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Abstract 28 

Inference of person-to-person transmission networks using surveillance data is increasingly used 29 

to estimate spatiotemporal patterns of pathogen transmission. Several data types can be used to 30 

inform transmission network inferences, yet the sensitivity of those inferences to different data 31 

types is not routinely evaluated. We evaluated the influence of different combinations of spatial, 32 

temporal, and travel-history data on transmission network inferences for Plasmodium falciparum 33 

malaria. We found that these data types have limited utility for inferring transmission networks 34 

and may overestimate transmission. Only when outbreaks were temporally focal or travel 35 

histories were accurate was the algorithm able to accurately estimate the reproduction number 36 

under control, Rc. Applying this approach to data from Eswatini indicated that inferences of Rc 37 

and spatiotemporal patterns therein depend upon the choice of data types and assumptions about 38 

travel-history data. These results suggest that transmission network inferences made with routine 39 

malaria surveillance data should be interpreted with caution.   40 
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Introduction 41 

Concomitant with improved epidemiological surveillance, there is growing interest to leverage 42 

the collected data to infer transmission networks for a wide range of pathogens and to use those 43 

inferences to inform public health efforts. Past studies have incorporated temporal data1 and 44 

spatial data2–5 to estimate pairwise probabilities of transmission between individual cases and to 45 

use those estimates to infer time-varying and spatially varying reproduction numbers, 46 

respectively. More recently, methods have been developed to incorporate this type of detailed, 47 

individual-level epidemiological data6–8 to infer transmission networks for infectious diseases of 48 

humans, including severe acute respiratory syndrome9 and tuberculosis10, and of animals, such as 49 

rabies11 and foot-and-mouth disease12.  50 

In addition to the diseases for which these methods have been applied to date, there is a 51 

growing need to apply similar methods to malaria in near-elimination settings. As incidence of 52 

malaria declines within a country, transmission becomes more heterogeneous in space and 53 

time13. Focal areas of high transmission, known as "hotspots," pose a serious risk of fueling 54 

resurgence if left untargeted, potentially reversing decades of progress towards elimination14. To 55 

this end, granular estimates of when and where transmission occurs are needed, as spatially 56 

aggregated estimates may obscure important heterogeneities of practical relevance to control 57 

efforts15. In addition to characterizing details of local transmission, measurement of progress 58 

towards malaria elimination hinges on correct classification of cases as imported or locally 59 

acquired16,17, which is a byproduct of estimating transmission networks.  60 

 Previous work on malaria has made progress on the use of individual-level 61 

epidemiological data to infer transmission networks of Plasmodium falciparum, the parasite 62 

primarily responsible for human malaria in many regions of the world. Churcher et al.18 used 63 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 18, 2021. ; https://doi.org/10.1101/2020.08.24.20180844doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.24.20180844
http://creativecommons.org/licenses/by/4.0/


 5 

temporal data to estimate the proportion of imported cases needed to confidently estimate the 64 

reproduction number under control, Rc, below one and thereby provide evidence of controlled, 65 

non-endemic malaria transmission. Reiner et al.6 then built upon this work by incorporating 66 

spatial data and inferring an individual-level transmission network of P. falciparum in Eswatini. 67 

More recently, Routledge et al.19,20 used related approaches to infer transmission networks and 68 

Rc of P. vivax in El Salvador and China.  69 

 As the adoption of these methods increases, in particular for malaria, care should be taken 70 

to assess how the epidemiological setting and the inclusion or exclusion of certain data types 71 

might affect the accuracy of transmission network inferences, as well as resultant inferences 72 

about epidemiological quantities including Rc and spatiotemporal variation therein. A recent 73 

study by Campbell et al.21 noted that epidemiological data alone was generally insufficient to 74 

reconstruct transmission networks of other pathogens, ranging from Mycobacterium tuberculosis 75 

to SARS-CoV. Although P. falciparum malaria was not considered in that analysis, its long 76 

serial interval22 calls into the question the utility of epidemiological data for this purpose, though 77 

this has been largely unaddressed in past studies. Furthermore, past transmission network 78 

inferences for malaria have relied on various types of epidemiological data, ranging from the 79 

timing of symptom onset18–20 to more detailed spatiotemporal data6. Each study incorporated 80 

travel-history information into transmission network inferences and considered these data to be 81 

perfectly accurate, assuming that all cases that reported travel were imported. However, travel 82 

history may be an imperfect indicator of importation owing to errors in recall17 and the fact that 83 

travel to an area of ongoing transmission alone does not guarantee that an individual was 84 

infected there17,23. P. falciparum transmission network inferences are likely to be sensitive to the 85 

choice of data types24, and failure to evaluate the sensitivity of transmission network inferences 86 
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to choices about data types and different assumptions about possible errors in travel-history data 87 

could lead to apparently confident, though ultimately incorrect, assessments of P. falciparum 88 

transmission risk in near-elimination settings.  89 

  Here, we present a Bayesian method for inferring transmission networks based on 90 

temporal, spatial, and travel-history data for individual malaria cases. We use it to characterize 91 

the sensitivity of transmission network inferences to the inclusion of different data types and to 92 

different assumptions about the accuracy of travel histories. Our method builds upon previous 93 

work by leveraging individual-level epidemiological data to obtain posterior estimates of 94 

transmission networks and model parameters in a way that can accommodate different 95 

assumptions about errors in travel histories. After establishing a proof-of-concept of our 96 

inference method on simple test cases, we applied our method to real-world surveillance data 97 

from Eswatini and additional simulated data sets to understand how the inclusion or exclusion of 98 

different data types and different assumptions about travel-history error affect our ability to infer 99 

transmission networks and estimate transmission metrics, namely Rc.  100 

 101 

Results 102 

To establish proof-of-concept, we first applied our inference method on three simple test cases 103 

and evaluated how well our inferences recovered the true transmission networks. We then 104 

applied our method to surveillance data collected in Eswatini during 2013-2017. Our focus was 105 

less on understanding malaria epidemiology in Eswatini and more on understanding how 106 

epidemiological conclusions change with the inclusion or exclusion of different data types and 107 

different assumptions about travel histories. These inference settings used: (1) spatial and 108 

temporal data while estimating the accuracy of the travel history (default setting); (2) spatial and 109 
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temporal data while believing the travel history; (3) spatial and temporal data alone; (4) temporal 110 

data while estimating the accuracy of the travel history; and (5) temporal data while believing the 111 

travel history. To validate the inferences based on data from Eswatini, we simulated data 112 

generated using posterior parameter estimates obtained from the data from Eswatini and 113 

evaluated the ability of our inference method to recover the true transmission networks along 114 

with the underlying parameters on those simulated data. Finally, we performed a simulation 115 

sweep across different epidemiological settings to determine the range of conditions under which 116 

our inference method yielded reliable estimates of transmission. A full description of the 117 

analyses and additional results can be found in the Supplement.   118 

 119 

Application to Eswatini surveillance data 120 

We applied our method to surveillance data collected in Eswatini during 2013-2017. Under the 121 

default inference setting, we estimated the diffusion coefficient D, which quantifies the spatial 122 

spread of transmission, to be 4.42 km2 day-1 (2.92 – 6.18 km2 day-1) (Fig 1A). This corresponded 123 

to a median inferred transmission distance of 13.0 km (0.0160 – 65.9 km), a median inferred 124 

serial interval of 47 days (-33 – 150 days) (Fig 2A & 2B), and median estimates of ts, the 125 

probability that an imported case reported travel, of 0.61 (0.44 – 0.78) compared to the prior 126 

distribution mean of 0.80 and tl, the probability that a locally acquired case reported travel, of 127 

0.57 (0.53 – 0.61) compared to the prior distribution mean of 0.20 (Fig 1B & 1C). That the 95% 128 

credible interval for ts contained 0.50 indicated that our inference algorithm found limited use of 129 

travel-history data in discriminating between imported and locally acquired cases, because that 130 

implies that imported cases have equal probabilities of reporting or not reporting travel. The 131 

algorithm estimated the proportion of imported cases to be 0.052, corresponding to Rc = 0.95. 132 
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Mapping risk of importation and local transmission across Eswatini under the default inference 133 

setting, we estimated consistently low risk of importation throughout the country and 134 

transmission hotspots in the northeastern part of Eswatini, close to the border with Mozambique 135 

(Fig 3A & 3B).  136 

 137 

 138 

Fig 1. Marginal posterior distributions of parameters from Eswatini surveillance data. 139 

Histograms represent the marginal posterior distribution of each parameter, color-coded by the 140 

inference settings used. D is the diffusion coefficient with units km2day-1, ts is the probability that 141 

an imported case reports travel, and tl is the probability that a locally acquired case reports 142 
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travel. Gray shapes represent the prior distributions placed on each parameter. Inference 143 

settings in which a given parameter was not estimated are indicated by NA. 144 

 145 

 146 
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Fig 2. Spatial and temporal scales of transmission in Eswatini. Kernel density plots of the 147 

spatial (km) and temporal (days) scales of transmission are reported and color-coded for each 148 

inference setting. Dashed lines indicate the corresponding null distribution, generated from all 149 

random pairs of cases in the Eswatini surveillance data set. The null distribution was different if 150 

we believed the travel history, because classification of cases on the basis on travel history 151 

reduced the pairs of cases that could be randomly sampled. The grey shape is the serial interval 152 

distribution used in the likelihood. 153 

 154 
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 155 

Fig 3. Spatial distribution of importation and transmission risk in Eswatini. Maps of the 156 

proportion of cases that are imported and the reproduction number under control (Rc) were 157 
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generated for each inference setting using a generalized additive model with a Gaussian process 158 

basis function setting using the mgcv package in R25,26. In each plot, darker colors indicate 159 

greater importation or transmission risk.  160 

 161 

Parameter estimates and transmission network inferences differed under other inference 162 

settings. When we believed the travel history, we estimated a larger median transmission 163 

distance (Fig 2D). We attribute this increase in the spatial scale of transmission to clusters of 164 

cases with positive travel histories located near metropolitan areas. By forcing those cases to be 165 

imported, the algorithm tended to infer transmission across longer distances to explain the 166 

origins of the remainder of cases that did not report travel and were thereby inferred to be locally 167 

acquired. With respect to time, all five inference settings produced consistent serial interval 168 

estimates, though the inclusion of spatial data allowed for a wider range of transmission linkages 169 

in time (Fig 2A, 2C, & 2E). Finally, in the absence of spatial data, the model estimated higher 170 

predictive power of travel histories in identifying imported cases (ts: 0.83, [0.60, 0.95]), though 171 

the travel history was consistently found to be uninformative for identifying locally acquired 172 

cases (tl: 0.57, [0.53, 0.60]) (Fig 1K & 1L).  173 

Classification of cases as imported or locally acquired, key information for control 174 

programs, was sensitive to the choice of inference setting. The proportion of cases classified as 175 

imported was most sensitive to different assumptions about the accuracy of the travel histories 176 

(Fig 3, left column; Fig 4). Believing the travel history yielded high estimates of importation in 177 

western Eswatini (Fig 3C & 3I), whereas estimating or ignoring the travel history yielded low, 178 

relatively homogeneous estimates of importation risk (Fig 3A, 3E, & 3G). For instance, using 179 

temporal data and estimating the accuracy of the travel history produced probabilities of 180 
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importation that ranged 0.0043 – 0.0050, suggesting that nearly all cases resulted from local 181 

transmission (Figs 3G, 4D). Estimates of the spatial distribution of Rc depended most on the 182 

choice of which data types we included (Fig 3, right column). Notably, inclusion of spatial and 183 

temporal data produced a consistent spatial distribution of relative transmission risk, with 184 

transmission hotspots in northeastern Eswatini (Fig 3B, 3D, & 3F). However, believing the travel 185 

history reduced the magnitude of transmission that we inferred from a median Rc of 0.95 (Figs 186 

3B, 4A) under default settings to 0.41 (Figs 3D, 4B). Omitting spatial data changed the spatial 187 

distribution of transmission. Estimating the accuracy of the travel history yielded high 188 

transmission estimates (median Rc: 1.00) in eastern Eswatini (Fig 3H), whereas believing the 189 

travel history inferred hotspots of transmission (median Rc: 0.42) in southern Eswatini (Fig 3J). 190 

We note that believing the travel history led to slightly different median estimates of Rc (0.41 vs. 191 

0.42) depending upon whether spatial data was included, because the travel histories were 192 

unknown for 36 cases included in the analysis. As part of the inference procedure, the algorithm 193 

classified these cases as imported or locally acquired, and including spatial data caused a greater 194 

number of cases to be inferred to be imported.  195 

 196 
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 197 

Fig 4. Maximum a posteriori transmission networks in Eswatini. The maximum a posteriori 198 

transmission networks (i.e., the transmission network in the posterior distribution with the 199 

highest likelihood) is shown for each inference setting: (A) spatial and temporal data while 200 

estimating the accuracy of the travel history; (B) spatial and temporal data while believing the 201 

travel history; (C) spatial and temporal data alone; (D) temporal data while estimating the 202 

accuracy of the travel history; and (E) temporal data while believing the travel history. In each 203 

transmission network, circles represent nodes, and arrows represent directed edges.  204 

 205 

Validation of inferences from Eswatini 206 
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Reconciling the different inferences under different inference settings in Figs. 1-4 was 207 

challenging because the true, underlying network and parameters were unknown. Using median 208 

posterior estimates from the Eswatini data under each inference setting, we simulated data and 209 

assessed the ability of the inference method to recover the underlying parameters and 210 

transmission networks (Table 1). We found that the model was able to estimate ts and tl 211 

reasonably well, depending on the inference setting (Fig 5). One exception was that the 212 

algorithm slightly overestimated ts under the default inference setting. We attribute this to the 213 

low proportion (0.052) of imported infections in the simulated data set and the strong prior 214 

placed on this parameter. This tendency was not observed under the inference setting where 215 

spatial data was excluded, because the true value of ts closely matched the mean of the prior 216 

distribution in that case (see the Supplement for further discussion). 217 

 218 

Table 1. Characteristics of simulated data generated using the branching process model.  219 

Inference Setting Network Size # of Outbreaks Prop. Imported D ts tl 
Space Time Travel       
Yes Yes Estimate 775 43 0.052 4.42 0.61 0.57 
Yes Yes Believe 775 492 0.59 3.70 1 0 
Yes Yes No 775 36 0.043 4.96 NA NA 
No Yes Estimate 775 1 0.0013 NA 0.83 0.57 
No Yes Believe 775 489 0.58 NA 1 0 

A description of the simulated data used in the inference exercises are reported for each of the 220 

five inference settings. The total number of nodes in the network, the number of distinct 221 

outbreaks, the proportion of cases that are imported, and the underlying parameters are 222 

provided.  223 
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 224 

Fig 5. Marginal posterior distributions for parameters inferred from simulated data. The 225 

marginal posterior distributions are reported for each inference setting from its respective 226 

simulated data set. Each line denotes the true value of the parameter, and the grey shapes 227 

represent the prior distributions of the parameters. Inference settings in which a given parameter 228 

was not estimated are indicated by NA. 229 

 230 

 With the exception of believing the travel history, the model consistently overestimated 231 

the diffusion coefficient (Fig 5A, 5D, & 5G). We attribute the challenge of correctly estimating 232 

the diffusion coefficient to an inability to correctly estimate the underlying transmission network, 233 
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the extent of local transmission in the network, and a numerical insensitivity in the overall 234 

likelihood to changes in D. When we conditioned the likelihood of D on the true transmission 235 

network when Rc was high, the true values of D fell close to the range of maximum-likelihood 236 

estimates, suggesting that this parameter could be estimated correctly if the true network was 237 

identified (S3 Fig). The likelihood around the true value was very flat, however, making it easy 238 

for D to be estimated incorrectly. When Rc was low, we underestimated the diffusion coefficient, 239 

because the likelihood of imported cases increases as D decreases.   240 

 The overall accuracy of classifying cases as imported or locally acquired was close to one 241 

(Fig 6). Though seemingly promising, these high accuracies masked a tendency to overclassify 242 

cases as locally acquired, because many more cases were simulated to be locally acquired than 243 

imported. For example, under the default inference setting, the accuracy of correctly classifying 244 

imported cases was 0.023 (0.023 – 0.067). Similarly, the accuracies of identifying the parent of 245 

each transmission linkage were poor, despite simulating under the assumptions of the model, 246 

with accuracies ranging from 0.042 (0.022 – 0.065) when using temporal data and believing the 247 

travel history to 0.31 (0.28 – 0.34) when incorporating spatial and temporal data and estimating 248 

the accuracy of the travel history (Fig 6, circle points). This suggests that, as the number of cases 249 

increases within a fixed space-time window, the information content of routinely collected 250 

epidemiological data decreases and the method becomes incapable of correctly estimating the 251 

transmission network. Nevertheless, under some settings, the method was able to capture higher-252 

order summaries of the network, such as case classification and Rc (Fig 6, square and diamond 253 

points).  254 

 255 
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 256 

Fig 6. Inference accuracies for validation exercises. Accuracy metrics are reported for each 257 

inference setting applied to its respective simulated data set. Case Classification, represented by 258 

squares, refers to the proportion of cases that are correctly classified as imported or locally 259 

acquired. Transmission Linkage, denoted by circles, is the proportion of locally acquired cases 260 

for which the true parent is correctly identified. Outbreak, represented by triangles, is the 261 

proportion of locally acquired cases for which the inferred parent belongs to the correct 262 

outbreak. Bars denote the 95% credible intervals, and the grey line is the true Rc value of the 263 

network.  264 

 265 

Simulation Sweep 266 

Validation of our inference algorithm revealed that its performance varied across simulated data 267 

sets. When applied to a series of simple test cases in which the transmission networks were small 268 

and in an optimal spatiotemporal arrangement, the inference method was able to reconstruct the 269 

transmission network and correctly estimate Rc (S2 Fig). When applied to larger transmission 270 

networks in which outbreaks overlapped in space and time, performance of the inference method 271 

was poor (Fig 6). This indicated that the performance of our inference algorithm depends on the 272 

epidemiological setting to which it is applied. To address this observation, we generated 2,000 273 

simulated data sets in which we varied the proportion of imported cases, the spatiotemporal 274 
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window over which imported cases were distributed, the diffusion coefficient, and the accuracies 275 

of the travel history (i.e., ts and tl) (S2 Table). We then applied our inference algorithm under 276 

three different inference settings and quantified the accuracy of reconstructing each transmission 277 

network. The three inference settings used: (1) spatial and temporal data while estimating the 278 

accuracy of the travel history (default setting); (2) spatial and temporal data while believing the 279 

travel history; and (3) spatial and temporal data alone (S1 Table).  280 

 We observed that the accuracy of reconstructing transmission networks depended upon 281 

both the inference setting used and the epidemiological features of the simulated data. When we 282 

used spatial and temporal data and estimated the accuracy of the travel history or excluded it, the 283 

accuracy of reconstructing transmission networks depended on the relative proportion and 284 

temporal distribution of imported cases (S10 and S12 Figs). As the temporal window over which 285 

imported cases are distributed increased, the accuracy of identifying the true parent and the true 286 

outbreak of each locally acquired case increased. With an increasing temporal window, 287 

outbreaks within the transmission network became relatively more focal in time, which made the 288 

likelihoods of alternative transmission linkages more readily distinguishable. More accurate 289 

estimates of Rc under these inference settings similarly depended on the temporal window over 290 

which imported cases were distributed (Fig 7A, 7C). When the mean temporal interval between 291 

imported infections was greater than two times the mean length of the serial interval (i.e., 292 

approximately 100 days), our estimates of Rc improved, though we generally overestimated it. 293 

Furthermore, as the proportion of imported cases increased and Rc decreased, the accuracy of 294 

identifying the correct outbreak of each locally acquired case decreased (S10 and S12 Figs). This 295 

pattern reflected the relationship between Rc and the size of individual outbreaks. As Rc 296 
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decreased, the size of individual outbreaks decreased, and, consequently, the probability that the 297 

inferred parent of a locally acquired case belonged to the same outbreak decreased.  298 

 299 

 300 

Fig 7. Comparison of Rc estimates across inference settings. The inference algorithm was 301 

applied to 2,000 simulated data sets. The estimated Rc is compared to the true Rc for each of the 302 

inference settings: (A) spatial and temporal data while estimating the accuracy of the travel 303 

history; (B) spatial and temporal data while believing the travel history; and (C) spatial and 304 

temporal data alone. Each point represents a simulated data set. The darker, accented points are 305 

simulated data sets with epidemiological features that improved performance. In (A) and (C), the 306 

darker, accented points were simulated data sets where the mean temporal interval between 307 

imported infections was greater than two times the mean serial interval. In (B), the darker, 308 

accented points were simulated data sets where the proportion of cases reporting travel was 309 

within 0.05 of the proportion of imported cases.  310 

 311 

 By contrast, when we believed the travel history, the accuracy of reconstructing 312 

transmission networks depended most strongly on the accuracies of the travel history. As the 313 
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probability of reporting travel increased, the accuracy of classifying imported cases increased, 314 

and the accuracy of classifying locally acquired cases decreased (S11 Fig). Under this inference 315 

setting, our estimate of Rc depended only on the proportion of cases that reported travel. When 316 

the proportion of cases that reported travel matched the proportion of cases that were imported, 317 

we correctly estimated Rc (Fig 7B).  318 

 319 

Discussion 320 

Our results show that, in most settings, routinely collected surveillance data offer limited value 321 

for reconstructing individual-level transmission networks of P. falciparum malaria and informing 322 

estimates of the reproduction number under control, Rc. Using simulated data similar to the 323 

Eswatini surveillance data that we analyzed, we observed that our inference algorithm correctly 324 

identified transmission linkages less than 35% of the time. We attribute this inaccuracy primarily 325 

to the inherently limited information content of spatiotemporal data on P. falciparum. Its 326 

characteristically long serial interval22 means that an appreciable number of cases presenting 327 

within a short timeframe are difficult to link to each other based on their timing, even in a 328 

relatively facile test case in which the generative process assumed in the likelihood function 329 

matched that used to simulate the data. The inability to reconstruct transmission networks using 330 

routine surveillance data has been observed for other inference algorithms when applied to 331 

pathogens, such as Mycobacterium tuberculosis and Klebsiella pneuomoniae, with similarly long 332 

serial intervals, providing further evidence that the limitations noted in this study are generally 333 

inherent to the epidemiological data, rather than our method per se21. 334 

 Under most simulated scenarios and assumptions about the accuracy of travel-history 335 

data, we overestimated the number of locally acquired cases, leading to overestimates of Rc. 336 
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Crucially, our simulation sweep demonstrated that routinely collected surveillance data was most 337 

informative of individual-level transmission networks and Rc when local outbreaks were highly 338 

focal in time. Otherwise, while we were able to reconstruct the true transmission network with 339 

modest accuracy, we tended to misclassify truly imported cases as locally acquired, thereby 340 

overestimating Rc. Taken together, these results suggest limited use of routinely collected 341 

surveillance data for informing fine-scale estimates of P. falciparum transmission. At broader 342 

spatial scales, however, routinely collected surveillance data may still have practical value, 343 

because the spatial distribution of cases can reveal epidemiological risk factors relevant for 344 

targeted control interventions27,28.  345 

 Although we were able to reach some general conclusions about our inference algorithm, 346 

our inferences were highly sensitive to which data types we included and which assumptions we 347 

made about the accuracy of travel-history data. Applying our algorithm to surveillance data from 348 

Eswatini, we observed that inferred patterns of transmission depended on which data types we 349 

included. With the inclusion of spatial data, we captured a spatial pattern of transmission 350 

consistent with another analysis from Eswatini29 with data from a different time period. 351 

Assumptions about the travel history appeared to have a strong influence on the overall 352 

magnitude of transmission that we inferred, due to the direct relationship between Rc and the 353 

proportion of imported cases16. As a result, believing the travel history, and thereby treating it as 354 

perfectly accurate as in previous approaches6,18–20, could bias Rc estimates if there are errors in 355 

travel-history data. A study comparing community travel surveys to mobile-phone data in Kenya 356 

found that travel histories considerably underestimated the volume of travel, suggesting high 357 

rates of false negatives in community travel surveys30. Believing the travel history may, then, 358 

underestimate the number of imported cases and overestimate Rc. Accounting for inaccuracy in 359 
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travel-history data is therefore important, and studies pairing community travel surveys with 360 

mobile-phone data could be used to inform prior distributions on the likely accuracy of travel-361 

history data30,31. 362 

 The method that we used only considered a single spatial model to infer transmission 363 

linkages and assumed complete observation of cases, both of which are factors that could have 364 

affected our inferences based on the Eswatini surveillance data. The diffusion model that we 365 

used to represent spatial dispersion of parasites assumed that movement is isotropic in space and 366 

did not consider landscape features, such as heterogeneity in human population densities and 367 

environmental factors that may affect mosquito ecology. A study analyzing self-reported 368 

movement patterns in Mali, Burkina Faso, Zambia, and Tanzania found that gravity and radiation 369 

models of spatial dispersion fit the data well, though the appropriateness of each model depended 370 

on the type of traveler, the travel distance, and the population size of the destination 371 

considered32. Although a variety of spatial kernels could have been used in our analysis, we 372 

expect that the conclusions that we reached are robust to the choice of spatial kernel, because the 373 

spatial kernel used in the likelihood matched that used to simulate the data. Regarding the 374 

representation of P. falciparum infections in our data set from Eswatini, there are asymptomatic 375 

and mild infections that are unlikely to have been recorded in the surveillance system yet may 376 

comprise a substantial proportion of malaria infections within Eswatini 13. Accordingly, it is 377 

possible that our assumption of complete observation of cases could have biased Rc estimates, 378 

likely downward due to the fact that missing cases will tend to make offspring numbers appear 379 

smaller than they actually are33,34. Even so, we expect that our conclusions about the sensitivity 380 

of transmission network inferences to the choice of data types and assumptions about travel-381 

history data are robust to these limitations of our study. This further reinforces our conclusion of 382 
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the need for caution in attempting to reconstruct person-to-person transmission networks from 383 

routine surveillance data35, because incomplete observation of cases would lead to greater 384 

inaccuracies in our transmission network inferences beyond what we noted in our study. 385 

 Given that some of the limitations of our approach may be inherent to the information 386 

content of these data types in this system, one potential avenue for improving inferences of fine-387 

scale patterns of P. falciparum transmission could involve the integration of additional data 388 

streams. For example, mobile-phone data36 and high-resolution friction surfaces37 could more 389 

realistically characterize mobility patterns, whereas travel-history information that details the 390 

dates, duration, and location of each trip that has been used in programmatic contexts27 could 391 

more accurately identify importation events. Additionally, the inclusion of pathogen genetic data, 392 

which has the potential to provide a more direct signal of parasite movement, could complement 393 

traditional epidemiological data38. Diverse genetic markers of P. falciparum have been 394 

characterized in near-elimination settings, such as Eswatini39, and have been successfully used to 395 

identify imported cases in Bangladesh40 and Namibia31. There is also scope for further 396 

methodological development, such as relaxing our assumption of complete observation of 397 

infections and incorporating an underlying mechanistic model of transmission (as in Lau et al.8; 398 

Guzzetta et al.41). Incorporating an underlying mechanistic model would relax our uninformative 399 

prior assumption on all possible transmission networks, ruling out transmission networks that are 400 

epidemiologically implausible and allowing us to account for spatial differences in transmission 401 

potential and the rate of importation due to different epidemiological and demographic factors. 402 

This approach would also permit us to estimate the serial interval distribution and seasonal 403 

variation therein directly from the data rather than borrow estimates from the literature22,42,43. To 404 

this end, we envision that leveraging the strengths of our method along with other, 405 
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complementary methods could strengthen inferences based on routinely collected 406 

epidemiological data and open up new possibilities to make use of even more data types, such as 407 

serological data, prevalence surveys, and pathogen genetic data38,44,45. 408 

 409 

Conclusions 410 

We demonstrated the limitations of routinely collected surveillance data for the inference of 411 

individual-level transmission networks of P. falciparum. We identified a tendency to 412 

overestimate local transmission using routinely collected surveillance data, especially when 413 

outbreaks overlapped in space and time. Using both real data from Eswatini and simulated data, 414 

we identified strong sensitivities of our inferences to the epidemiological setting, the choice of 415 

data types included, and assumptions about the accuracy of travel-history data. Our results 416 

indicated that using spatial and temporal data and believing travel histories yielded the most 417 

plausible estimates of transmission when applied to the Eswatini surveillance data. However, our 418 

simulation sweep demonstrated that the accuracy of our inferences strongly depended on the 419 

accuracy of the travel-history data when the travel-history data were assumed to be accurate. 420 

These sensitivities to the choice of data types and assumptions about the accuracy of travel-421 

history data could have important programmatic implications if outputs of transmission network 422 

inferences are operationalized. Although this study was specific to P. falciparum, the results of 423 

our analyses indicate that future studies inferring transmission networks of P. falciparum, or any 424 

pathogen, should carefully consider the epidemiological setting and the choice of data types and 425 

assumptions that inform the model and should validate them using simulated data.   426 
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Methods 427 

Bayesian framework for estimating transmission linkages 428 

Our goal was to obtain probabilistic estimates of a transmission network N that defines 429 

transmission linkages among a set of known cases. The transmission network is defined as a 430 

directed, acyclic graph comprised of a set of directed edges represented as N = {Ni,j} for all i, j. 431 

Each Ni,j indicates that case i is hypothesized to contain parasites that are the most direct 432 

observed ancestors of the parasites contained in case j. In addition, at least one edge denoted Nu,j 433 

must exist in the network, indicating that the parasites contained in case j have no ancestors 434 

among the parasites contained in any known local case and are instead contained in some 435 

unknown case u from some source population s, such that it is denoted us. To illustrate this 436 

terminology, an example transmission network is depicted in Fig 8.  437 

 438 

 439 
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Fig 8. Schematic of a hypothetical transmission network. A hypothetical transmission network 440 

is presented along with the corresponding notation. In the schematic, white circles denote 441 

unobserved cases, and black circle denote observed cases. Arrows represent transmission 442 

between two cases.  443 

 444 

 To estimate N, we used spatial, temporal, and travel-history data about all cases, denoted 445 

as �⃑�!, 𝑋", and 𝑋#, respectively. We did so within a Bayesian statistical framework, meaning that 446 

we sought to estimate the joint posterior probability density,  447 

 448 

Pr%𝑁, Θ)𝑋" , �⃑�!, 𝑋#* =
Pr%𝑋" , �⃑�!, 𝑋#)𝑁, Θ* Pr	(N, Θ)

Pr	(𝑋" , �⃑�!, 𝑋#)
,					(1) 449 

 450 

of the transmission network defined by N and the model parameters Q conditional on the data �⃑�!, 451 

𝑋", and 𝑋#. The first term in the numerator of eq. (1) is the likelihood of N and Q conditional on 452 

the data. The second term in the numerator is the prior probability of N and Q. The term in the 453 

denominator is the probability of the data, which is an intractable quantity to calculate directly 454 

given that it would require evaluation of an extremely high-dimensional integral over N and Q. 455 

To address this, we used a Markov chain Monte Carlo algorithm to draw random samples of N 456 

and Q from the posterior distribution specified in eq. (1).  457 

 The most critical piece of our inference framework is the likelihood, which we define as a 458 

function of each case j as  459 

 460 
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ℒ(𝑁, Θ|𝑋" , �⃑�!, 𝑋#) =3Pr%𝑋",% , �⃑�!,% , 𝑋#,%)𝑁.,% , Θ*
%

.					(2) 461 

 462 

Below, we define the probability of the data associated with each known case j as a function of 463 

different assumptions that are possible about how case j is connected to the rest of the 464 

transmission network.  465 

 466 

Scenario 1: Local transmission between known cases i and j 467 

When case i contains parasites that are immediate ancestors of the parasites contained in case j, 468 

we represent its contribution to the likelihood as 469 

 470 

Pr%𝑋",% , �⃑�!,% , 𝑋#,%)𝑁',% , Θ* = Pr%𝑋",%)𝑁',% , Θ* Pr%�⃑�!,%)𝑋",% , 𝑁',% , Θ* Pr%𝑋#,%)𝑁',% , Θ*,					(3) 471 

 472 

which is the product of the probabilities of the temporal, spatial, and travel-history data given the 473 

network and model parameters. This formulation assumes that those data are generated 474 

independently for each individual, with the exception of a dependence of the spatial data on the 475 

temporal data. 476 

 477 

Probability of the temporal data. To characterize the time elapsed between two cases resulting 478 

from local transmission, we used a model of the generation and serial intervals for P. falciparum 479 

malaria by Huber et al.22. The generation interval represents the time between infection of a 480 

primary and secondary case, whereas the serial interval represents the time between detection of 481 

those cases. Because the timing of infection per se (i.e., an infectious mosquito inoculating a 482 
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susceptible human) is typically unknown, we focused on the serial interval as the most apropos 483 

temporal quantity relating cases.  484 

 In deriving the probability of a given length of the serial interval, Huber et al.22 485 

convolved a random variable representing variability in the generation interval (GI) with a 486 

random variable representing variability in the time between infection with P. falciparum and 487 

detection by surveillance – i.e., the infection to detection period (IDP). That framework yielded 488 

 489 

Pr%𝑆𝐼',% = −𝑎 + 𝑏 + 𝑐* =>>>Pr(𝐼𝐷𝑃' = 𝑎) Pr%𝐺𝐼',% = 𝑏* Pr	(𝐼𝐷𝑃% = 𝑐)
()*

,					(4) 490 

 491 

as the probability of a serial interval of length SIi,j. We allowed for different models of the serial 492 

interval depending upon differences in the GI and IDP for different types of primary and 493 

secondary cases. For instance, we assumed that symptomatic cases present in a clinic some 494 

number of days after infection as informed by empirical data from Zanzibar22. For an 495 

asymptomatic infection, we assumed that detection occurred through active surveillance at a 496 

randomly drawn day among all days where its asexual parasitemia exceeds a detection 497 

threshold22. The choice of IDP for both the primary and secondary case informs the probability 498 

of two cases separated in time by 𝑆𝐼',% = 𝑋",% − 𝑋",' days.  499 

 500 

Probability of the spatial data. Following Reiner et al.6, we assumed that a simple two-501 

dimensional Wiener diffusion process determines the location of secondary cases relative to the 502 

location of their associated primary case. It follows that, for a given diffusion coefficient D with 503 

units km2day-1 and generation interval GIi,j, the two-dimensional location �⃑�!,% 	of the secondary 504 

case j is described by a bivariate normal distribution with probability density 505 
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 506 

𝑓%�⃑�!,% 	)�⃑�!,' , 𝐷, 𝐺𝐼',% , 𝑁',% , Θ* =
1

2𝜋𝜎+%𝐺𝐼',%*
𝑒
,
-./⃑ !,#,./⃑ !,$-
+1%234$,#5 ,						(5)	 507 

 508 

where 𝜎+%𝐺𝐼',%* = 𝐷𝐺𝐼',%. This formulation assumes that each spatial dimension is independent, 509 

that the variance scales linearly with the generation interval, and that movement is isotropic 510 

across a continuous landscape.  511 

 One complication to eq. (5) is that the generation interval GIi,j is unobserved and, 512 

therefore, cannot take on a fixed value. Instead, we must use data about the serial interval SIi,j to 513 

inform our generative model for �⃑�!,%. To do so, we take advantage of the property of normal 514 

random variables that the sum of two or more random variables is itself a normal random 515 

variable46. This property allows us to recast eq. (5) as a function of SI rather than GI by 516 

computing the appropriate s2 as  517 

 518 

𝜎+(𝑆𝐼) = H𝜎+(𝐺𝐼) Pr(𝐺𝐼|𝑆𝐼) 𝑑𝐺𝐼 ,					(6) 519 

 520 

which is effectively a weighted sum of the spatial variances associated with a given GI 521 

proportional to the probability of each GI conditional on the observed SI. This results in  522 

 523 

𝑓%�⃑�!,% 	)�⃑�!,' , 𝐷, 𝑆𝐼',% , 𝑁',% , Θ* =
1

2𝜋𝜎+%𝑆𝐼',%*
𝑒
,
-./⃑ !,#,./⃑ !,$-
+1%264$,#5 ,						(7)	 524 

 525 

as the probability density of the spatial data that we assume.  526 
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 In the event that case i has missing spatial data, we cannot compute the spatial likelihood 527 

of eq. (7). To address this, we define a latent unobserved quantity 𝑋L!,', which represents the 528 

unknown location of case i. We then integrate over the uncertainty in 𝑋L!,', 529 

 530 

𝑓%�⃑�!,%)𝐷, 𝑆𝐼',% , 𝑁',% , Θ* = H𝑓%�⃑�!,%)𝑋L!,' , 𝐷, 𝑁',% , Θ*𝑓%𝑋L!,')�⃑�!,% , 𝐷*𝑑 𝑋L!,' ,					(8) 531 

 532 

to compute the probability density of case j with known spatial location �⃑�!,% arising from case i 533 

with unknown spatial location 𝑋L!,'. Equation (8) is computed as the product of the probability 534 

density of the location of a known case j conditional on an unknown location 𝑋L!,' and the 535 

probability density of spatial separation �⃑�!,% − 𝑋L!,' conditional on the diffusion coefficient D for 536 

all 𝑋L!,'. Because we assume that movement is isotropic, eq. (8) is a two-dimensional Gaussian 537 

integral, simplifying to  538 

 539 

𝑓%�⃑�!,%)𝐷, 𝑆𝐼',% , 𝑁',% , Θ* =
1

4𝜋𝜎+(𝑆𝐼',%)
.					(9) 540 

 541 

In the event that case j has missing spatial data and case i has known spatial data, the latent 542 

unobserved quantity becomes 𝑋L!,%. We then integrate over the uncertainty in 𝑋L!,% and calculate 543 

𝑓%�⃑�!,%)𝐷, 𝑆𝐼',% , 𝑁',% , Θ* using eq. (8-9).  544 

 545 

Probability of the travel-history data. Although we assume in this scenario that a person’s 546 

infection was locally acquired, our model must still be capable of explaining the travel-history 547 
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data Xh,j. We define a probability tl that case j reported travel (i.e., Xh,j = 1) even though they 548 

were not infected during that period of travel, such that  549 

 550 

Pr%𝑋#,%)𝑁',% , Θ* = O
𝜏7 ,																𝑋#,% = 1
1 − 𝜏7 ,								𝑋#,% = 0.					(10) 551 

 552 

 In the event that case j has missing travel-history data, we cannot compute the travel-553 

history likelihood of eq. (10). To address this, we defined a latent unobserved quantity 𝑋L#,%, 554 

which represents the unknown travel history of case j. We then sum across the uncertainty in 555 

𝑋L#,%, 556 

 557 

Pr%𝑋#,% = NA)𝑁',% , Θ* = Pr%𝑋L#,% = 1*𝜏7 + %1 − Pr%𝑋L#,% = 1**(1 − 𝜏7),					(11) 558 

 559 

to compute the probability that case j was locally acquired given an unknown travel history. In 560 

eq. (11), Pr%𝑋L#,% = 1* was computed as the proportion of cases with a positive travel history 561 

among all cases with known travel-history data.  562 

Taken together with the probabilities of the temporal and spatial data described above, 563 

the product of these three probabilities constitutes the entirety of the contribution of a case j 564 

infected by a known local case i to the overall likelihood of N and Q. 565 

 566 

Scenario 2: Importation of local case j from source population s 567 

In the event of 𝑁8!,%, we represent the contribution of such a case to the overall likelihood of N 568 

and Q as the product of the probabilities of its temporal, spatial, and travel-history data under 569 
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similar assumptions as in Scenario 1. The key difference in this scenario is that there is no 570 

information about the unknown source case that gave rise to case j. 571 

 572 

Probability of the temporal data. Because the person containing parasites that are the direct 573 

ancestors of those in case j is unobserved and does not have an Xt,i, we are unable to compute the 574 

probability of the temporal data as described in Scenario 1. It is important though to obtain a 575 

probability comparable to that from Scenario 1 as a reference point for determining whether it is 576 

more likely that a given case arose from some other known local case or from an unknown case 577 

us from source population s. To do so, we consider the variable 𝑋L",8!, which is a latent variable 578 

describing the timing of when us would have been detected, had it been detected.  579 

 Because us is not observed, we considered it to be asymptomatic and untreated. We then 580 

calculated the probability of the timing of a known case j arising from an unknown case us as  581 

 582 

Pr%𝑋",%)𝑁8!,% , Θ* = HPr	(𝑋",% )𝑋L",8! , 𝑁8!,% , Θ* Pr%SI = 𝑋",% − 𝑋L",8!* 𝑑𝑋L",8! ,					(12) 583 

 584 

by integrating over uncertainty in 𝑋L",8!. We represented this as the product of the probability of 585 

the timing of a known case j conditional on an unknown time of detection 𝑋L",8! and the 586 

probability of the serial interval 𝑋",% − 𝑋L",8! for all 𝑋L",8!. In equation (12), we did not distinguish 587 

between symptomatic and asymptomatic cases j because the calculation is identical; only the 588 

serial interval distributions differ.  589 

 590 
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Probability of the spatial data. Without an 𝑋L",8! for the unobserved case us, we lacked 591 

information on the serial interval between it and case j. Consequently, we were unable to use the 592 

probability from eq. (7) in that particular form. Instead, we computed the spatial variance as a 593 

function of the diffusion coefficient alone, yielding  594 

 595 

𝜎+(𝐷) = H𝐷	𝐺𝐼	Pr(𝐺𝐼)	𝑑𝐺𝐼.				(13) 596 

 597 

Equation (13) integrates across all possible generation intervals and simplifies to 𝐷𝔼[𝐺𝐼], the 598 

product of the diffusion coefficient and the expectation of the generation interval.  599 

 We applied this spatial variance to the unobserved latent variable 𝑋L!,8!, which represents 600 

the unknown location of the unobserved case us. We integrated over uncertainty in 𝑋L!,8! to 601 

compute the probability density, 602 

 603 

𝑓%𝑋!,%)𝐷, 𝑁8!,% , Θ* = H𝑓%𝑋!,%)𝑋L!,8! , 𝐷, 𝑁8!,% , Θ*𝑓%𝑋L!,8!)𝑋!,% , 𝐷*𝑑 𝑋L!,8! ,					(14) 604 

 605 

of the location of a known case j arising from an unknown source case us with unknown location 606 

𝑋L!,8!. This is represented as the product of the probability density of the location of a known case 607 

j conditional on an unknown location 𝑋L!,8! and the probability density of spatial separation 608 

𝑋!,% − 𝑋L!,8! conditional on the diffusion coefficient D for all 𝑋L!,8!. As in eq. (9), we treated eq. 609 

(14) as an evaluation of the Gaussian integral, evaluating to  610 

 611 
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𝑓%𝑋!,%)𝐷, 𝑁8!,% , Θ* =
1

4𝜋𝐷𝔼[𝐺𝐼].					(15) 612 

 613 

In eq. (15), D is the diffusion coefficient and 𝔼[𝐺𝐼] is the expectation of the generation interval.  614 

 615 

Probability of the travel-history data. We considered the travel history Xh,j to be a binary 616 

variable with a value of 1 indicating reported travel to an area with known or assumed malaria 617 

transmission within a timeframe consistent with the person having become infected there. After 618 

defining the probability ts that 𝑋#,% = 1 conditional on 𝑁8!,%, it follows that  619 

 620 

Pr%𝑋#,%)𝑁8!,% , Θ* = O
𝜏!,																𝑋#,% = 1
1 − 𝜏!,								𝑋#,% = 0,					(16) 621 

 622 

which constitutes the contribution of the travel history of such a case to the overall likelihood of 623 

N and Q. If the travel history of case j is unknown, an analogous calculation to eq. (11) is made 624 

using ts. 625 

 626 

Bayesian inference 627 

Markov Chain Monte Carlo Algorithm. To avoid evaluating the high-dimensional integral 628 

over N and Q, we drew samples of N and Q from their posterior distribution defined by eq. (1) 629 

using a Metropolis-Hastings Markov chain Monte Carlo (MCMC) method47,48. To begin the 630 

chain, N and Q were initialized to N(1) and Q(1), and each subsequent step i in the chain was 631 
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denoted N(i) and Q(i). At each step, states N¢ and Q¢ were proposed with Pr X%𝑁('), Θ(')* →632 

(𝑁;, Θ;)Z 	. Proposed states were accepted with probability  633 

 634 

𝛼<=>?@A = min _1,
𝜋(𝑁;, Θ;) Pr X(𝑁;, Θ;) → %𝑁('), Θ(')*Z

𝜋(𝑁('), Θ(')) Pr%(𝑁('), Θ(')) → (𝑁;, Θ;)*
`,					(17) 635 

 636 

where 𝜋(𝑁, Θ) is the product of the likelihood Pr	(�⃑�!, 𝑋" , 𝑋#|𝑁, Θ) of N and Q conditional on the 637 

data and the assumed prior probability Pr	(𝑁, Θ) of N and Q. After a random draw R from a 638 

uniform distribution, the chain was updated according to  639 

 640 

𝑁('BC), Θ('BC) = O 𝑁;, Θ;, 𝑅 ≤ 𝛼
𝑁('), Θ('), 𝑅 > 𝛼

.					(18) 641 

 642 

 To reduce the probability of the chain becoming stuck at a local maximum, we employed 643 

Metropolis-coupled Markov chain Monte Carlo (MC3)49. Implementing MC3 involved running 644 

multiple chains in parallel, with 𝜋((𝑁, Θ) in chain c raised to the power bc according to  645 

 646 

𝛽( = 1 + 𝜆(𝑐 − 1),					(19) 647 

 648 

where l > 0 is a temperature increment parameter that governs the degree to which each chain is 649 

“heated.” As a result of setting b1 = 1, 𝜋C(𝑁, Θ) is directly proportional to the joint posterior 650 

distribution and is referred to as the master or “cold” chain. This algorithm effectively flattens 651 

the likelihood in the heated chains by setting bc > 1, allowing them to explore the parameter 652 
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space more freely and to encounter alternative high-density regions more readily than the cold 653 

chain would alone. At a pre-defined frequency, two randomly selected chains i and j were 654 

allowed to swap parameter sets according to a swap probability 655 

 656 

𝛼DE?= = min f1,
𝜋%𝑁(%), Θ(%)*

F$𝜋%𝑁('), Θ(')*
F#

𝜋(𝑁('), Θ('))F$𝜋(𝑁(%), Θ(%))F#
g,					(20) 657 

 658 

where 𝜋(𝑁, Θ) is the same as it was in eq. (17). A swap into the master chain only occurred if it 659 

was from one of the two randomly selected chains and 𝑅 ≤ 𝛼DE?=. We recorded a total of 100 660 

million samples from the posterior distribution, discarding the first 50 million samples as burn-in 661 

and thinning the chain every 10,000 samples between each recorded sample.  662 

 663 

Proposals. Proposals made by the MC3 algorithm involved changes to the parameters (i.e., D, ts, 664 

and tl) and changes to the transmission network topology. Each proposal occurred with a fixed 665 

probability, where the sum of these proposal probabilities was equal to one.  666 

 Proposals to change parameters involved updating D, ts, or tl. To update the value of D, a 667 

new value was drawn from a normal distribution with mean set to the current value of the 668 

parameter and variance set to 2.5. Values of D proposed must be strictly nonnegative, so we 669 

rejected any proposed D that was less than zero and assigned 𝛼<=>?@A = 0. Similarly, new values 670 

of ts and tl were chosen according to normal distributions with means set to their current 671 

parameter value and variance set to 0.25. Because ts and tl are probabilities, we rejected any 672 

proposed value that fell outside the range [0,1] and assigned 𝛼<=>?@A = 0. 673 
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 Changes proposed to the network topology involved the addition or removal of an 674 

ancestor from a randomly selected node. We assigned a uniform probability of proposing case a 675 

as an ancestor to a randomly selected case i, such that proposals to the network topology are 676 

uninformed by spatial and temporal data. Furthermore, we defined the proposal probability of 677 

removing case a as an ancestor to a randomly selected case i as  678 

 679 

Pr(remove	𝑎) = �̅�',C,					(21) 680 

 681 

where �̅�' represents the size of set Ai of all ancestors to case i. Proposed changes to the network 682 

are then accepted according to eq. (17).  683 

 684 

Prior assumptions. We placed strong priors on ts and tl, because we assumed that travel 685 

histories were mostly, but not completely, accurate. We used a beta-distributed prior on ts, with 686 

parameters 𝛼G! = 12 and 𝛽G! = 3, which resulted in a mean of 0.8 and a variance of 0.01 for this 687 

prior distribution. We also used a beta distributed prior on tl, with parameters 𝛼G& = 3 and 𝛽G& =688 

12, which resulted in a mean of 0.2 and a variance of 0.01. We assumed a uniform prior on D 689 

over the interval [10,H, ∞)	and an even prior across all possible network configurations, 690 

meaning that those prior probabilities canceled out in eqs. (17) and (20).  691 

 692 

Assessing convergence. For D, ts, and tl, we assessed convergence using the Gelman-Rubin 693 

statistic50, with values below 1.1 indicating convergence. For the transmission network N, we 694 

assessed convergence by calculating correlation coefficients of case-level probabilities across 695 

five chains from independent realizations of the MC3 algorithm, for a total of 10 pairwise 696 
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comparisons across the five chains. The two case-level probabilities that we considered were the 697 

posterior probability that each case was infected by an unknown case us from a source population 698 

and the posterior probability that each case j was infected by each other case i. Higher values of 699 

these correlation coefficients provided stronger support for convergence. 700 
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