the country, to March 8th, when a tight lockdown was first imposed in the most 
affected areas of northern Italy and, one day later, throughout the country.  

Indeed, the model-predicted dynamics closely reflect the official lockdown dates (cfr Fig. 5). It should 
be noted that, beside a general common trend, Veneto showed a different behavior since the probability 
reached a shallower minimum compared to the other regions—and returned to the initial value within 
a few days. Therefore, Veneto’s parameters speak to less strict adherence to lockdown. A further model 
validation came from the correlation of cellphone movements (data limited to March 27th), with the 
probability of leaving home inferred by the model. The reduction of mobility inferred by the model was 
lower for Veneto compared to Lombardy and Emilia-Romagna (Fig. 6), matching the cellphone 
movements (see also Vinceti et al., 2020). The correlation of cellphone movements with the probability 
of leaving home — over the whole time series — ranged from a minimum of 0.85 for Emilia-Romagna 
and Veneto to a maximum of 0.97 for Piedmont (Pearson’s correlation coefficient; Fig.6, Table 2).  

 
Fig. 5 Dynamics of the probability of leaving home. Plot shows the kinetics of the probability of 
leaving home inferred by model inversion (colored lines) in the time window ranging from January 22nd 
to August 22nd. During this period, the Italian government imposed a lockdown with different degrees 
of severity from February 23rd (soft lockdown: country-wide closing of schools, universities, and all 
non-essential industrial and commercial activities; limiting the activities of public offices) to March 8th. 

(tight lockdown: prohibition of any kind of mobility, apart from specific health or professional needs). 
May 4th is the date where the tight lockdown was relaxed and people were allowed to freely move within 
their region. Vertical blue lines indicate the date of lockdown, while the shaded red region represents 
the lockdown time window. Note the peculiar behavior of Veneto (red line), showing a less intense 
reduction of the probability of leaving home, indicating a reduced adherence to lockdown policies. 
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Fig 6. Dynamics of the probability of leaving home, compared with cellphone movements. Plot 
showing the trajectory of the probability of leaving home inferred by the model (solid lines) and the 
monitored cellphone movements (dashed lines) for the three most hit regions (Lombardy, Veneto and 
Emilia-Romagna) in the period from February 21st to March 27th 

 
Table 2. Pearson’s coefficient resulting from the correlation between the time series of cellphone 
movements and the probability of leaving home.  

The latent causes generating the dynamics of the epidemic are related to one of the states in the model 
(LIST, see Methods). Focusing on infection factors, it is possible to infer the dynamics of the pandemic 
in terms of susceptibility, state of infection, immunity or forms of resistance to the virus. Fig. 7 shows 
the dynamics of three of the infection factors inferred by the model. As is evidenced by the plot (Fig. 
7A), the proportion of infected people shows a rapid rise during the first weeks of the epidemic peaking 
variably from region to region, with Lombardy showing the highest and Veneto the lowest prevalence. 
Similarly, the proportion of immune people rises quickly in the first weeks of the epidemic peaking 
with different values from region to region, with Veneto and Lombardy at the lower and upper extremity 
of the range, respectively (Fig. 7B). 

As immunity is lost, the susceptible proportion gently rises back towards the initial value. However, the 
proportion of resistant (see Methods) subjects rises in response to the accumulation of people recovering 
from illness and therefore leaving the susceptible reservoir (Fig. 7C). At the end of May, the Italian 
government launched a screening campaign to randomly sample the population, in order to test whether 
they had been infected by coronavirus. As can be seen in Fig. 7D, the proportion of infected people 
inferred by the model matches the results of the serological tests (see Methods), in all the regions under 
consideration (R2=0.92 with linear regression). Furthermore, i) the ranking of the regions in terms of 
population infected is identical in both cases; ii) the order of magnitude of the proportion of seropositive 
and infected is comparable and, in some cases (e.g. Lombardy), the numerical values are identical. This 
is a remarkable aspect of predictive validity because these serological data where never used to inform 
the model parameters. 
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Fig7. Latent causes. A Plot shows the trajectory of the proportion of infected people during the 
epidemic and in the following months for all the regions considered. Note that Veneto shows a steep 
rise at the beginning of the epidemic but quickly drops to the initial value, while other regions present 
slower kinetics. B Plot shows the kinetics of the proportion of immune people during the epidemic and 
in the subsequent months for all the regions considered. As in the case of infected people, the proportion 
of immune people is less in Veneto throughout the considered time window C Plot shows the trajectory 
of the proportion of resistant people during the epidemic and in the subsequent months for all the regions 
considered. Here, the proportion of resistant people is higher in Veneto at the beginning of the epidemic. 
D Data on serological test (% of population that have been infected) are plotted against the peak value 
of the proportion of infected people inferred by the model and shown in panel A. 

 

Second wave forecasts and future scenarios 
Given the tight matching between the latent causes inferred by the model and empirical measures of 
lockdown, social mobility and seroprevalence, the model was used to generate long and mid-term 
predictions. The posterior parameter estimates (Table 1) predict the presence of a second wave of 
infection in all the considered regions. Notably, the time of the second waves varies from mid-
September to late November. 
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Fig. 8 Second-wave forecasts (Lombardy, Veneto and Emilia-Romagna): Left Plots show the effect 
of increasing the efficacy of testing and tracking strategies on the time and peak amplitude of the second 
wave for daily positive cases. These trajectories go from zero (red line) to 100% efficacy (green line). 
Right Similarly, the plots in the right column report predictions of daily deaths under increasing levels 
of testing and tracking efficacy. 

(Fig 8-9, red lines). This forecasting is tightly coupled to the recurrence of infections observed in recent 
weeks (Fig 2-3 red dots), related to isolated outbreaks spotted throughout Italy. The early peaks are in 
fact predicted in Veneto (mid-September) and Tuscany (early October), regions that witnessed an 
unexpected rise in the number of positive cases (see Fig. SM-2 and SM-3). Interestingly, the time of 
the second wave for these regions is significantly delayed if data related to these increases are withheld 
from model inversion, indicating the capacity of the model to continuously improve its predictions as 
new data become available (especially data containing information about novel relevant events, such as 
the sharp changes in people movements in late July-August, in the case of Italy). 

One common metric of viral transmission is the reproduction ratio (Rt), which is the estimate of the 
number of people infected by one person. This quantity can be inferred by the model. The effective 
reproduction rates for Italian regions reflect the lockdown policies that mitigated viral transmission 
through an efficient reduction of the Rt (Fig SM-5). Although the reproduction rate has remained below 
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1 for the period of the lockdown, during late June and July the model inferred an increase above 1 for 
all six regions, which has been confirmed by current data released by the Italian Minister of Health. 

 
Fig 9. Second-wave forecasts (Liguria, Piedmont, Tuscany): Left Plots show the effect of increasing 
the efficacy of testing and tracking strategies on the time and peak amplitude of the second wave for 
daily positive cases. The format of this figure follows that of the previous Figure 8. 

 

Finally, we analyzed how the efficacy of testing and tracing strategies could mitigate the spread of 
SARS-CoV-2 using the posterior estimates above. One of the most effective mitigation (and possibly 
suppression) strategies is to test for infected but asymptomatic subjects and trace their contacts to 
contain novel outbreaks [Alfano et al 2020, Kraemer et al 2020, Tobías 2020, Aleta et al 2020]. One 
can evaluate alternative contact tracing scenarios by simulating the future following an increase in the 
efficacy of testing and tracking.  

In particular, the efficacy of testing and tracing strategy was increased — from the level initially inferred 
by the model — to the full efficacy (i.e. testing and tracing of every asymptomatic individual). As seen 
in Fig 8 and 9 (and summarized in Fig SM-6), the ensuing predictions for all regions show the 
occurrence of a second wave in the coming autumn with a significant reduction of prevalence (Fig 8,9 
from red to green lines) and fatality (Fig 8-9 from red to green lines), as the testing and tracking 
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efficiency is increased. Notably, the occurrence of a second wave can be postponed by a suitable 
enhancement of testing and tracing policies, even beyond the time window under consideration but such 
strategy can also markedly reduce the total number of deaths and positive cases (Figure SM-6). 
Moreover, the unexpected events observed in Veneto and Tuscany, giving rise to an anticipated second 
wave in the beginning of autumn, if properly treated could remain contained – thus avoiding a putative 
second wave.    

The posterior estimates were analyzed to understand whether the observed differences among regions 
under consideration could be attributed to some of the factors/parameters included in the model. As 
seen in Table 1, the parameters related to testing factor show peculiar characteristics for Veneto, which 
exhibits a low selectivity for testing the infection (almost half of the other regions) and a very high 
baseline testing. Furthermore, Veneto also displays a significant proportion of resistant cases, which 
means that most of the population in that region may have some distinctive characteristics related to 
personal, environmental and most probably social behaviors. Indeed, Veneto implemented a different 
testing policy since the early begin of the outbreak, by testing both symptomatic and asymptomatic 
subjects, while in other regions only symptomatic cases were investigated [Romagnani et al 2020,  
Binkin et al 2020]. This different testing policy seemed to have reduced the virus spread in that region 
--- as reflected in the lower pandemic toll compared to other regions --- due to identification of both 
documented and undocumented infections, the latter ones being the main source of the documented 
cases, accounting up to 80% [Li et al 2020] of the infections. 

Discussion 
 

 Following the first few dramatic weeks of the COVID-19 pandemic, in which the countries and 
the healthcare system had to face an unprecedented emergency, attention is now turning to the hidden 
causes of the marked differences in COVID-19 spread from country to country and region to region, 
with the aim of trying to predict the future course of the pandemic and to favor the adoption of adequate 
public health measures to curb the outbreak. The DCM approach differs from other mathematical 
models because of its commitment to a generative model that contains all the latent factors responsible 
for the epidemic—and for generating empirical timeseries. Similar to brain dynamics, in which the 
activity of single neurons and neuronal populations can be characterized in detail with sparse and non-
invasive data, the individuals and communities playing a role in a pandemic can be characterized, using 
aggregated data on morbidity and mortality at a population level. DCM, which was originally conceived 
to characterize complex multiscale systems, was able to infer several epidemiologically parameters 
subtending the progression of the pandemic.  

 

Hidden factors driving COVID-19 diffusion in Northern Italy 
 

Among the parameters estimated by the model, the effective population, representing the number of 
people that are affected by the outbreak, was smaller than the total (census) population size and the 
effective proportion of the total population varied over the different regions (Table SM-3). For instance, 
Tuscany had only 20%, while Lombardy, one of the most severely affected European regions, had 
almost 90% of the population involved. This value, which provides an estimate of the overall impact of 
COVID-19 on the population, could indeed reflect different geospatial factors, the territory, lifestyle, 
behavior and social habits. For instance, Lombardy has more than twice the number of towns with >20K 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.20.20178798doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.20.20178798


17 

 

inhabitants compared to Tuscany, which could favor aggregation and viral spread, especially in the 
initial phase of the pandemic.  

Infection parameters were similar in the 6 regions under consideration [Lauer et al 2020, Ortiz-Prado 
et al 2020] supporting the fact that virology is substantially equal, despite potential differences in 
climate and other geographic factors. Likewise, location and clinical parameters were similar in the 6 
regions indicating that the actuation of social and sanitary healthcare strategies did not differ 
remarkably. It is relevant that the model highlights differences in the testing parameters of Veneto. This 
evidence is in line with the fact that the prevention policies—realized by local administrators in that 
region—were effective in containing viral spread. An even more striking prediction pertains to effective 
immunity. The proportion of population with innate immunity falls around similar values (45%) for all 
regions, except Lombardy, showing that more than half of the population (57%) in that region were 
refractory to the infection. This may reflect a higher initial level of immunity determined by the earlier 
circulation of the coronavirus, whose presence was detected before the first reported case [Zehender et 
al 2020]. 

Another interesting estimate is the proportion of resistant subjects, which was lower in Lombardy (42%) 
compared to Veneto (73%) and Emilia Romagna (65%). Taken together, parameter estimates regarding 
the susceptible population and innate immunity substantiate the highest impact of COVID-19 epidemic 
in Lombardy compared to Veneto and Emilia-Romagna that were simultaneously hit by the outbreaks. 
These, in turn, may reflect a combination of causes including geographical segregation of the 
population, lifestyle, social habits — and environmental factors such as air pollution or climate 
conditions — that may favor the virus persistence and thus individual exposure [Vinceti et al 2020, 
Filippini et al 2020]. 

  

Model validation 
 

The model was validated by comparing the available epidemiological data with forecasts generated by 
simulations. The changes in location states during the acute phase of the pandemic closely matched the 
lockdown enforced by the government (DCPM 1,2,3,4). Notably, the model-inferred changes in 
mobility as a consequence of the lockdown were validated by comparison with data on actual mobility, 
as tracked by cellphone movements. More importantly, the model-inferred probability of being infected 
during the epidemic, reflecting the proportion of infected people, was strongly correlated with the data 
from serological tests promoted by the Italian government.  

The model was also validated through a procedure typical in machine learning (see predictive ability in 
the Methods section). There is good agreement between model and data when considering the input 
time series limited to the period from January to June 30th, while some points (positive cases) fall outside 
the confidence intervals when considering the input time series extended to July 23rd. It is important to 
note that, after June 30, sudden infection foci were related to episodic and isolated outbreaks in confined 
areas. This may be explained as follows: i) Traditionally, the Italian population moves around during 
late July and August for vacation. ii) Italy is traditionally one of the preferred destinations for 
international tourism and, although this year it is markedly reduced, the country remains exposed to 
imported cases. iii) Most of the cases observed in the first days of August are related to Italian tourists 
coming back from foreign countries, in which the infections are increasing. iv) In summer, Italy is 
particularly exposed to migrants, and this year is no exception. Migrants, when intercepted, are 
immediately screened and quarantined but some probably escape the entry filter and propagate the 
infection.  
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Differently from what was reported in (Friston et al 2020d), where the immunity period loss for 
worldwide countries was estimated in three months, we obtained a longer period (seven months), which 
could be due to the intrinsic characteristic of the pandemic evolution. Indeed, the curve of new cases in 
the Italian regions peaked earlier than curves for other countries such as USA or Brazil, where the 
pandemic outbreak after more than 5 months is still in tumultuous evolution. Furthermore, the original 
reports of three months were based upon earlier analyses of shorter time series. This produced larger 
confidence intervals. It is likely that as more data becomes available, the effective period of immunity 
may increase even further. 

 

Second wave prediction and alternative scenarios  
 

As the reliability of the model has been demonstrated by several validation procedures, we provided 
predictions for the COVID-19 pandemic in the upcoming months in the geographical areas under study. 
Particular attention should be paid to the differences in forecasting resulting from the simulation with 
data up to the end of June, compared to the one with the data including the first days of August (Fig. 2-
3 vs Fig. SM-2 and SM-3). Among the investigated regions, Lombardy shows small differences in the 
predicted number of cases and deaths, while Veneto, Piedmont and Tuscany show a sharp increase in 
the first week of August that was not predicted when the model inversion was performed on the data up 
to the end of June. Indeed, these new cases are mainly related to an increase of population fluxes among 
regions, returning from vacations or alternatively, because of immigrating fluxes. These unforeseen 
events cannot be predicted by the model, nevertheless since the sudden rise of the curve can portend a 
second wave, the model adjust its prediction accordingly. Notably, the rising forecast for the last week 
of July and the first week of August — which may eventually lead to a second wave — could reflect a 
synergetic effect due to the temporal coincidence of immunity decay and the sharp increase in the 
vacation and migration fluxes (the end of July is 7 months past the end of January). Furthermore, the 
evaluation of the impact of different strategies of healthcare policy (Fig. 8) — mainly by increasing the 
efficacy of testing and tracking (see Methods) — shows they can nuance the second wave and reduce 
its impact in terms of lives saved and pressure on the healthcare system. In other words, while a second 
wave is extremely plausible, it can be postponed – if properly contained – and remain of limited 
intensity. Nonetheless, in all cases, the severity of the second wave predicted by the model is markedly 
lower than the first wave in terms of deaths, proportion of infected people and proportion of people 
showing symptoms (see Table SM-2).   

   

Model strength and limitations 
 

The proposed study, despite the advantages given by DCM, suffers from some limitations, which have 
already been mentioned in [Friston et al. 2020d]. i) The DCM does not consider interactions with 
seasonal flu or other annual fluctuations [Kissler et al 2020]. ii) As with other modeling approaches, 
the outcomes of the Bayesian model comparison and posterior inferences are strictly model-dependent. 
iii) Updating the model with available data could change the posterior predictions. iv) The model does 
not include geospatial aspects, but rather each outbreak is treated as a point process [Chinazzi et al 
2020].  

Nevertheless, i) annual fluctuations like seasonal flu can alter the overall statistics but are normally 
distributed throughout the country without preferential geographical localizations, therefore the 
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eventual error is systematic and homogeneously distributed; ii) the outcomes of every model are limited 
to the approach that is actually employed; iii-iv) the continuous updating of the model and therefore of 
the posterior predictions is inherently one of the main advantage of this kind of approaches. The 
flexibility of the model takes into account unexpected and sudden events that can promptly change the 
pandemic dynamics allowing therefore to continuously update the prediction generating different future 
scenarios; iv) once more, treating each outbreak as a point process provides the model with the 
capability to interpret single and spotted events as events potentially dangerous, rather than needing to 
collect all the data to yield a uniform prediction. 

 

Conclusion and implications 
 

This work presents several innovative aspects: i) at a scientific level, the approach proposed by Friston 
et al—of applying the method originally developed to investigate brain functions to the COVID-19 
pandemic—is undoubtedly innovative and its performance was remarkable in terms of fitting and 
predictive power. Additionally, the retrospective analysis of the hidden factors underlying the pandemic 
could furnish an innovative epidemiological tool. ii) The DCM approach enables the evaluation of the 
role of factors that can be manipulated by institutional and healthcare policies. iii) The preventive 
examination of the possible scenarios of second waves, according to different choices of healthcare 
policy, allows a better planning by optimizing the benefit-cost ratio in view of the specific means and 
resources available to each region. In other words, analyzing the different scenarios predicted by the 
model should allow regional authorities to balance complimentary strategies, like lockdown or testing-
and-tracking, allowing them to minimize the impact on the sanitary and economic system. 

The good performance of these Italian regions (and of Italy as whole) compared to other neighboring 
countries may derive from the severe lockdown and the maintenance of social distancing and prevention 
strategies. Thus, while waiting for effective vaccines, the second wave could be reduced and diluted by 
maintaining and enhancing the prevention strategies currently in use.  
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