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Abstract (150 words): 

Systemic lupus erythematosus (SLE), an autoimmune disorder, has been associated 

with nearly 100 susceptibility loci1-8. Nevertheless, these loci only partially explain 

SLE heritability and provide limited biological insight. We report the largest study of 

SLE in East Asians (13,377 cases and 194,993 controls), identifying 233 association 

signals within 113 (46 novel) genetic loci. We detect six new lead missense variants 

and prioritize ten most likely putative causal variants, one of which we demonstrate 

exhibits allele-specific regulatory effect on ACAP1 in vitro. We suggest 677 effector 

genes with potential for drug repurposing, and provide evidence that two distinct 

association signals at a single locus act on different genes (NCF2 and SMG7). We 

demonstrate that SLE-risk variants overlap with cell-specific active regulatory 

elements, notably EBNA2-mediated super-enhancers in Epstein-Barr Virus-

transformed B cells, and implicate the role for non-immune cells in SLE biology. 

These findings shed light on genetic and biological understandings of SLE.  
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Main text 

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by 

the production of autoantibodies that damage multiple organs9. Considerable 

genetic predisposition contributes to SLE etiology10. To date, nearly 100 

susceptibility loci have been identified for SLE, mainly through genome-wide 

association studies (GWASs)1-4,7,8. However, these loci collectively only explain 

~30% of SLE heritability5 and their biology, in terms of causal variants, effector 

genes and cell types, and pathological pathways that mediate genetic effects, has not 

yet been fully characterized11.  

Genome-wide association meta-analyses (GWMA) have been performed to 

uncover new genetic associations for SLE in Asians6, Europeans12, and trans-

ancestral populations5. However, the study sample sizes were relatively modest, 

which limits their ability for genetic discovery. GWASs have successfully linked 

genetic variants with human common diseases and traits13. Nonetheless, only ~8% 

of GWAS participants are East Asians14. East Asians have a unique population 

genetic history and may have unique genetic disease risk mechanisms and exhibit 

specific disease manifestations. For example, SLE has a remarkably higher 

prevalence and younger age of onset in Asians15,16. Genetic heterogeneity may 

explain, at least partly, the phenotypic diversity of SLE between East Asians and 

Europeans5. Hence, large-scale East Asian investigations may identify unique 

genetic associations even for the same diseases and traits that have already been 

well studied in Europeans17.  
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Here, we report the largest-ever GWMA for SLE in 208,370 East Asians. Our 

study identified many new genetic associations, some of which have not been 

detected in Europeans, and improved our biological understanding of SLE 

pathophysiology. 

We newly generated three GWAS datasets from 10,029 SLE cases and 

180,167 controls, which we meta-analyzed together with five published studies 

(3,348 cases and 14,826 controls)1,2,4,8,18 after whole-genome genotype imputation 

using 1000 Genomes Project phase 319 and population-specific reference panels20, 

bringing the total sample size to 208,370 (Supplementary Table 1). To the best of 

our knowledge, this is the largest genetic association study of SLE to date. The 

effective sample size (Neff=50,072) is three- and four-fold larger than that of the  

largest published trans-ancestry5 and East Asian6 meta-analyses, respectively. 

We tested associations for 11,270,530 genetic variants in a fixed-effects 

meta-analysis. A quantile-quantile plot showed that test statistics were well-

calibrated, with a genomic-control inflation factor λGC=1.06 (indicating that ancestry 

effects had been well controlled; Supplementary Figure 1). Linkage disequilibrium 

(LD) score regression21 showed that polygenic effects (89.4%), rather than biases, 

primarily caused the inflation residual (estimated mean χ2=1.32 and LD-score 

intercept=1.03). 

We detected 26,379 genetic variants associated with SLE at P<5×10−8 within 

113 loci (Supplementary Table 2 and Fig. 1a), of which 46 were novel (Tab. 1). 

The pairwise LD between lead variants is low (LD r2<0.002). For seven novel loci, 

minor allele frequencies (MAFs) of the lead single nucleotide polymorphisms (SNPs) 
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were ten-fold higher in East Asians than in Europeans (Fig. 1b). Two of them and 

their neighbors in strong LD (LD r2≥0.2 in either East Asians or Europeans) would 

be undetectable in Europeans at the same effective sample size and risk magnitude 

as we find in East Asians (statistical power<10%; Supplementary Table 3). 

To dissect the source of association signals at each locus, we conducted an 

approximate conditional analysis using GCTA22 with meta-analysis summary 

statistics and LD estimates from 7,021 unrelated Chinese controls (Online 

Methods). We acknowledge the limitations of using LD estimation from a single 

population for a meta-analysis of diverse East Asians. We identified a total of 233 

independent association signals with conditional P<5×10−8, 169 of which arose from 

non-Human Leukocyte Antigen (HLA) regions (Supplementary Table 4). We 

observed two to four signals at each of 28 non-HLA loci (including 7 novel loci). For 

example, we discovered two distinct association signals within the known STAT4 

locus, including the previously reported SNP rs1188934112 and the new insert-

deletion variant (indel) rs71403211 (Extended Data Fig. 1a). For the 46 novel loci, 

we discovered 55 distinct signals (Supplementary Table 4 and Supplementary 

Figure 2). Most of the signal index variants (n=190, 82%) are common (MAF≥5%) 

with modest effects (Supplementary Table 4). 

We identified 11 exonic signal index variants at ten non-HLA loci 

(Supplementary Table 4), highlighting the roles of AHNAK2, CSK, IKBKB, IRAK1, 

NCF2, OAS1, TYK2, and WDFY4 within eight known loci, and CDH23 and LRRK1 

within two novel loci (Extended Data Fig. 1-2). We detected two distinct signals 

within WDFY4, including the known (rs7097397)18 and a new (rs7072606) 
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missense variant (LD r2=0.02 in East Asians), which suggest a potential allelic series 

effect at this locus (Extended Data Fig. 1b). We replicated the association of the 

missense variants at AHNAK2 (rs2819426)23, IRAK1 (rs1059702)24, and NCF2 

(rs13306575)25,26, and provided for the first time genome-wide association 

evidence at a missense variant within OAS1 (rs1131476, LD r2=0.78 with the known 

missense variant rs1051042 that attains suggestive significance in East Asians)23. 

We detected three new exonic variants (including two missense variants) within the 

CSK (rs11553760), IKBKB (rs2272736), and TYK2 (rs55882956) genes (Extended 

Data Fig. 2). They were not correlated with previously reported exonic variants 

within the same genes (LD r2<0.02 in East Asians or Europeans; Supplementary 

Table 5), suggesting possible allelic heterogeneity of these genes. In the two novel 

loci with lead missense variants (Extended Data Fig. 2), CHD23 plays a role in cell 

migration27 while LRRK1 encodes a multiple-domain leucine-rich repeat kinase. A 

previous study observed that LRRK1-deficient mice exhibited a profound defect in 

B-cell proliferation and survival and impaired B-cell receptor-mediated NF-κB 

activation28.  

To prioritize putative causal variants, we conducted a Bayesian statistical 

fine-mapping analysis for 111 loci using FINEMAP29 after excluding complex 

associations involving HLA and 7q11.23. We found exactly the same number of 

association signals in 57 loci between FINEMAP causal configuration with the 

highest posterior probability (PP) and the GCTA approximate conditional test. To be 

conservative, we only summarized the statistical fine-mapping results for these 57 

regions, which contained 65 association signals (Supplementary Table 6). 
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For each signal, we built a credible set of putative causal variants with a 95% 

probability of including the true causal variants. The size of 28 credible sets was 

small (size≤10; Fig. 2a). Among the 110 putative causal variants with PP≥0.1 (Fig. 

2b), we found four coding variants (3.6%), which implies that most of these 

associations are probably induced by non-coding causal variants. The prioritized 

variants are available to be tested as potential targets in perturbation experiments. 

For example, the allele-specific regulatory activity of the intronic variant 

(rs10036748) with the highest PP (0.387) in the TNIP1 locus was recently 

characterized in SLE30. 

We pinpointed a single most likely causal variant with high confidence 

(PP≥0.8) for four known (ATXN2, BACH2, DRAM1/WASHC3, and NCF2) and six novel 

(17p13.1, ELF3, GTF2H1, LRRK1, LOC102724596/PHB, and STIM1) loci 

(Supplementary Table 6). For example, we prioritized rs61759532 as a putative 

causal variant at the novel 17p13.1 locus (PP=0.999; Fig. 3a). This variant is located 

in an intron of ACAP1, which encodes a key regulator of integrin traffic for cell 

adhesion and migration31. We observed that rs61759532 overlaps with an 

accessible open chromatin region in blood B and T cells (Fig. 3b). Transcriptional 

reporter assays showed significant allelic differences in the enhancer activity of 

rs61759532 in THP1 monocyte cell lines (two-sided t-test P=8.1×10-3; Fig. 3c), 

consistent with the regulatory effect of the risk allele, T, in reducing ACAP1 

expression levels in whole blood32(P=1.7×10-47; Fig. 3d). Electrophoretic mobility 

shift assays (EMSA) revealed that allele-specific biotin-labeled probes containing the 
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T (risk allele) form fewer nuclear protein-probe complexes than probes with C (non-

risk allele) in THP1 and Epstein–Barr virus (EBV)-transformed B cell lines (Fig. 3e). 

We deployed four gene-level methods to comprehensively catalog potential 

effector genes. Briefly, we performed a transcriptome-wide association study 

(TWAS)33 using expression quantitative trait loci (eQTL) from six human immune 

cell types in up to 105 East Asians34, a gene-based association analysis using Multi-

marker Analysis of GenoMic Annotation (MAGMA)35, and two additional data-

mining approaches36,37 that integrated genetic associations with gene function and 

chromosomal position, eQTL, and chromatin interactions (Online Methods). We 

nominated 677 possible effector genes (Supplementary Table 7-11 and Extended 

Data Fig. 3). Of the 677 genes, 285 (42%) were supported by at least two 

approaches and 222 (35.4%) were predicted to have differential expression levels 

in SLE in blood immune cells from East Asian individuals, including 26 genes from 

regions (<500 kb) where genome-wide significant associations have not previously 

been reported. For example, we found significant evidence for the FAS gene only by 

TWAS. This gene encodes a member of the TNF receptor superfamily and plays a 

central role in lymphocyte apoptosis. Individuals with defects in the Fas/FasL 

system develop lupus-like symptoms38. 

The gene-level analysis provided an opportunity to interrogate the biology of 

SLE loci. For example, we detected two independent association signals within the 

known SLE locus including SMG7 and NCF2 (Fig. 4a). The lead SNP rs13306575 is a 

missense variant, which substitutes arginine to tryptophan at NCF2 and then 

disrupts the NADPH oxidase complex, nominating NCF2 as an effector gene (Fig. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.22.20178939doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.22.20178939


 15

4b). The secondary variant rs66977652 (~8kb away from rs13306575, pairwise LD 

r2=0.02) resides in an intron of NCF2. Our gene-level analysis showed that 

rs66977652 confers a significant eQTL effect on SMG7 (P=3.1×10-15 in whole blood; 

Fig. 4c and Supplementary Figure 3), suggesting the secondary signal might 

influence the risk of SLE by modulating SMG7 expression, which is supported by 

functional studies39. These findings suggest two potential effector genes, NCF2 and 

SMG7, in a single locus25,26. As another example, a single-variant association test 

failed to support one effector gene for a novel locus that contains seven protein-

coding genes (lead variant rs11288784; Supplementary Figure 2). But we found 

that only HEATR3 achieved significance in both MAGMA gene-based association 

analysis and TWAS (Supplementary Table 10-11). HEATR3 may modulate SLE risk 

through NOD2-mediated NF-κB signaling40. Altogether, the 677 genes implicate 

roles for cytokine production and signaling, immune responses to stimuli, and the 

phosphorus metabolic pathway in SLE pathogenesis (Supplementary Table 12), 

and might inform repurposing drugs approved for musculoskeletal system 

disorders (Supplementary Table 13). 

To assess the proportion of phenotypic variance explained by common 

variants, we applied LD score regression21 to the meta-analysis results. Assuming a 

population prevalence of 0.03% for SLE9, we estimated the liability-scale SNP-based 

heritability from all non-HLA variants as h2
SNPV=V7.24% (standard error 

(SE)=0.78%). The 66 known and 46 novel non-HLA loci explained 62.6% (SE=4.9%) 

and 22.1% (SE=2.6%) of this overall SNP-based heritability, respectively. 
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To evaluate global enrichment for SLE-associated variants in epigenomic 

features, we annotated SLE-associated variants with 15 Roadmap chromatin states 

in various immune cells using Genomic Regulatory Elements and Gwas Overlap 

algoRithm (GREGOR)41. SLE-associated variants were most significantly enriched in 

transcription-activating chromatin states at transcription start sites (TSSs) and 

enhancers (Fig. 5a and Supplementary Table 14). 

To identify tissues and cell types in which SLE-associated genes impact, we 

tested for expression of SLE-associated genes across human tissues using Data-

driven Expression-Prioritized Integration for Complex Traits (DEPICT)36. We found 

significant enrichment for SLE-associated genes not only in the hemic and immune 

system (P<1.24×10−3) but also in musculoskeletal, respiratory, stomatognathic, and 

digestive tissues (Fig. 5b, Supplementary Figure 4, and Supplementary Table 

15). This might be related with various complication symptoms in multiple organs.  

In order to gain further mechanistic insight into non-coding risk variant, we 

used our RELI method42 to identify specific transcription factors (TFs) that 

significantly occupy SLE risk loci. Eighty-eight TFs concentrate their DNA binding in 

the 113 SLE loci (relative risk (RR)=2.1-19.0, P<10-6; Supplementary Table 16), 40 

loci of which (35.4%; including 17 novel loci) were occupied by the EBV Nuclear 

Antigen 2 (EBNA2) protein (RR=4.9, P=3.95x10-30; Fig. 5c and Extended Data Fig. 

4), which is encoded during the EBV Latency III program, and contributes to B cell 

transformation. This study achieved a similar finding from independently 

ascertained SLE cases of East Asian origin, compared with a previous study of 

Europeans (Supplementary Table 17)42. In addition, the 46 novel loci were 
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independently associated with EBNA2 (RR=5.0, P<1.7x10-12; Supplementary Table 

18). Significantly-associated TF ChIP-seq datasets are enriched for EBV-infected B 

cell lines, relative to EBV-negative cells (odds ratio (OR)=11.1, P=4.33x10-55; 

Supplementary Table 19). The TFs present at super-enhancers formed upon EBV 

infection43 were remarkably enriched in EBV-positive B cells relative to not EBV-

infected cell (OR=22, P=0.001; Supplementary Table 20-22). These results 

support a role for a gene-environment interaction between SLE loci and EBV 

infection. We further characterized significant heritability enrichments within 148 

cell-state-specific TF profiles for 72 TFs and 123 types of cell or tissue types44 

(FDR<5%; Supplementary Table 23), which highlight the biological involvement of 

B cells in SLE pathophysiology. 

To identify possible gene regulatory mechanisms impacted by non-coding 

SLE variants, we performed allelic read imbalance analysis on 985 publicly available 

ChIP-seq experiments performed in lymphoblast EBV-immortalized B cell lines (see 

Online Methods). Of the 113 SLE loci, 46 were heterozygous in genotyped cell lines, 

and 28 exhibited allelic imbalance in at least one ChIP-seq dataset (Supplementary 

Table 24). The active chromatin histone marks, H3K27ac and H3K4me1, showed 

strong imbalance in 13 and 8 loci, respectively. For several variants, we observed 

strong allelic imbalance for particular TFs, suggesting allele-specific function and an 

underlying genetic mechanism. For example, we observed allelic imbalance at 

rs2205960 near TNFSF4, with EP300, MLLT1, ARID3A, NFATC3, BACH1, MTA2, 

IKZF1, and BATF all preferring the “G” reference allele, and RUNX3, SMARCA5, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.22.20178939doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.22.20178939


 18

TCF12, JUNB, NBN, SKIL, and POU2F2, all preferring the “T” non-reference allele 

(Extended Data Fig. 5).  

To explore cell type-specific regulatory mechanism for non-coding variants, 

we applied a machine learning approach to predict variants’ mutation effects in 347 

types of primary cells and tissues45. We identified 71 variant-gene-cell sets showing 

robust mutation effects on gene transcription in immune cells (Supplementary 

Table 25). The alternative alleles of rs77571059 and rs200489061 have mutation 

effects on up- and down-regulating IRF5 and BLK expressions, respectively 

(Extended Data Fig. 6), both of which are consistent with previous in vitro 

experiments46,47.  

To explore shared genetics between SLE and various traits, we calculated 

genetic correlations of SLE with 39 complex diseases and 59 quantitative traits in 

Biobank Japan participants using bivariate LD score regression48 (Supplementary 

Table 26). As expected, we detected significant positive genetic correlations 

between SLE and two other autoimmune diseases: rheumatoid arthritis (rg=0.437) 

and Graves’ disease (rg=0.318). In addition, we found unreported genetic 

correlations (FDR<0.05) with albumin/globulin ratio (rg=-0.242) and non-albumin 

protein (rg=0.238). These findings may reflect the renal complications in SLE 

patients who have been reported to have significantly lower albumin/globulin ratio 

and higher serum globulin than healthy controls in epidemiological studies49. 

We performed the largest GWMA for SLE in East Asians, reiterating the 

benefits of investigating genetic predispositions to SLE in less-studied populations. 

We illustrate the advantages of using genetic data to improve knowledge of disease 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.22.20178939doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.22.20178939


 19

genes, effector tissues, regulatory mechanisms, and biological pathways involved in 

SLE etiology. These findings elucidate many aspects of SLE genetics and biology and 

have implications for precision health in SLE. 
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Online Methods 

Genome-wide association analyses in eight SLE case-control data sets. We 

newly recruited 10,029 SLE cases and 180,167 controls in three independent sets 

and genotyped them on the Illumina Infinium OmniExpress Exome-8 Array, Illumina 

Infinium Global Screening Array, or Korean Biobank Arrays50 (Supplementary 

Table 1). Cases were diagnosed by medical specialists using American College of 

Rheumatology classification criteria for SLE51. Controls had neither SLE nor family 

history of SLE. Written informed consent was obtained from all participants. 

Protocols were approved by institutional review boards in participating institutions. 

To improve statistical power for discovering genetic effects, we revisited raw 

genome-wide genotypes from five published studies1,2,4,5,8 (Supplementary Table 

1). Quality controls were then conducted for each of the eight data sets. Briefly, we 

excluded individuals of: 1. call rate<95%; 2. mismatch between ascertained and 

genotype-inferred sex; 3. outliers for heterozygosity rate; 4. population outliers 

from the East Asian cluster in principal component analysis (PCA) of genotypes 

against 1000 Genomes Project (1KGP) populations19. For quality controls of genetic 

variants, we excluded variants with any of the following criteria: 1. call rate<99% 

for Japanese data sets or <95% for the remainder; 2. P value for Hardy-Weinberg 

equilibrium (PHWE)<1.0×10-6 in the controls; 3. minor allele counts (MAC)<10 for 

Japanese data sets and MAF≤1% for the others. We then conducted genotype 

imputation for each data set separately. Haplotypes were estimated using 

SHAPEIT52 or Eagle 253. Genotype imputation was accomplished using reference 

panels from the 1KGP phase 3 v519 and IMPUTE2/454,55, or MINIMAC456. For 
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genotype imputation in individuals from Korea and Japan, we additionally used 

population-specific reference panels from 397 Korean Reference Genome Project20 

and 7,472 whole-genome sequencing datasets, respectively. 

We tested association between SLE risk and genotype dosages in each data 

set using a logistic regression or linear mixed model in PLINK57, SNPTEST58, or 

EPACTS (https://genome.sph.umich.edu/wiki/EPACTS) (Supplementary Table 1). 

Within each data set, we filtered out association results based on imputation quality 

(IMPUTE info or MINIMAC r2≤0.3), MAF≤0.5%, or PHWE<1.0×10-6. For each cohort, 

the association analysis for the X chromosome was conducted separately by sex and 

then meta-analyzed across both men and women. For data sets analyzed using a 

linear mixed model (Supplementary Table 1), allelic effects and standard errors 

were converted to a log-odds scale to correct for case–control imbalance59. 

 

Fixed-effects meta-analysis. We aggregated the association summary statistics 

from the eight data sets using a fixed-effects inverse-variance meta-analysis in 

METAL60. We applied a genomic control correction to each association summary 

statistic. Heterogeneity in allelic effect sizes among data sets was assessed using 

Cochran’s Q statistic. We excluded genetic variants available in only a single data set. 

We defined SLE susceptibility loci by merging ±250 kb windows around genome-

wide associated variants to ensure that lead SNPs were at least 500 kb apart. We 

defined lead variants as the most significant SLE-associated variant within each 

locus. A locus was considered novel if the lead SNP was at least 500 kb away from 

any previously reported SLE-associated variants. 
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Approximate conditional association analysis. To dissect distinct association 

signals at each SLE locus, we performed an approximate conditional analysis using 

GCTA COJO22 with genome-wide meta-analysis summary statistics based on LD 

estimated from 7,021 unrelated Chinese controls. The Chinese reference individuals 

for LD calculation were retrieved from the Chinese study using the Illumina 

Infinium Global Screening Array data (Supplementary Table 1), excluding first- 

and second-degree relatives. We excluded genetic variants that have substantial 

MAF differences (>0.05) between meta-analysis summary statistics and the 

reference individuals. We only presented signals below a conditional threshold of 

P<5×10−8. 

 

Bayesian statistical fine-mapping analysis. To prioritize causal variants in SLE 

susceptibility loci, a statistical fine-mapping analysis was performed using FINEMAP 

v1.4 software29, with meta-analysis z-scores and LD matrices estimated from the 

7,021 Chinese reference individuals. We used default priors and parameters in 

FINEMAP, assuming at most five causal signals in the ±250 kb region around a lead 

variant at each SLE locus, excluding the HLA region (chromosome 6: 25-34 

Megabases (Mb) in build hg19) and 7q11.23. FINEMAP was used to estimate the PPs 

and Bayes factor values of potential causal configurations and variant-level PPs for 

causality calculated for individual variants. We then built the 95% posterior credible 

sets of causal variants. The causal configurations were prioritized based on 

configuration-level PPs. 
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Assay for transposase-accessible chromatin using sequencing (ATAC-seq) in 

blood CD4+ T and CD19+ B cells. We collected fresh whole blood samples from five 

healthy volunteers of Chinese population. CD4+ T and CD19+ B cells were sorted 

using fluorescence activated cell sorting and used to create ATAC-seq libraries as 

previously described61. Libraries were sequenced on the BGISEQ 500 platform, with 

a 50 bp paired-end read (unpublished data) and ATAC-seq peaks were called using 

MACS262, to detect open accessible elements at the ACAP1 locus in CD4+ T and 

CD19+ B cells. Each participant provided written consent. The study protocol was 

approved by the institutional review board at the Institution of Dermatology, Anhui 

Medical University. 

 

Luciferase Reporter Assay. Three identical copies of the 24 bp element flanking 

each allele of rs61759532 (5’-TGC TCT GGG GCG GTT AGC AAC TTC-3’ for the C allele 

and 5’-TGC TCT GGG GTG GTT AGC AAC TTC-3’ for the T allele) were subcloned into 

the luciferase vector, pGL4.26 (luc2/minP/Hydro), between the XhoI and BglII sites 

upstream of the minimal promoter for the firefly luciferase gene, to test the 

enhancing activity of the inserts (Supplementary Figure 5). The firefly luciferase 

vector (1 μg) and normalizing Renilla luciferase vector (500 ng) were co-transfected 

into THP1 cells for 2 days using Lipofectamine 3000 (Thermo-Fisher Scientific). 

Luciferase activity was measured in five independent biological replicates using the 

Dual-Luciferase Reporter Assay Kit (Promega) according to the manufacturer’s 

instructions. Relative fold-change in firefly luciferase activity was normalized by 
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both transfection efficiency, based on Renilla luciferase activity, and minimal 

luciferase activity from the pGL4.26 vector without inserts. 

 

EMSA. EBV-transformed B or THP1 cells were grown in RPMI 1640 medium 

including 10% fetal bovine serum and 1% penicillin/streptomycin. EMSA probes 

were constructed by annealing biotin-conjugated 30-residue oligonucleotide 

sequences flanking rs61753158: 5’-biotin-ACC TGC TCT GGG GCG GTT AGC AAC TTC 

CTG-3’ (forward) and 5’-biotin-CAG GAA GTT GCT AAC CGC CCC AGA GCA GGT-3’ 

(reverse) for the C allele; 5’-biotin-ACC TGC TCT GGG GTG GTT AGC AAC TTC CTG-3’ 

(forward) and 5’-biotin-CAG GAA GTT GCT AAC CAC CCC AGA GCA GGT–3’ (reverse) 

for the T allele. EMSA was performed using the LightShift Chemiluminescent EMSA 

Kit (Thermo-Fisher Scientific) according to the manufacturer’s instructions. Briefly, 

a nuclear extract (10 μg) of EBV-transformed B or THP1 cells was incubated with 

EMSA probes (20 fmol) for 30 min at room temperature in a final volume of 15μl 

with 1× EMSA binding buffer, after pre-incubation with a non-specific competitor 

poly(dI-dC) and 0 or 4 pmol of a specific, non-conjugated competitor. DNA-protein 

complexes were separated on 6% nondenaturing polyacrylamide gel. 

 

DEPICT analysis. We used DEPICT v1 release 19436 to prioritize genes and tissues 

and cells implicated by our genome-wide association meta-analysis results. All of 

the genetic variants with P<5×10-8 were included. Input variants were clumped in 

DEPICT, using default 500 kb flanking regions with an LD cutoff of r2V>0.1, based on 

1KGP East Asians data, yielding 1,521 autosomal loci. We applied a threshold of 
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false discovery rate (FDR)≤0.01 to declare significant gene and tissue/cell 

enrichment. 

 

TWAS analysis. We performed a transcriptome-wide association analysis using 

meta-analysis summary statistics in FUSION33 to infer gene expression changes in 

SLE. The training data sets for imputing gene expression were generated using 

eQTLs from 105 Japanese individuals in six different cell types: B cells, CD4+ T cells, 

CD8+ T cells, monocytes, natural killer (NK) cells, and peripheral blood cells34. We 

defined a significance threshold at Benjamini-Hochberg FDR of 0.05 to correct for 

multiple testing of each cell type. 

 

Gene mapping using Functional Mapping and Annotation of Genome-Wide 

Association Studies (FUMA). Potentially disease-causing genes at each SLE locus 

were mapped using FUMA v1.3.637 with three mapping strategies: physical, eQTL, 

and chromatin interaction mapping. Briefly, genes within a 10 kb window from lead 

and proxy variants (r2≥0.6 in the 1KGP East Asians) were selected by physical 

mapping. eQTL mapping identified genes that were potentially cis-regulated by SLE 

variants within ≤1 Mb distance from lead variants, using known eQTL variants with 

FDR-corrected P values<0.05 in immune-related cell data in eQTL databases 

(Supplementary Table 27). Variants were strictly filtered using combined 

annotation dependent depletion (CADD) scores63 (≥12.37), maximum RegulomeDB 

scores64 (≤7), and maximum 15-core chromatin state65 (≤7; open chromatin) in any 

blood cell type, and FANTOM566,67 promoter and enhancer regions. Chromatin 
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interaction mapping was used to search for genes whose promoters had chromatin 

interactions with cell type-specific enhancers containing SLE variants (CADD score ≥ 

12.37, RegulomeDB score ≤ 7), using Hi-C data from EBV-transformed B cells and 

spleen (GSE87112)68, and annotation of promoter and enhancer regions in various 

blood cell types and spleen69. 

 

MAGMA-based gene prioritization. MAGMA v1.0735 was deployed to calculate 

gene-level disease association P values from variant-level association summary 

statistics within genes using a variant-wide mean model with data from the 1KGP 

East Asian reference panel.  

 

Heritability estimation by LD score regression. Overall SLE heritability h2 

explained by genome-wide variants was estimated using the LD score regression 

model21 with LD scores19 from 1KGP East Asian descendants, based on an SLE 

population prevalence of 0.03% in East Asian populations9. SLE heritability estimate 

was further partitioned according to known and novel SLE loci and transcription 

factor binding sites (TFBSs), to assess whether variants within the selected 

annotations explained significantly more SLE heritability using stratified LD score 

regression70. The boundary of each SLE locus was arbitrarily defined as ±500 kb 

flanking a lead SLE-risk variant. TFBS annotations were obtained from IMPACT44. 

IMPACT provides 707 tissue-specific TFBSs annotation sets for 137 TFs in 23 

tissues, including 58 sub-cell types. Heritability enrichment estimates for query 

annotations � (��) were calculated as follows: 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.22.20178939doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.22.20178939


 27

�� �
�
�

�/ �����

�

��/�����

 

where �
�

� is heritability explained by variants within the query annotation �, �����

�  

is the overall SLE heritability attributable to genome-wide variants, ��  is the number 

of variants in the query annotation �, and  ����� is the total number of variants 

analyzed. Standard errors were estimated using the block jackknife method70. P-

values were calculated based on the Z score and corrected by an FDR of 0.05. HLA 

variants were excluded from the TFBS-based partitioned heritability enrichment 

analysis. 

 

Enrichment analysis for epigenomic features using GREGOR. Enrichment of 

SLE-associated variants in epigenomic regulatory features was evaluated using 

GREGOR41. We utilized the Roadmap ChromHMM annotation comprising 15 

chromatin states inferred by a combination of multiple histone marks in 23 immune 

cell types (https://egg2.wustl.edu/roadmap/web_portal/). GREGOR generated 

1,000 random lead variant sets with three properties for the actual SLE-risk lead 

variant set (distance to the nearest gene, MAF, and number of proxy variants in LD 

at an r2 threshold of 0.8 in the 1KGP East Asian populations), to find a null 

distribution for the number of random lead variants in the annotation of interest, 

accounting for proxy variants. Enrichment P values were derived from the upper tail 

for the number of actual lead SLE-risk variants in the query annotation in the null 

distribution, using saddle point approximation and FDR correction at 5%. 
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Regulatory Element Locus Intersection (RELI) analysis. The RELI algorithm42 

was used to estimate the significance of intersections between the genomic 

coordinates of SLE loci (defined as the lead variants and their strong LD proxies 

with r2>0.8 in 1KGP East Asians) and the DNA sequences bound by a particular TF 

or co-factor, as determined by ChIP-seq. We used 1,544 ChIP-seq datasets as 

previously described42, which contains 1,536 ChIP-seq datasets for 344 human TFs 

in 221 cell lines and eight viral ChIP-seq datasets from EBV-infected B cells for the 

EBV gene products EBNA1, EBNA2 (three datasets), EBNA3C, EBNA-LP, and Zta and 

from HIV-infected T-cells for TAT. We identified 371 ChIP-seq datasets for TFs from 

various cell types, which had been previously suggested to form super-enhancers 

upon EBV infection in EBV-infected and transformed B cells43. Using RELI, we 

computed the significance and enrichment level for each ChIP-seq dataset by 

comparing the observed intersections with a null distribution of intersections 

obtained from 2,000 simulations. For each simulation, genetic variants were 

randomly chosen throughout the genome, ensuring their MAFs and LD structures 

similar to the actual lead variants and LD proxies. We used a significance threshold 

of P < 10-6 after Bonferroni correction and computed relative risk by dividing the 

observed intersections by the mean expected number of intersections.  

 

Identification and processing of public B cell line chromatin 

immunoprecipitation and sequencing (ChIP-seq) datasets for allelic analysis. 

We identified 1,078 ChIP-seq datasets from experiments performed in B cell lines in 

the Gene Expression Omnibus (GEO)71 using custom text searching scripts. 505 
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datasets were obtained for the GM12878 cell line and 573 for non-GM12878 cell 

lines. Annotations were manually checked for every dataset (assay type, cell line, 

and assayed molecule) to ensure accuracy. Sequence Read Archive (SRA) files 

obtained from GEO, representing sequencing reads, were analyzed using an 

automated pipeline. Briefly, the pipeline first ran quality control (QC) on the FastQ 

files using FastQC (v0.11.8)72. If FastQC detected adapter sequences, the pipeline ran 

the FastQ files through Trim Galore (v0.4.2)73, a wrapper script that runs cutadapt 

(v1.9.1)74, to remove the detected adapter sequences from the reads. The quality 

controlled reads were then aligned to the reference human genome (hg19/GRCh37) 

using bowtie2 (v2.3.4.1)75, followed by sorting using samtools (v1.8.0)76 and 

removing duplicate reads using picard (v1.89)77. Finally, peaks were called using 

MACS2 (v2.1.2)62, with four “modes” using the following parameter settings:  

MODE1 = -g hs -q 0.01; MODE2 = -g hs -q 0.01 –broad; MODE3 = -g hs -q 0.01 --

broad --nomodel --extsize  500 ; and MODE4 = -g hs -q 0.01 --broad --nomodel --

extsize 1000. Peaks were merged across the four MODES using bedTools to produce 

a final peak set for each experiment. ENCODE blacklist regions78 were removed from 

the peak sets using the hg19-blacklist.v2.bed.gz file available at 

https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg19-

blacklist.v2.bed.gz. 93 datasets failed at the download, alignment, or peak calling 

steps, yielding a total of 985 ChIP-seq peak sets in .BED format for subsequent 

analysis. 
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Allele-dependent ChIP-seq data analysis. We used whole genome sequencing 

data from 1KGP phase 3 to identify heterozygous genetic variants in B cell lines. 

Starting with variant call files produced by the 1KGP, heterozygous variants were 

identified for each subject. For the GM12878 cell line, we used genotyping 

information obtained from Illumina OMNI-5 arrays. Genotypes were called using the 

Gentrain2 algorithm within Illumina Genome Studio. Quality control was performed 

as previously described79. Quality control data cleaning was performed in the 

context of a larger batch of non-disease controls to allow for data quality 

assessment. Briefly, all cell lines had call rates >99%; only variants with MAF>0.01 

were included; and all variants with PHWE>10-4 were included. We performed 

genome-wide imputation using overlapping 150 kb sections of the genome with 

IMPUTE255 and 1KGP phase 3 (June 2014), and then filtered imputed variants with 

probability<0.9 or imputation quality<0.5 in addition to the same criteria described 

above for typed markers. Regions of the genome with abnormal chromosome counts 

(i.e., regions that did not have two chromosomes) were removed from consideration 

using the cnvPartitionsoftware package (Illumina Genome Studio) with default 

parameter settings, due to their potential effects on allelic read imbalances.   

Next, as a final quality control step, the identity of cell lines, as annotated in 

GEO, was confirmed by assessing read counts at variants identified as heterozygous.  

For each dataset in each cell line, we examined all heterozygotes with at least five 

sequencing reads. We then calculated the fraction of these variants with exactly zero 

reads on the weak allele (i.e., the allele with fewer mapped sequencing reads).  Zero 

weak allele reads is a hallmark of a mis-annotated cell line, since a variant that is 
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thought to be a heterozygote but in reality is a homozygote will always exhibit zero 

weak allele reads. Any dataset ≥ 45% “zero weak allele read heterozygotes” was 

flagged as a mis-annotation by the original producers of the dataset and removed 

from downstream analyses. This cutoff was chosen based on comparisons between 

purposely matched and mis-matched genotyping array/ChIP-seq experiment pairs. 

In total, 482 datasets were used for allelic analyses.  

To identify possible mechanisms underlying identified allelic variants, we 

applied the MARIO method42 to the ChIP-seq dataset collection. Briefly, MARIO 

identifies common genetic variants that are (1) heterozygous in the assayed cell line 

and (2) located within a peak in a given ChIP-seq dataset. It then examines the 

sequencing reads that map to each heterozygote in each peak for imbalance 

between the two alleles. MARIO Allelic Reproducibility Score (ARS) values >0.4 

were considered allelic, following our previous study42.  We also used an additional 

filter to ensure consistency across ChIP-seq datasets. Specifically, for each 

variant/regulatory molecule pair, we calculated the fraction of ChIP-seq datasets 

that shared the same preferred allele.  For example, if a particular variant was a 

heterozygote located inside an H3K27ac ChIP-seq peak in 10 datasets, and five of 

them preferred the G allele (with ARS value > 0.4), this value would be 0.5. We only 

included variant/regulatory molecule pairs where this value was ≥ 0.3.  

 

In-silico mutagenesis to pinpoint causal variants and genes. To explore the 

mutation effect and then to prioritize the causal variants and potential regulatory 

mechanisms for SLE genetic associations, we applied Mutation effect prediction on 
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ncRNA transcription (MENTR)45 analysis in significant summary-level associations 

from current meta-analysis. MENTR learns cell-type-specific transcription 

probability of promoters and enhancers surrounding transcription start sites (TSSs) 

using FANTOM5 Cap Analysis of Gene Expression (CAGE)80 from 347 types of 

samples comprising a variety of primary cells and tissues, and then predicts 

mutation effects on transcripts by in silico mutagenesis for certain variants based on 

the degree of probability change. In order to investigate mutation effects for 9,506 

significant non-HLA SNPs (P<5×10-8) on transcription, we searched for genes whose 

TSS are less than 100 kb from any significant non-HLA SNP and found 350,410 

variant-gene pairs. We then evaluated the mutation effect for these 350,410 variant-

gene pairs in MENTR. We identified 2,383 top variant-gene-cell sets that had robust 

mutation effects at mutation effect>0.1, which shows high accuracy of prediction45. 

Among these top variant-gene-cell sets, we eventually restricted the results to the 

71 sets that contain lead variants, proxies of strong LD with lead variants (r2>0.8 in 

the combined genotypes of 1KGP phase 3 v5 East Asians and whole genome 

sequencing data for 7,472 Japanese unrelated individual), and immune cells. 

 

Genetic correlation between SLE and diseases/traits using LD score regression. 

We calculated genetic correlations between 98 traits (39 diseases17 and 59 

quantitative traits81) and SLE by using LD score regression48. SNPs were restricted 

to HapMap3, because these are well-imputed in most studies. The HLA region was 

excluded because of its complex LD structure. LD scores of the 1KGP East Asians 
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were used to estimate genetic correlations. Significance was defined as Benjamini-

Hochberg FDR of 0.05. 
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Figure Legends 

 

Fig. 1 | Summary of meta-analysis association results and comparison of MAFs for lead variants within the 46 novel 

loci between East Asians and Europeans. a, Manhattan plot of genome-wide association meta-analysis results from 208,370 

SLE case-control East Asians. Minus log10-transformed association P values (y-axis) are plotted along chromosomal positions 

(x-axis). Known and novel loci are highlighted in light blue and pink, respectively. The red dashed line denotes the genome-

wide association significance threshold of P=5×10-8. The gray dashed line represents P=10-30, at which the y-axis breaks. b, 
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Comparison of MAFs of lead variants within the 46 novel loci between East Asians (y-axis) and non-Finnish Europeans (x-axis) 

in the Genome Aggregation Database (gnomAD) version 3. Variants with more than ten-times higher MAFs in East Asians are 

colored purple above a red dashed line. 
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Fig. 2 | Results of statistical fine-mapping. a, Number of 95% credible sets of 

putative causal variants, binned by their sizes. b, Number of potential causal 

variants with posterior probabilities (PP) ≥ 0.1, which are considered to be the true 

causal variants.  
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Fig. 3 | Allele-specific regulatory effect of rs61759532 on ACAP1. a, Regional 

association plot for the ACAP1 locus. The lead variant rs61759532 is labeled as a 
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purple diamond. The LD was estimated using data from 7,021 Chinese individuals. b, 

Location of rs61759532 within an ATAC-seq open chromatin accessible region in 

CD19+ B- and CD4+ T-cells (green tracks) and within active ChromHMM chromatin 

states (bars on the bottom panel) in primary CD8+ T naive cells (CD8.NPC), T helper 

naive cells (CD4.NPC), and primary B cells (BLD.CD19.PPC). Chromatin states are 

colored red (active transcription start site), orange red (flanking active 

transcription start site, and yellow (enhancers). c, Allelic differentials in the 

enhancing activity of rs61759532 in THP1 cells. None, 3×C, and 3×T denote empty 

vector containing a minimal promoter, and vectors with the C and T allele of 

rs61759532, respectively. Relative luciferases activities, measured in five 

independent biological replicates, were significantly higher for inserts with the C 

allele (P=8.1×10-3; two-tailed t-test). Error bars indicate standard errors of the 

means of five independent biological replicates. d, Association between the risk 

allele (T) of rs61759532 and decreased expression of ACAP1 in GTEx v8 whole 

blood (P=1.7×10-47). The white line in the center of each box indicates median 

expression value, while the box for each genotype represents the interquartile range 

of ACACP1 expressions. e, Allelic differential in protein-DNA binding by rs61759532 

in EMSAs. Biotin-conjugated 30-nucleotide probes flanking rs61759532 (denoted as 

C or T, according the allele) were incubated with nuclear extracts (10 μg) from EBV-

transformed B cells or THP1 cells in EMSAs. Shifted bands (indicated by red arrows) 

had stronger intensities with biotin-conjugated C allele probes than T allele probes, 

and were not detected in the presence of excess non-conjugated probes. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.22.20178939doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.22.20178939


 46

 

Fig. 4 | Distinct effects of the two independent association signals 

(rs13306575 and rs66977652) at a single locus containing NCF2 and SMG7. a, 

Regional association in the locus including NCF2 and SMG7. Lead and secondary 

index variants are indicated by diamonds. The lead variant and its LD proxies are in 

red, while the secondary signal index variant and its LD proxies are in blue. LD was 

estimated using data from 7,021 unrelated Chinese reference samples. b, Arginine at 
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position 395 (red) of NCF2 (pink) is known to interact with proline at position 339 

(green) of NCF4 (cyan) via a hydrogen bond (yellow) to form an NADPH oxidase 

complex. The substitution of arginine at position 395 to tryptophan, induced by the 

risk allele (A) of the lead missense variant rs13306575 (p.Arg395Trp) in NCF2, 

likely disrupts this interaction. c, The protective T allele of the secondary signal 

rs66977652 is associated with decreased expression levels of SMG7 in a wide range 

of GTEx v8 human tissues, including whole blood (P=3.1×10-15). Sample sizes 

according to rs66977652 genotypes are included in parentheses on the x-axis. The 

white line in the center of each box indicates median expression value, while the box 

for each genotype represents the interquartile range of SMG7 expressions. 
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Fig. 5 | Biological interpretation of SLE associations. a, Enrichment of 112 SLE-

associated non-HLA variants in ChromHMM core chromatin states across 23 

immune cells. X-axis shows fold enrichment while y-axis denotes -log10(P value of 

enrichment). Circles and triangles indicate insignificant and significant enrichments, 

respectively, at FDR<5%. Chromatin states that are significantly enriched for SLE 

associations are labeled with their ChromHMM annotations: active transcription 

start site (TssA), flanking active transcription start site (TssAFlnk), transcription at 

gene 5' and 3' (TxFlnk), strong transcription (Tx), weak transcription (TxWk), genic 

enhancers (EnhG), enhancers (Enh), and bivalent enhancer (EnhBiv). b, 

Physiological systems implicated by the expression of genes within SLE-associated 
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loci (P<5×10−8). Physiological systems in which the expression of genes from SLE-

associated loci are significantly enriched (FDR<5%) are colored orange. c, 

Intersection of 46 novel SLE loci with TF-DNA binding interactions. The x-axis 

shows SLE loci (named after the nearest genes to the lead variants). The y-axis 

shows the top 36 TFs, based on probabilities obtained from RELI, sorted in 

descending order by the number of intersecting loci. Each intersection (yellow box) 

indicates that the locus (column) contains at least one SLE-associated variant 

located within a ChIP-seq peak for the given TF (row). The cell type resource for 

each of the most significant ChIP-seq datasets is indicated in parentheses. TFs that 

participate in EBNA2 super-enhancers are colored red. EBNA2 protein is highlighted 

in blue. The red rectangle identifies the optimal cluster of the locus and TF 

intersections.  
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Extended Data Fig. 1| Two independent association signals identified. a, at two 

intronic variants within known STAT4 locus. b, at known (rs7097397, p.Arg1816Gln) 
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and new (rs7072606, p.Ser214Pro) missense variants within WDFY4 locus. The lead 

and secondary index variants are labeled in diamond. The lead variant and its LD 

proxies are in red while the secondary signal index variant and its LD proxies are in 

blue. The LD is estimated from 7,021 Chinese samples.  
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Extended Data Fig. 2 | New lead exonic variants identified at three known (CSK, 

IKBKB, and TYK2) and two novel (CHD23 and LRRK1) loci. a, rs11553760 

(synonymous variant) at CSK. b, rs2272736 (p.Arg303Gln, missense variant) at 

IKBKB. c, rs55882956 (p.Arg703Trp, missense variant) at TYK2. d,  rs10823829  

(synonymous variant) at CHD23. e, rs35985016 (p.Lys203Glu, missense variant) at 
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LRRK1. The lead SNP is labeled as purple diamond. The LD is estimated from 7,021 

Chinese samples. 
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Extended Data Fig. 3 | Venn diagram of significant gene findings from four 

gene-level approaches. The significant gene findings from FUMA, FUSION, MAGMA, 

and DEPICT are in light orange, light read, light green, and light purple, respectively. 
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Extended Data Fig. 4 | Intersection of 112 non-HLA SLE risk loci with TF-DNA binding interactions with the genome. 

The x-axis displays SLE loci (named after the nearest genes to the lead variants). The y-axis displays the top 36 TFs, based on 

probabilities obtained from RELI, sorted in descending order by the number of intersecting loci. Each intersection (yellow box) 

means that the locus (column) contains at least one SLE-associated variant located within a ChIP-seq peak for the given TF 

(row). The cell type resource for each of the most significant ChIP-seq dataset is indicated in parentheses. TFs that participate 

in EBNA2 super-enhancers are colored red. The red rectangle identifies the optimal cluster of the locus and TF intersections. 
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Extended Data Fig. 5 | Allele-dependent regulatory proteins binding to the 

rs2205960 variant.  Allele-dependent binding of regulatory proteins at the TNFSF4 

locus based on ChIP-seq read allelic imbalance analysis (see Online Methods). The x-

axis indicates the preferred allele, along with a value indicating the strength of the 

allelic behavior, calculated as 1 minus the ratio of the weak to strong reads (for 

example, 0.5 indicates the strong allele has approximately twice the reads of the 

weak allele). 
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Extended Data Fig. 6 | Robust mutation effect predicted in MENTR. a, 

rs77571059 on regulating IRF5 expression in neutrophil. b, rs200489061 on 

regulating BLK expression in natural killer cell. The x-axis is the minus log10 

transformed single-variant association P values for SLE risk while the y-axis denotes 

the minus log10 transformed eQTL P values in GTEx v8 whole blood. The size of each 

dot is scaled by the predicted mutation effect magnitude. The variants with robust 

mutation effect are in red. 
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Tables 

Table 1: Association results for the 46 novel susceptibility loci for SLE.  

CHR Position Variant EA NEA EAF OR SE P value HetISq HetPVal N Nearest gene 

1 117,043,302 rs9651076 A G 0.431 1.117 0.015 3.26E-13 10.7 0.347 208,370 CD58 

1 157,108,159 rs116785379 C G 0.107 1.211 0.024 6.68E-16 43.7 0.114 208,370 ETV3 

1 201,979,455 rs3806357 A G 0.251 1.106 0.017 4.25E-09 0.0 0.672 208,370 ELF3 

2 7,573,079 rs75362385 T G 0.321 0.887 0.017 8.40E-13 68.3 0.007 208,370 LOC100506274 

2 111,877,174 rs73954925 C G 0.878 1.169 0.024 5.11E-11 56.4 0.043 208,370 BCL2L11 

2 198,929,806 rs7572733 T C 0.260 1.143 0.017 1.25E-14 0.0 0.647 208,370 PLCL1 

3 28,072,086 rs438613 T C 0.588 0.920 0.014 7.52E-09 69.4 0.006 208,370 LINC01980 

3 72,225,916 rs7637844 A C 0.871 0.877 0.023 1.28E-08 0.0 0.906 208,370 LINC00870 

4 2,700,844 rs231694 T C 0.380 1.111 0.018 9.71E-09 23.7 0.269 57,253 FAM193A 

4 40,307,587 rs113284964 G GCTTC 0.371 1.134 0.015 1.35E-16 67.2 0.009 208,370 LINC02265 

4 79,644,279 rs6533951 A G 0.350 1.111 0.016 1.25E-10 61.4 0.024 208,370 LINC01094 

4 84,146,996 rs6841907 T C 0.729 0.906 0.016 1.10E-09 43.5 0.115 208,370 COQ2 

4 109,061,618 rs58107865 C G 0.227 0.802 0.021 6.57E-25 1.1 0.409 208,370 LEF1 

5 131,120,338 rs370449198 A AC 0.922 0.721 0.060 4.41E-08 0.0 0.408 187,562 FNIP1 

5 131,829,578 rs2549002 A C 0.682 0.905 0.016 2.40E-10 20.6 0.279 208,370 IRF1 

6 243,302 rs9503037 A G 0.693 0.881 0.016 1.36E-15 42.3 0.123 208,370 LOC285766 

6 36,715,031 rs34868004 CA C 0.225 1.104 0.017 4.46E-09 40.7 0.134 208,370 CPNE5 

6 116,690,849 rs9488914 T C 0.920 0.862 0.026 1.14E-08 65.3 0.013 208,370 DSE 

6 154,570,651 rs9322454 A G 0.659 1.090 0.015 2.42E-08 0.0 0.430 208,370 IPCEF1 

8 71,330,166 rs142937720 A AAGTGGCC 0.383 0.894 0.016 2.27E-12 67.9 0.008 208,370 NCOA2 

8 72,894,959 rs17374162 A G 0.411 0.917 0.015 3.02E-09 35.7 0.169 208,370 MSC-AS1 

8 129,425,593 rs16902895 A G 0.678 1.122 0.016 1.48E-13 0.0 0.801 208,370 LINC00824 

9 21,267,087 rs7858766 T C 0.538 1.139 0.016 2.25E-15 0.0 0.825 208,370 IFNA22P 
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10 5,910,746 rs77448389 A G 0.913 0.855 0.025 7.30E-10 0.0 0.584 208,370 ANKRD16 

10 64,411,288 rs10995261 T C 0.240 0.909 0.017 2.57E-08 43.9 0.113 208,370 ZNF365 

10 73,466,709 rs10823829 T C 0.718 0.910 0.016 1.05E-09 0.0 0.771 208,370 CDH23 

10 105,677,911 rs111447985 A C 0.073 1.172 0.028 1.72E-08 0.0 0.526 208,370 STN1 

10 112,664,114 rs58164562 T C 0.748 0.892 0.016 3.14E-12 33.3 0.186 208,370 BBIP1 

11 4,113,200 rs3750996 A G 0.834 1.167 0.022 1.89E-12 0.0 0.522 208,370 STIM1 

11 18,362,382 rs77885959 T G 0.978 1.694 0.062 3.16E-17 0.0 0.511 204,433 GTF2H1 

12 4,140,876 rs2540119 T C 0.544 1.086 0.015 3.51E-08 44.9 0.106 208,370 PARP11 

12 103,916,080 rs6539078 T C 0.591 0.894 0.015 9.49E-14 0.0 0.916 208,370 LOC105369945 

12 121,368,518 rs3999421 A T 0.506 0.910 0.016 1.29E-09 47.3 0.091 208,370 XLOC_009911 

12 133,040,182 rs200521476 G GCATCAC 0.812 0.875 0.023 5.66E-09 26.7 0.235 208,370 FBRSL1 

15 101,529,012 rs35985016 A G 0.930 0.843 0.030 1.95E-08 0.0 0.897 204,433 LRRK1 

16 50,089,207 rs11288784 G GT 0.365 0.902 0.016 2.38E-10 0.0 0.664 208,370 HEATR3 

16 79,745,672 rs11376510 G GT 0.737 0.898 0.017 2.23E-10 0.0 0.719 208,370 MAFTRR 

17 7,240,391 rs61759532 T C 0.076 1.235 0.032 2.79E-11 24.9 0.247 208,370 ACAP1 

17 47,468,020 rs2671655 T C 0.651 1.087 0.015 4.60E-08 0.0 0.756 208,370 LOC10272459 

17 76,373,179 rs113417153 T C 0.193 0.893 0.020 1.90E-08 2.1 0.403 208,370 PGS1 

18 77,386,912 rs118075465 A G 0.147 1.140 0.020 1.16E-10 0.0 0.543 208,370 LOC284241 

19 948,532 rs2238577 T C 0.455 0.885 0.016 1.83E-14 60.8 0.026 208,370 ARID3A 

19 6,697,088 rs5826945 A T 0.929 0.836 0.028 9.67E-11 50.0 0.075 208,370 C3 

19 33,072,768 rs12461589 T C 0.248 0.898 0.017 5.00E-10 0.0 0.510 208,370 PDCD5 

19 49,851,746 rs33974425 CCAGCTGCAT C 0.702 1.120 0.016 4.40E-12 42.6 0.121 208,370 TEAD2 

22 18,649,356 rs4819670 T C 0.210 1.151 0.022 5.53E-11 0.0 0.650 208,370 USP18 

CHR: chromosome  

EA: effective allele  

NEA: non-effective allele  
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EAF: effective allele frequency  

OR: odds ratio  

SE: standard error for the odds ratio  

HetISq: genetic heterogeneity I2 statistics at scale of 0-100%  

HetPval: P values for the chi-squared test of genetic heterogeneity  

N: study sample size  
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