1 2	Causes of false-negative rapid diagnostic tests for symptomatic malaria in the DRC
3 4 5 6 7	Authors: Jonathan B. Parr, ^{1*#} Eddy Kieto, ^{2*} Fernandine Phanzu, ² Paul Mansiangi, ³ Kashamuka Mwandagalirwa, ³ Nono Mvuama, ³ Ange Landela, ⁴ Joseph Atibu, ³ Solange Umesumbu Efundu, ⁵ Jean W. Olenga, ² Kyaw Lay Thwai, ¹ Camille E. Morgan, ⁶ Madeline Denton, ¹ Alison Poffley, ⁶ Jonathan J. Juliano, ^{1,6} Pomie Mungala, ² Joris L. Likwela, ² Eric M. Sompwe, ⁵ Antoinette K. Tshefu, ³ Adrien N'Siala, ² Albert Kalonji ²
9	* Co-first authors
10	
11	Affiliations:
12 13	1. Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC 27599, USA.
14 15 16 17	 SANRU Asbl (Sante Rurale/Global Fund), Kinshasa, Democratic Republic of the Congo. University of Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo. Institut National pour La Recherche Biomedicale, Kinshasa, Democratic Republic of the Congo.
17 18 10	 5. Programme National de la Lutte contre le Paludisme, Kinshasa, Democratic Republic of Congo
20 21 22 23 24 25 26	 Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
27	
28 29 30 31 32 33 34 35	Running head: Causes of False-negative malaria RDTs in the DRCKey words: rapid diagnostic tests, histidine-rich protein 2, pfhrp3, hrp2, hrp3, RDT, deletion, malaria, Plasmodium falciparum, Plasmodium ovale, Plasmodium malariae, Plasmodium vivax, CongoAbstract word count:197Word count:3482
36 37 38 39	# Corresponding author: Jonathan B. Parr, MD, MPH, Division of Infectious Diseases, University of North Carolina, 130 Mason Farm Rd., Chapel Hill, NC 27599; phone 1-919- 445-1132, email jonathan_parr@med.unc.edu

40 **ABSTRACT**

41 Background

10	mi · ·	יו ות ז	C 1 ·	1 . 1.	·	1 1
4/	The majority	i of Plasmodulum	talcinariim ma	laria diagnosi	es in Africa are	made lising ranid
14	The majority	of i fushioutum	jaicipai am ma	iaria alagnos	commune are	made using rupid

- 43 diagnostic tests (RDTs) that detect histidine-rich protein 2. Increasing reports of false-
- 44 negative RDT results due to parasites with deletions of the *pfhrp2* and/or *pfhrp3* genes
- 45 (*pfhrp2/3*) raise concern about existing malaria diagnostic strategies. We previously
- 46 identified *pfhrp2*-negative parasites among asymptomatic children in the Democratic
- 47 Republic of the Congo (DRC), but their impact on diagnosis of symptomatic malaria is
- 48 unknown.
- 49
- 50 Methods

51 We performed a cross-sectional study of false-negative RDTs in symptomatic subjects in

52 2017. Parasites were characterized by microscopy; RDT; *pfhrp2/3* genotyping and species-

- 53 specific PCR assays; a multiplex bead-based immunoassay; and/or whole-genome
- 54 sequencing.
- 55

56 Results

57 Among 3,627 symptomatic subjects, we identified 427 (11.8%) RDT-/microscopy+ cases.

58 Parasites from eight (0.2%) samples were initially classified as putative *pfhrp2/3* deletions

59 by PCR, but antigen testing and whole-genome sequencing confirmed the presence of intact

- 60 genes. Malaria prevalence was high (57%) and non-falciparum co-infection common
- 61 (15%). HRP2-based RDT performance was satisfactory and superior to microscopy.
- 62

- 63 Conclusions
- 64 Symptomatic malaria due to *pfhrp2/3*-deleted *P. falciparum* was not observed in the DRC.
- 65 Ongoing HRP2-based RDT use is appropriate for the detection of falciparum malaria in the
- 66 DRC.

67 BACKGROUND

68	Emergence of <i>Plasmodium falciparum</i> strains that evade detection by rapid
69	diagnostic tests (RDTs) threatens progress toward malaria control and elimination in
70	Africa.[1–3] These parasites have deletions involving the histidine-rich protein 2 and/or 3
71	(<i>pfhrp2/3</i>) genes, which encode the proteins detected by widely used RDTs throughout
72	Africa.[4] Increasing reports of these parasites in select locations across Africa raise
73	concern about the future of HRP2-based RDTs in the region.[5–7] Recent events in Eritrea,
74	where a high frequency of false-negative RDTs due to these parasites triggered a change in
75	national malaria diagnostic policy, emphasize the need for surveillance and a coordinated
76	response to <i>pfhrp2/3-</i> deleted <i>P. falciparum.</i> [8,9]
77	We previously performed the first national survey of <i>pfhrp2</i> deletions and reported
78	a 6.4% national prevalence of <i>pfhrp2</i> -negative parasites among asymptomatic children in
79	the Democratic Republic of the Congo (DRC).[10] While this cross-sectional, nationally
80	representative household survey enabled spatial analyses and initial population genetic
81	analyses of <i>pfhrp2</i> -negative parasites in the DRC, it did not sample subjects with
82	symptomatic malaria. In order to inform decisions about national malaria diagnostic
83	testing policy, we undertook a cross-sectional survey of children and adults presenting to
84	government health facilities in three provinces selected based on the prevalence of <i>pfhrp2</i> -
85	negative parasites in our initial study. We hypothesized that <i>pfhrp2/3</i> -deleted parasites
86	were responsible for missed clinical cases of falciparum malaria in the DRC.
87	Studies of <i>pfhrp2/3</i> -deleted <i>P. falciparum</i> are difficult due to the challenges of
88	confirming the absence of these genes using conventional approaches.[11,12] These
89	challenges are compounded by inconsistent laboratory methodologies across studies and

90	inherent limitations of <i>pfhrp2/3</i> assays that can suffer from variable performance and
91	cross-reactivity.[13,14] In addition, false-negative RDT results are common throughout
92	Africa and typically caused by factors other than <i>pfhrp2/3</i> deletions, including operator
93	error, lot-to-lot RDT variability, low-density infections beneath the RDT's limit of detection,
94	and infection by non-falciparum species.[15,16] In order to overcome these challenges, we
95	performed a comprehensive molecular, serological, and genomic evaluation of
96	symptomatic infections to define the causes of false-negative RDTs in the DRC and inform
97	national diagnostic testing policy.
98	
99	RESULTS
100	Study subjects
101	We enrolled 3,627 subjects with symptoms of malaria during November and December
101 102	We enrolled 3,627 subjects with symptoms of malaria during November and December 2017, distributed across three provinces: 1,203 in Bas-Uele, 1,248 in Kinshasa, and 1,176 in
101 102 103	We enrolled 3,627 subjects with symptoms of malaria during November and December 2017, distributed across three provinces: 1,203 in Bas-Uele, 1,248 in Kinshasa, and 1,176 in Sud-Kivu (Figure 1). Study sites included 18 health facilities located in 18 distinct health
101 102 103 104	We enrolled 3,627 subjects with symptoms of malaria during November and December 2017, distributed across three provinces: 1,203 in Bas-Uele, 1,248 in Kinshasa, and 1,176 in Sud-Kivu (Figure 1). Study sites included 18 health facilities located in 18 distinct health areas, spanning six health zones (three health areas per health zone). Baseline
101 102 103 104 105	We enrolled 3,627 subjects with symptoms of malaria during November and December 2017, distributed across three provinces: 1,203 in Bas-Uele, 1,248 in Kinshasa, and 1,176 in Sud-Kivu (Figure 1). Study sites included 18 health facilities located in 18 distinct health areas, spanning six health zones (three health areas per health zone). Baseline characteristics of and malaria diagnostic testing results from enrolled subjects are
101 102 103 104 105 106	We enrolled 3,627 subjects with symptoms of malaria during November and December2017, distributed across three provinces: 1,203 in Bas-Uele, 1,248 in Kinshasa, and 1,176 inSud-Kivu (Figure 1). Study sites included 18 health facilities located in 18 distinct healthareas, spanning six health zones (three health areas per health zone). Baselinecharacteristics of and malaria diagnostic testing results from enrolled subjects aredisplayed in Table 1 and Supplementary Table 1. Age, gender, and the use of long-lasting
101 102 103 104 105 106 107	We enrolled 3,627 subjects with symptoms of malaria during November and December 2017, distributed across three provinces: 1,203 in Bas-Uele, 1,248 in Kinshasa, and 1,176 in Sud-Kivu (Figure 1). Study sites included 18 health facilities located in 18 distinct health areas, spanning six health zones (three health areas per health zone). Baseline characteristics of and malaria diagnostic testing results from enrolled subjects are displayed in Table 1 and Supplementary Table 1 . Age, gender, and the use of long-lasting insecticidal bednets was similar across health zones. Study sites included facilities with
101 102 103 104 105 106 107 108	We enrolled 3,627 subjects with symptoms of malaria during November and December2017, distributed across three provinces: 1,203 in Bas-Uele, 1,248 in Kinshasa, and 1,176 inSud-Kivu (Figure 1). Study sites included 18 health facilities located in 18 distinct healthareas, spanning six health zones (three health areas per health zone). Baselinecharacteristics of and malaria diagnostic testing results from enrolled subjects aredisplayed in Table 1 and Supplementary Table 1. Age, gender, and the use of long-lastinginsecticidal bednets was similar across health zones. Study sites included facilities withhigh, medium, and low symptomatic malaria prevalence. RDT-positive malaria,
101 102 103 104 105 106 107 108 109	We enrolled 3,627 subjects with symptoms of malaria during November and December 2017, distributed across three provinces: 1,203 in Bas-Uele, 1,248 in Kinshasa, and 1,176 in Sud-Kivu (Figure 1). Study sites included 18 health facilities located in 18 distinct health areas, spanning six health zones (three health areas per health zone). Baseline characteristics of and malaria diagnostic testing results from enrolled subjects are displayed in Table 1 and Supplementary Table 1 . Age, gender, and the use of long-lasting insecticidal bednets was similar across health zones. Study sites included facilities with high, medium, and low symptomatic malaria prevalence. RDT-positive malaria, microscopy-positive malaria, and self-reported malaria diagnosis within the past six

Figure 1. Study sites included health facilities in eighteen health areas (triangles) in six

113 health zones located within three provinces (n = number of facilities per province). Health

114 areas in close proximity have overlapping points.

116 **Table 1. Characteristics of enrolled study subjects.**

	Overall	Bas-Uele	Kinshasa	Sud-Kivu
Subjects, n	3627	1203	1248	1176
Health zones, n	6	2	2	2
Health areas, n	18	6	6	6
Age, mean years (SD)	20.7 (18.5)	19.5 (17.9)	20.7 (18.7)	22.0 (18.8)
Age strata, n (%)				
<5 years	1025 (28.7)	370 (31.4)	335 (26.8)	320 (27.9)
5-14 years	579 (16.2)	170 (14.4)	271 (21.7)	138 (12.0)
15-24 years	639 (17.9)	232 (19.7)	181 (14.5)	226 (19.7)
25-34 years	513 (14.4)	170 (14.4)	144 (11.5)	199 (17.4)
35-44 years	344 (9.6)	101 (8.6)	131 (10.5)	112 (9.8)
45-54 years	249 (7.0)	73 (6.2)	108 (8.7)	68 (5.9)
55 years and older	223 (6.2)	62 (5.3)	78 (6.2)	83 (7.2)
Female gender, n (%)	2130 (58.7)	780 (64.8)	646 (51.8)	704 (59.9)
Pregnant, n (% of women)	350 (16.4)	105 (13.5)	26 (4.0)	219 (31.1)
Slept under bednet the night before, n (%)	2238 (79.5)	586 (75.9)	902 (80.9)	750 (80.9)
Diagnosed with malaria in the last six				
months, n (%)	1556 (43.1)	758 (63.0)	462 (37.6)	336 (28.6)
Microscopy-positive, n (%)	1397 (38.7)	500 (41.7)	533 (43.0)	364 (31.0)
RDT-positive, n (%)	1545 (42.6)	758 (63.0)	380 (30.4)	407 (34.6)
RDT-negative, microscopy-positive, n (%)	426 (11.8)	51 (4.2)	267 (21.5)	108 (9.2)
Parasites/µL by microscopy, geometric mean (geometric mean SD factor)	2877 (6.9)	3739 (6.5)	1789 (7.2)	4001 (6.3)

117

118

119 False-negative RDTs by microscopy

120 Among 3,627 subjects tested, 1,545 (42.6%) were RDT-positive and 1,397 (38.7%) were

121 microscopy-positive, with 426 (11.8%) RDT-negative but microscopy-positive ('false-

negative RDT'). False-negative RDT results were more likely to occur at low microscopy

123 parasite densities, with geometric means of 959 (geometric standard deviation [SD] factor

- 4.2) and 4,675 (geom. SD factor 6.9) parasites/μL for RDT- versus RDT+ samples,
- respectively (t-test p <0.001, **Figure 2**). We observed higher false-negative RDT prevalence
- 126 in Kinshasa and Sud-Kivu than Bas-Uele, a pattern similar to RDT-/PCR+ results we
- 127 observed in our original *pfhrp2* survey in asymptomatic children as part of the 2013-14
- 128 DRC DHS.[10] When tested by *P. falciparum lactate dehydrogenase (pfldh)* PCR, 368 (86%)
- 129 of the 426 RDT-negative/microscopy-positive samples were PCR-negative, a finding
- 130 consistent with false-positive microscopy calls in this cohort.

132 Figure 2. Parasite densities by microscopy among HRP2-based RDT-negative (red)

- 134 low microscopy parasite densities, with geometric means of 959 (geometric standard
- deviation [SD] factor 4.2) and 4,675 (geom. SD factor 6.9) parasites/µL for RDT-negative
- 136 versus RDT-positive samples, respectively (t-test p <0.001).

¹³³ and RDT-positive (blue) isolates. False-negative RDT results were more likely to occur at

137 *Pfhrp2/3 deletion genotyping by PCR*

138 We performed *pfhrp2/3* genotyping using PCR on a subset of samples, including those 139 collected from all 426 subjects with RDT-/microscopy+ results and from 429 140 RDT+/microscopy+ controls selected at random from the same province (Supplementary 141 **Figure 1**). Among the RDT- samples, only 23 had parasite densities sufficient for *pfhrp2/3* 142 deletion genotyping by *pfldh* qPCR (\geq 40 parasites/µL).[13] We further characterized these 143 samples and 74 RDT-positive controls selected from the same facilities (n=97 total) using a 144 series of PCR assays for *pfhrp2* and *pfhrp3*, and a final confirmatory PCR assay for *P*. 145 *falciparum beta-tubulin (PfBtubulin)*. Eight parasites were PCR-negative for *pfhrp2* or 146 *pfhrp3* in duplicate despite having parasite densities well above the PCR assays' limits of 147 detection and successful amplification of a second single-copy gene, consistent with 148 *pfhrp2/3* gene deletions using conventional PCR genotyping criteria.[4,5,17] PCR 149 genotyping suggested six deletions among symptomatic RDT-/microscopy+ subjects (five 150 *pfhrp2-/3-* and one *pfhrp2-/3+*) and two among RDT+/microscopy+ subjects (one *pfhrp2-*151 /3+ and one *pfhrp2+/3-*). Parasite densities for these eight putative *pfhrp2/3-*deleted 152 samples ranged from 84 to 102,700 parasites/µL by gPCR (median 2,929, interguartile 153 range 1,314 to 4,572).

154

155 Whole-genome sequencing of candidate pfhrp2/3 deletions

156 However, whole-genome sequencing (WGS) confirmed that all eight putative *pfhrp2/3*-

deleted samples had parasites with intact *pfhrp2* and *pfhrp3* genes (**Figure 3**). All eight

samples had >5-fold coverage across >80% of the genome, with median sequencing depth

ranging from 66-254 reads/position (**Supplementary Figure 2**). Regions of reduced

- 160 sequencing depth corresponded to differences in the number of histidine repeats
- 161 compared to the 3D7 reference sequence and did not introduce frame-shift mutations.
- 162 Mutations in PCR primer binding sites were not observed.

164 **Figure 3.** No *pfhrp2* or *pfhrp3* deletions were identified by whole-genome

165 **sequencing.** WGS of five *pfhrp2-/3-*, two *pfhrp2-/3+*, and one *pfhrp2+/3-* parasites

166 originally identified by PCR confirmed intact genes. Each row represents a distinct sample.

167

169	Luminex-based serological assessment further confirmed that all eight <i>pfhrp2/3</i> -PCR-
170	negative samples had detectable HRP2 antigenemia, providing confidence that the intact
171	genes observed during whole-genome sequencing encoded functional HRP2 and/or <i>P.</i>
172	falciparum histidine-rich protein 3 (HRP3) proteins. We assessed HRP2 antigenemia in all
173	97 samples that had undergone <i>pfhrp2/3</i> genotyping by PCR. Comparing RDT-negative
174	versus RDT-positive samples, positivity and background-subtracted mean fluorescence
175	intensity (MFI) was similar between groups for all three antigens tested: HRP2,
176	Plasmodium parasite lactate dehydrogenase (pLDH), and Plasmodium parasite aldolase
177	(pAldolase) (Table 2). Surprisingly, the majority of RDT- samples tested had high levels of
178	circulating HRP2 detected by Luminex, suggesting that the negative RDT results were likely
179	due to operator error or RDT failure (Figure 4).
180	

- Table 2. Luminex bead-based immunoassay results.
 Frequencies and log-transformed
 181
- mean values were compared using the Fisher's exact test and t-test, respectively. 182

183 Abbreviations: RDT, rapid diagnostic test; MFI-background, mean fluorescence intensity

184 minus background; SD, standard deviation.

	Overall	RDT- negative	RDT- positive	р
Tested, n	97	23	74	
HRP2-positive, n (%)	96 (99.0)	22 (95.7)	74 (100.0)	0.24
HRP2, MFI-background geom. mean (SD factor)	10276 (2.9)	11751 (1.7)	6675 (7)	0.31
pLDH-positive, n (%)	72 (74.2)	15 (65.2)	57 (77.0)	0.28
pLDH, MFI-background geom. mean (SD factor)	408 (8.4)	440 (9)	319 (6.5)	0.50
pAldolase-positive, n (%)	92 (94.8)	21 (91.3)	71 (95.9)	0.56
pAldolase, MFI-background geom. mean (SD factor)	1419 (5.5)	1571 (5.4)	1022 (5.9)	0.48

188Figure 4. False-negative RDT results occurred in the setting of high HRP2

antigenemia. A Luminex bead-based immunoassay for three parasite antigens confirmed
circulating HRP2 antigen in the majority of RDT-negative but PCR-positive/microscopypositive isolates tested (RDT-negative). RDT-positive controls selected from the same
facility are included for comparison. Abbreviations: MFI, mean fluorescence intensity; RDT,
rapid diagnostic test.

194

195 Non-falciparum malaria

196 Non-falciparum malaria is expected to cause HRP2-RDT-negative/microscopy-positive

197 results and was common in our study cohort. Among 1,000 randomly selected samples that

- 198 underwent species-identification using a series of real-time PCR assays (**Supplementary**
- **Figure 1**), malaria prevalence was high (57%), and non-falciparum co-infection with *P*.
- 200 *falciparum* was common (15%, n=150) (**Table 3**). However, only 2.1% (n=11) of
- symptomatic cases were due to non-falciparum infections alone. *P. ovale* was observed in
- 202 12.0% (n=68) of symptomatic cases. Among the four (0.8%) symptomatic cases involving

203 *P. vivax,* half involved *P. falciparum* and all were low density (<5 parasites/µL by semi-

- 204 quantitative 18S rRNA PCR). The majority of symptomatic *P. malariae* infections (86.9%,
- 205 n=20/23) occurred as part of mixed infections with *P. falciparum* (Supplementary Figure
- **3**). We were unable to determine the species in 19 samples that were positive by the pan-
- 207 species 18S PCR assay in duplicate; all had negative *P. knowlesi* PCR results.
- 208
- 209 **Table 3. Species identification by PCR among subjects with symptomatic malaria.**
- 210 Results of *Plasmodium* genus and species-specific 18S rRNA real-time PCR assays. Kruskal-
- 211 Wallis p values are included for province-wise comparisons. Abbreviations: Pf, P.
- 212 falciparum; Pm, P. malariae; Po, P. ovale; Pv, P. vivax.

	Overall	Bas-Uele	Kinshasa	Sud-Kivu	р
n	1000	328	353	319	
<i>Plasmodium</i> (any species) PCR- positive, n (%)	568 (56.8)	280 (85.4)	114 (32.3)	174 (54.5)	< 0.001
P. falciparum PCR-positive, n (%)	538 (53.8)	268 (81.7)	104 (29.5)	166 (52.0)	< 0.001
Species identification by PCR, n (%)					0.001
P. falciparum only	463 (81.5)	210 (75.0)	97 (85.1)	156 (89.7)	
<i>P. malariae</i> only	2 (0.4)	2 (0.7)	0 (0.0)	0 (0.0)	
<i>P. ovale</i> only	6 (1.1)	1 (0.4)	4 (3.5)	1 (0.6)	
<i>P. vivax</i> only	2 (0.4)	1 (0.4)	0 (0.0)	1 (0.6)	
Mixed Pf and Pm	16 (2.8)	12 (4.3)	1 (0.9)	3 (1.7)	
Mixed Pf and Po	53 (9.3)	42 (15.0)	5 (4.4)	6 (3.4)	
Mixed Pf and Pv	2 (0.4)	1 (0.4)	0 (0.0)	1 (0.6)	
Mixed Pm and Po	1 (0.2)	1 (0.4)	0 (0.0)	0 (0.0)	
Mixed Pf, Pm, Po	4 (0.7)	3 (1.1)	1 (0.9)	0 (0.0)	
Plasmodium positive, species undetermined	19 (3.3)	7 (2.5)	6 (5.3)	6 (3.4)	

213

215 *RDT performance*

216	Assessment of RDT performance versus PCR suggested that false-negative RDT results in
217	our cohort were commonly caused by RDT failure or operator error rather than parasite
218	factors. Among the random subset of 1,000 samples that underwent 18S rRNA testing for
219	all species, 134 (13.4%) of 538 <i>P. falciparum</i> 18S real-time PCR-positive samples were
220	RDT-negative. RDT performance varied by province, with a larger proportion of RDT-
221	/PCR+ results in provinces with higher <i>P. falciparum</i> prevalence by 18S rRNA PCR: Bas-
222	Uele (19%), followed by Sud-Kivu (17%), and finally Kinshasa (5%) (Supplementary
223	Table 2) Only a small proportion of samples (3.6%, n=36) were RDT+/PCR-, a finding not
224	unexpected and suggestive of persistent PfHRP2 antigenemia after recent clearance of
225	parasitemia.[18] When compared with PCR, RDTs were 75% sensitive and 92% specific,
226	with good agreement (kappa = 0.66). Microscopy was 53% sensitive and 81% specific, with
227	fair agreement with PCR (kappa = 0.33). Parasite densities as determined by microscopy
228	and <i>pfldh</i> quantitative PCR (qPCR) had moderate correlation (Spearman correlation
229	coefficient = 0.63, p <0.001, Supplementary Figure 4).

230

231 **DISCUSSION**

We did not observe symptomatic malaria due to *pfhrp2*- or *pfhrp3*-deleted *P*. *falciparum* in this large, cross-sectional survey across three geographically disparate DRC provinces. The majority of RDT-negative/microscopy-positive results occurred in the setting of low or absent parasitemia. This finding implicates low parasite densities beneath the RDT's limit of detection and false-positive microscopy results as the primary causes of RDT-microscopy discordance in the present study. Further assessment of RDT

238 performance using microscopy, genus- and species-specific real-time PCR assays, and 239 Luminex-based antigenemia assessment confirmed that RDT failure and/or user error also 240 caused false-negative RDTs in the present study. However, the overall performance of 241 HRP2-based RDTs was superior to microscopy and in good agreement with PCR. 242 These findings support continued use of HRP2-based RDTs in the DRC. They also 243 contrast with the results of our prior study of asymptomatic children enrolled in the 2013-244 14 Demographic and Health Survey (DHS). There are several possible explanations for 245 these differences. The present study enrolled symptomatic subjects in order to directly 246 inform policy decisions about malaria case management. This study design could have 247 inhibited our ability to identify *pfhrp2/3*-deleted parasites. We and others have proposed the hypothesis that parasites with deletions of the *pfhrp2* and/or *pfhrp3* genes and their 248 249 flanking regions may be less fit, [6, 10, 19] and therefore less likely to cause symptomatic 250 disease. Direct assessment of this hypothesis has not yet been performed *in vivo* or *in vitro*, 251 to our knowledge. However, genetic cross experiments of the 3D7 (wild-type), DD2 252 (*pfhrp2*-deleted), and HB3 (*pfhrp3*-deleted) lab strains did not provide clear evidence of a 253 fitness cost associated with deletion of either gene.[20,21] In addition, reports from Eritrea 254 confirm that *pfhrp2/3*-deleted parasites can cause symptomatic and sometimes severe 255 disease.[8]

Exhaustive analysis of putative *pfhrp2/3*-deleted parasites was needed to discern the status of both genes. The use of rigorous parasite density thresholds well above the downstream *pfhrp2/3* PCR assays' limit of detection,[13] confirmation of successful amplification of multiple single-copy genes, and adherence to commonly accepted criteria[5] reduced the risk of inappropriate *pfhrp2/3* deletion calls. Only eight of 426

(1.8%) RDT-negative/microscopy-positive samples were identified as putative *pfhrp2/3*deletions during initial testing. However, we subsequently confirmed HRP2 antigenemia
and intact *pfhrp2* and *pfhrp3* genes in all eight samples using highly sensitive antigen
detection methods and WGS, respectively, confirming that these putative *pfhrp2/3*-deleted
parasites were misclassified during initial testing.

266 These findings emphasize the challenges of confirming pfhrp2/3 gene deletions and 267 support the argument that a portion of *pfhrp2/3* deletion calls in our original study of 268 asymptomatic children in the DRC were artifactual.[10,11] Even complex laboratory 269 workflows conducted in accordance with commonly used deletion classification criteria are 270 not always sufficient to eliminate the risk of misclassification of *pfhrp2/3* deletions. The use 271 of advanced serological and next-generation sequencing methods improved the quality of 272 our *pfhrp2/3* deletion assessment, allowed for a more robust evaluation of RDT 273 performance, and enabled visualization of the genetic structure of the *pfhrp2* and *pfhrp3* 274 genes and their flanking regions. While these methodologies are not widely available in 275 resource-limited settings, they are now accessible through a network of laboratories that 276 collaborate with the World Health Organization to support *pfhrp2/3* deletion 277 surveillance[22] and in select locales in sub-Saharan Africa with advanced laboratory 278 capacity.

Symptomatic malaria due non-falciparum species was common but usually occurred
as part of mixed infections with *P. falciparum*. Although non-falciparum species are not
detected by widely deployed HRP2-based RDTs, co-infection with *P. falciparum* is expected
to trigger a positive RDT result and prompt treatment with artemisinin-combination
therapy according to current DRC guidelines. Therefore, complications due to untreated

symptomatic, non-falciparum malaria are likely uncommon, although the risk of relapse by *P. vivax* or *P. ovale* without proper diagnosis and terminal prophylaxis remains. Our
findings are generally in-line with prior reports of non-falciparum infection among
asymptomatic subjects in the DRC.[23–25]

288 Strengths of this study include its geographically diverse sampling locations, robust 289 pipeline of conventional and advanced laboratory methodologies, and relevance to malaria 290 case management. Indeed, these findings directly informed the DRC national malaria 291 control program's decision to continue the use of HRP2-based RDTs, despite evidence of 292 *pfhrp2*-negative parasites from our initial study of asymptomatic subjects. Our experience 293 in the DRC confirms the importance of basing policy decisions on careful studies of the 294 target population - individuals presenting to health facilities with symptomatic malaria -295 rather than convenience sampling.

296 Limitations include our inability to discriminate pfhrp2/3-deleted from pfhrp2/3-297 intact strains in individuals infected by multiple *P. falciparum* strains. Neither the 298 conventional methods nor the advanced Luminex-based HRP2 antigenemia assessment 299 and WGS methods employed here are well-suited to identify gene deletions in mixed 300 infections. Recently developed multiplexed gPCR methods [26] and amplicon-based deep 301 sequencing approaches [27] have potential to elucidate pfhrp2/3-deleted minor variants in 302 future large-scale surveys. Additionally, we restricted our pfhrp2/3 deletion analysis to 303 samples with ≥ 40 parasites/ μ L. This requirement was necessary to reduce the risk of 304 misclassification due to DNA concentrations beneath the *pfhrp2/3* PCR assays' limits of 305 detection, [13] but it prevents us from commenting on the prevalence of deletions in lower 306 density infections. Finally, this study was restricted to three provinces. These provinces

307 spanned a range of malaria prevalence, but they do not capture the full diversity of the
308 DRC, which is Africa's second largest country by land mass and neighbors nine other
309 countries.

In conclusion, ongoing HRP2-based RDT use is appropriate in the DRC. False-310 311 negative RDT results due to pfhrp2/3 deletions were not observed among symptomatic 312 subjects. Non-falciparum infection was an uncommon cause of false-negative results in the 313 DRC, and RDT performance was superior to microscopy. Careful laboratory workflows are 314 required during *pfhrp2/3* gene deletion analyses. Advanced serological and next-315 generation sequencing approaches can be used to improve the rigor and reproducibility of 316 *pfhrp2/3* deletion surveillance efforts and to inform malaria diagnostic testing policy. 317 318 **METHODS**

320 We conducted a cross-sectional study of subjects presenting to hospitals and health centers 321 across three provinces (Kinshasa, Bas-Uele, and Sud-Kivu) with symptoms of malaria. 322 These provinces were selected based on results from our prior survey of asymptomatic 323 children in the 2013-14 DHS and included both high- (Kinshasa, Sud-Kivu) and low-324 prevalence (Bas-Uele) of *pfhrp2*-negative parasites.[10] Two health zones were selected 325 from each province, including one urban and one rural zone per province. Within each 326 health zone, one general reference hospital and two health centers were selected as study 327 sites, yielding six study sites per province and 18 study sites in total. Subjects of all ages 328 were eligible for enrollment.

329

319

Study population

330 Study procedures

331	Informed consent/assent was obtained from all study subjects prior to enrollment. All
332	subjects received malaria RDT testing and treatment according to DRC national guidelines.
333	Subjects underwent a study questionnaire and finger- or heel-prick whole blood collection
334	for diagnostic testing by RDT and microscopy and DBS collection. RDT testing was
335	performed using the WHO-prequalified, HRP2-based SD BIOLINE Malaria Ag P.f. (05FK50,
336	Alere, Waltham, MA) according to manufacturer instructions. Thick-smear microscopy
337	slides were read in the field, and thin smears fixed and transported to the National AIDS
338	Control (PNLS) reference laboratory for confirmation and determination of parasite
339	density. All thin smears were read by two microscopists, with discrepancies resolved by a
340	third reader. DBS (Whatmann 903 Protein Saver cards, GE Healthcare Life Sciences,
341	Marlborough, MA) were allowed to air dry at ambient temperature in the field, and stored
342	in individual ziplock bags with desiccant at -20 $^\circ$ C prior to and after shipment to the
343	University of North Carolina at Chapel Hill for further testing. This study was approved by
344	the Ethical Committee of the Kinshasa School of Public Health and the UNC Institutional
345	Review Board.

346

347 Pfhrp2/3 genotyping by PCR

348 DNA was extracted from DBS samples using Chelex and saponin.[28] All microscopy-

349 positive, RDT-negative samples, in addition to an equal number of microscopy-positive,

- 350 RDT-positive controls from each province were subjected to qPCR testing targeting the
- 351 single-copy *P. pfldh* gene.[29] *Pfhrp2* and *pfhrp3* PCR genotyping was performed as
- 352 previously described,[13] using conventional single-step *pfhrp2/3* PCR assays and a

353	qualitative real-time PCR assay targeting the single-copy <i>PfBtubulin</i> gene (Supplementary
354	File).[30–33] Only samples with \geq 40 parasites/µL by qPCR (\geq 10-fold higher concentration
355	than the <i>pfhrp2</i> and <i>pfhrp3</i> assays' limits of detection) were subjected to <i>pfhrp2</i> and <i>pfhrp3</i>
356	PCR to reduce the risk of misclassification of deletions.[13] Microscopy-positive, RDT-
357	positive controls with \ge 40 parasites/µL by qPCR were randomly selected from the same
358	facility for <i>pfhrp2/3</i> genotyping. Samples were called <i>pfhrp2/3</i> -negative if they had ≥ 40
359	parasites/µL by <i>pfldh</i> qPCR, their <i>pfhrp2</i> and/or <i>pfhrp3</i> PCR assays were negative in
360	duplicate, and they had successful amplification of <i>PfBtubulin</i> during a final confirmatory
361	assay.
362	
363	Whole-genome sequencing
364	All <i>pfhrp2/3</i> -negative samples identified during initial testing were further assessed using
365	whole-genome sequencing. DNA from these samples was enriched for <i>P. falciparum</i> prior
366	to library prep using selective whole-genome amplification (sWGA) as previously
367	described.[34] In brief, two sWGA reactions were performed in parallel, one using a custom
368	primer set designed in our lab (JP9) and another using a primer set designed by Oyola <i>et al</i>
369	(Probe_10).[35] sWGA products were pooled in equal volumes and acoustically sheared
370	using a Covaris E220 instrument prior to library preparation using the Kapa HyperPrep kit
371	(Roche Sequencing, Pleasanton, CA). Indexed libraries were pooled and sequenced at the
372	UNC High Throughput Sequencing Facility using the HiSeq 2500 platform (Illumina, San
373	Diego, CA) with 150bp, paired-end chemistry. Sequence reads were deposited into the
374	Sequence Read Archive (accession numbers: pending).
. = -	

375

376 Evaluation for pfhrp2/3 deletions using whole-genome sequencing

377	Adapter sequences were trimmed from raw, paired sequence reads using trimmomatic and
378	aligned to the <i>P. falciparum</i> 3D7 reference genome (PlasmoDB version 13.0) using <i>bwa</i>
379	mem with default parameters.[36,37] Duplicates were marked and mate-pair information
380	corrected using Picard Tool's MarkDuplicates and FixMateInformation functions,
381	respectively.[38] Candidate indels were identified and realigned using GATK's
382	<i>RealignerTargetCreator</i> and <i>IndelAligner</i> functions, respectively.[39] Genome coverage was
383	calculated using bedtool's genomecov function and visualized using ggplot2 in R (R Core
384	Team, Vienna, Austria).[40,41] <i>Pfhrp2/3</i> deletions were called by visualization of aligned
385	reads using the Integrative Genomics Viewer (Broad Institute, Cambridge, MA) and
386	assessment of sequencing depth across the <i>pfhrp2/3</i> genes and their flanking regions.[42]
387	
387 388	Antigenemia assessment by Luminex
387 388 389	<i>Antigenemia assessment by Luminex</i> All DBS samples subjected to <i>pfhrp2/3</i> genotyping by PCR were also assayed for the
387 388 389 390	Antigenemia assessment by Luminex All DBS samples subjected to <i>pfhrp2/3</i> genotyping by PCR were also assayed for the following <i>Plasmodium</i> antigens: <i>Plasmodium</i> genus-specific aldolase (pAldolase) and
387 388 389 390 391	Antigenemia assessment by Luminex All DBS samples subjected to <i>pfhrp2/3</i> genotyping by PCR were also assayed for the following <i>Plasmodium</i> antigens: <i>Plasmodium</i> genus-specific aldolase (pAldolase) and lactate dehydrogenase (pLDH), as well as <i>P. falciparum</i> HRP2 by a bead-based multiplex
387 388 389 390 391 392	Antigenemia assessment by Luminex All DBS samples subjected to <i>pfhrp2/3</i> genotyping by PCR were also assayed for the following <i>Plasmodium</i> antigens: <i>Plasmodium</i> genus-specific aldolase (pAldolase) and lactate dehydrogenase (pLDH), as well as <i>P. falciparum</i> HRP2 by a bead-based multiplex assay as previously described.[43] Samples were assayed at 1:20 whole-blood
387 388 389 390 391 392 393	Antigenemia assessment by Luminex All DBS samples subjected to pfhrp2/3 genotyping by PCR were also assayed for the following Plasmodium antigens: Plasmodium genus-specific aldolase (pAldolase) and lactate dehydrogenase (pLDH), as well as P. falciparum HRP2 by a bead-based multiplex assay as previously described.[43] Samples were assayed at 1:20 whole-blood concentration after elution from filter paper. Thresholds for antigen positivity for the three
387 388 389 390 391 392 393 394	Antigenemia assessment by Luminex All DBS samples subjected to pfhrp2/3 genotyping by PCR were also assayed for the following Plasmodium antigens: Plasmodium genus-specific aldolase (pAldolase) and lactate dehydrogenase (pLDH), as well as P. falciparum HRP2 by a bead-based multiplex assay as previously described.[43] Samples were assayed at 1:20 whole-blood concentration after elution from filter paper. Thresholds for antigen positivity for the three targets were determined by assaying 92 blood samples from US resident blood donors
 387 388 389 390 391 392 393 394 395 	Antigenemia assessment by Luminex All DBS samples subjected to pfhrp2/3 genotyping by PCR were also assayed for the following Plasmodium antigens: Plasmodium genus-specific aldolase (pAldolase) and lactate dehydrogenase (pLDH), as well as P. falciparum HRP2 by a bead-based multiplex assay as previously described.[43] Samples were assayed at 1:20 whole-blood concentration after elution from filter paper. Thresholds for antigen positivity for the three targets were determined by assaying 92 blood samples from US resident blood donors without history of international travel and determining mean and standard deviation of

397 set was used as the antigen positivity threshold.

398

399 Non-falciparum assays

	We used R to randomly select 1,000 samples for PCR-based species identification. DNA
401	from these samples was first subjected to a pan- <i>Plasmodium</i> real-time PCR assay targeting
402	the 18S rRNA gene in duplicate.[44] Any sample with at least one positive pan-Plasmodium
403	replicate was subjected to a series of four 18S rRNA real-time PCR assays specific to <i>P</i> .
404	falciparum, Plasmodium malariae, Plasmodium ovale, and P. vivax in duplicate.[45–47]
405	Species calls were only made if at least two total replicates were positive. Samples with
406	only a single positive pan- <i>Plasmodium</i> replicate but negative species-specific assays were
407	called negative. Samples in which both pan- <i>Plasmodium</i> replicates were positive but
408	species-specific assays negative were subjected to a PCR assay specific to the <i>Plasmodium</i>
409	knowlesi Pkr140 gene.[48] PCR primers and reaction conditions are described in the
410	Supplementary File.
411	
411 412	Data analysis
411 412 413	<i>Data analysis</i> We made comparisons using the Kruskal-Wallis Rank Sum or Fisher's exact test for
411 412 413 414	<i>Data analysis</i> We made comparisons using the Kruskal-Wallis Rank Sum or Fisher's exact test for categorical variables and the t-test for normally distributed continuous variables. Statistical
411 412 413 414 415	Data analysis We made comparisons using the Kruskal-Wallis Rank Sum or Fisher's exact test for categorical variables and the t-test for normally distributed continuous variables. Statistical analyses were performed using R software.
 411 412 413 414 415 416 	Data analysis We made comparisons using the Kruskal-Wallis Rank Sum or Fisher's exact test for categorical variables and the t-test for normally distributed continuous variables. Statistical analyses were performed using R software.
411 412 413 414 415 416 417	Data analysis We made comparisons using the Kruskal-Wallis Rank Sum or Fisher's exact test for categorical variables and the t-test for normally distributed continuous variables. Statistical analyses were performed using R software. FOOTNOTES
 411 412 413 414 415 416 417 418 	Data analysis We made comparisons using the Kruskal-Wallis Rank Sum or Fisher's exact test for categorical variables and the t-test for normally distributed continuous variables. Statistical analyses were performed using R software. FOOTNOTES Acknowledgements
 411 412 413 414 415 416 417 418 419 	Data analysis We made comparisons using the Kruskal-Wallis Rank Sum or Fisher's exact test for categorical variables and the t-test for normally distributed continuous variables. Statistical analyses were performed using R software. FOOTNOTES Acknowledgements The authors thank Steven Meshnick for his key role in conceptualizing this study and
 411 412 413 414 415 416 417 418 419 420 	Data analysis We made comparisons using the Kruskal-Wallis Rank Sum or Fisher's exact test for categorical variables and the t-test for normally distributed continuous variables. Statistical analyses were performed using R software. FOOTNOTES Acknowledgements The authors thank Steven Meshnick for his key role in conceptualizing this study and interpretation of results, and Nicholas Brazeau for assistance with bioinformatic pipelines

- 422 supervisors, staff, and participants. The following reagents were obtained through BEI
- 423 Resources, NIAID, NIH: Genomic DNA from *P. falciparum* strain 3D7, MRA-102G,
- 424 contributed by Daniel J. Carucci; *P. falciparum* strain HB3, MRA-155G, contributed by
- 425 Thomas E. Wellems; *P. falciparum* strain Dd2, MRA-150G, contributed by David Walliker;
- 426 and *P. knowlesi* strain H, MRA-456G, contributed by Alan W. Thomas; in addition to
- 427 diagnostic plasmid containing the small subunit ribosomal RNA gene (18S) from
- 428 Plasmodium vivax, MRA-178, Plasmodium ovale, MRA-180, and Plasmodium malariae, MRA-
- 429 179, contributed by Peter A. Zimmerman.
- 430

431 *Conflict of interest*

432 JBP reports grant support from the World Health Organization related to the scope of the

433 present study and non-financial support from Abbott Laboratories, outside the scope of the

434 present study. All other authors declare no conflicts of interest.

435

436 Financial support

437 This work was supported by the Global Fund to Fight AIDS, Tuberculosis, and Malaria. It

438 was also partially supported by awards from the National Institutes of Allergy and

439 Infectious Diseases [R01AI132547 to JBP and JJJ] and the Doris Duke Charitable

440 Foundation to JBP.

441

442 Presentations

- 443 Preliminary findings were presented at the American Society for Tropical Medicine and
- 444 Hygiene in New Orleans, Louisiana, USA, on October 30, 2018, and at the Journées

- 445 Scientifiques de Lutte contre le Paludisme 2019 conference in Kinshasa, Democratic
- 446 Republic of Congo on April 30, 2019.
- 447
- 448 *Corresponding author*
- 449 Jonathan B. Parr, MD, MPH, Division of Infectious Diseases, University of North Carolina,
- 450 130 Mason Farm Rd., Chapel Hill, NC 27599; phone 1-919-445-1132; email
- 451 jonathan_parr@med.unc.edu.
- 452
- 453 Changes in affiliation
- 454 N/A
- 455

456 **REFERENCES**

- World Health Organization. False-negative RDT results and implications of new
 reports of P. falciparum histidine-rich protein 2/3 gene deletions. Geneva: WHO; 2016.
- 459 2. Verma AK, Bharti PK, Das A. HRP-2 deletion: a hole in the ship of malaria elimination.
 460 Lancet Infect Dis. **2018**; 18(8):826–827.
- 461 3. Poti KE, Sullivan DJ, Dondorp AM, Woodrow CJ. HRP2: Transforming Malaria
 462 Diagnosis, but with Caveats. Trends Parasitol. 2020; 36(2):112–126.
- 463 4. Cheng Q, Gatton ML, Barnwell J, et al. Plasmodium falciparum parasites lacking
 464 histidine-rich protein 2 and 3: a review and recommendations for accurate reporting.
 465 Malar J. 2014; 13:283.
- Thomson R, Parr JB, Cheng Q, Chenet S, Perkinse M, Cunninghame J. Prevalence of
 Plasmodium falciparum lacking histidine-rich proteins 2 and 3: a systematic review.
 2020; 98(8):558-568.
- 469 6. Watson OJ, Slater HC, Verity R, et al. Modelling the drivers of the spread of Plasmodium
 470 falciparum hrp2 gene deletions in sub-Saharan Africa. Elife. 2017; 6:e25008.
- 471 7. Gatton ML, Dunn J, Chaudhry A, Ciketic S, Cunningham J, Cheng Q. Implications of
 472 Parasites Lacking Plasmodium falciparum Histidine-Rich Protein 2 on Malaria

- 473 Morbidity and Control When Rapid Diagnostic Tests Are Used for Diagnosis. J Infect
 474 Dis. 2017; 215(7):1156–1166.
- 8. Berhane A, Anderson K, Mihreteab S, et al. Major Threat to Malaria Control Programs
 by Plasmodium falciparum Lacking Histidine-Rich Protein 2, Eritrea. Emerg Infect Dis.
 2018; 24(3):462–470.
- 478 9. Menegon M, L'Episcopia M, Nurahmed AM, Talha AA, Nour BYM, Severini C.
 479 Identification of Plasmodium falciparum isolates lacking histidine-rich protein 2 and 3
 480 in Eritrea. Infect Genet Evol. 2017; 55:131–134.
- 481 10. Parr JB, Verity R, Doctor SM, et al. Pfhrp2-Deleted Plasmodium falciparum Parasites in
 482 the Democratic Republic of the Congo: A National Cross-sectional Survey. J Infect Dis.
 483 2017; 216(1):36-44.
- 484 11. Woodrow CJ, Fanello C. Pfhrp2 Deletions in the Democratic Republic of Congo:
 485 Evidence of Absence, or Absence of Evidence? J. Infect. Dis. 2017; 216(4):504–506.
- 486 12. Parr JB, Meshnick SR. Response to Woodrow and Fanello. J. Infect. Dis. 2017; 216(4):
 487 503–504.
- Parr JB, Anderson O, Juliano JJ, Meshnick SR. Streamlined, PCR-based testing for
 pfhrp2- and pfhrp3-negative Plasmodium falciparum. Malar J. **2018**; 17:137.
- 490 14. Jones S, Subramaniam G, Plucinski MM, et al. One-step PCR: A novel protocol for
 491 determination of pfhrp2 deletion status in Plasmodium falciparum. PLoS One. 2020;
 492 15(7):e0236369.
- 493 15. Watson OJ, Sumner KM, Janko M, et al. False-negative malaria rapid diagnostic test
 494 results and their impact on community-based malaria surveys in sub-Saharan Africa.
 495 BMJ Glob Health. **2019**; 4(4):e001582.
- 496 16. Wu L, Hoogen LL van den, Slater H, et al. Comparison of diagnostics for the detection of
 497 asymptomatic Plasmodium falciparum infections to inform control and elimination
 498 strategies. Nature. 2015; 528(7580):S86–93.
- 499 17. World Health Organization. Protocol for estimating the prevalence of pfhrp2/pfhrp3
 500 gene deletions among symptomatic falciparum patients with false-negative RDT
 501 results. Geneva: WHO, 2018.
- 18. Markwalter CF, Gibson LE, Mudenda L, et al. Characterization of Plasmodium Lactate
 Dehydrogenase and Histidine-Rich Protein 2 Clearance Patterns via Rapid On-Bead
 Detection from a Single Dried Blood Spot. Am J Trop Med Hyg. 2018; 98(5):1389–
 1396.
- Pati P, Dhangadamajhi G, Bal M, Ranjit M. High proportions of pfhrp2 gene deletion
 and performance of HRP2-based rapid diagnostic test in Plasmodium falciparum field

- 508 isolates of Odisha. Malar J. **2018**; 17(1):394.
- 509 20. Walker-Jonah A, Dolan SA, Gwadz RW, Panton LJ, Wellems TE. An RFLP map of the
 510 Plasmodium falciparum genome, recombination rates and favored linkage groups in a
 511 genetic cross. Mol Biochem Parasitol. **1992**; 51(2):313–320.
- 512 21. Sepúlveda N, Phelan J, Diez-Benavente E, et al. Global analysis of Plasmodium
 513 falciparum histidine-rich protein-2 (pfhrp2) and pfhrp3 gene deletions using whole514 genome sequencing data and meta-analysis. Infect Genet Evol. 2018; 62:211–219.
- 515 22. World Health Organization. Response plan to pfhrp2 gene deletions. Geneva: WHO,
 516 2019. Available from:
 517 https://apps.who.int/iris/bitstream/handle/10665/325528/WHO-CDS-GMP-
- 518 2019.02-eng.pdf?ua=1
- Taylor SM, Messina JP, Hand CC, et al. Molecular Malaria Epidemiology: Mapping and
 Burden Estimates for the Democratic Republic of the Congo, 2007. PLoS One. 2011;
 6(1):e16420.
- 522 24. Brazeau NF, Mitchell CL, Morgan AP, et al. The Epidemiology of Plasmodium vivax
 523 Among Adults in the Democratic Republic of the Congo: A Nationally-Representative,
 524 Cross-Sectional Survey. Epidemiology. medRxiv; 2020. Available from:
 525 https://www.medrxiv.org/content/10.1101/2020.02.17.20024190v1.abstract
- 526 25. Mitchell CL, Brazeau NF, Keeler C, et al. Under the Radar: Epidemiology of Plasmodium
 527 ovale in the Democratic Republic of the Congo. J Infect Dis. 2020 [epub ahead of print
 528 on 7 Aug 2020. Available from: http://dx.doi.org/10.1093/infdis/jiaa478]
- 529 26. Grignard L, Nolder D, Sepúlveda N, et al. A Novel Multiplex qPCR Assay for Detection of
 530 Plasmodium falciparum with Histidine-rich Protein 2 and 3 (pfhrp2 and pfhrp3)
 531 Deletions in Polyclonal Infections. EBioMedicine. 2020; 55:102757.
- 532 27. Verity R, Aydemir O, Brazeau NF, et al. The impact of antimalarial resistance on the
 533 genetic structure of Plasmodium falciparum in the DRC. Nat Commun. 2020;
 534 11(1):2107.
- 28. Plowe CV, Djimde A, Bouare M, Doumbo O, Wellems TE. Pyrimethamine and proguanil
 resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase:
 polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg.
 1995; 52(6):565–568.
- 539 29. Pickard AL, Wongsrichanalai C, Purfield A, et al. Resistance to Antimalarials in
 540 Southeast Asia and Genetic Polymorphisms in pfmdr1. Antimicrob Agents Chem.
 541 2003; 47(8):2418–2423.
- 30. Baker J, McCarthy J, Gatton M, et al. Genetic diversity of Plasmodium falciparum
 histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based

- 544 rapid diagnostic tests. J Infect Dis. **2005**; 192(5):870–877.
- 545 31. Koita OA, Doumbo OK, Ouattara A, et al. False-negative rapid diagnostic tests for
 546 malaria and deletion of the histidine-rich repeat region of the hrp2 gene. Am J Trop
 547 Med Hyg. 2012; 86(2):194–198.
- 548 32. Price RN, Uhlemann AC, Brockman A, et al. Mefloquine resistance in Plasmodium
 549 falciparum and increased pfmdr1 gene copy number. Lancet. 2004; 364(9432):438–
 550 447.
- 33. Afonina I, Ankoudinova I, Mills A, Lokhov S, Huynh P, Mahoney W. Primers with 5'
 flaps improve real-time PCR. Biotechniques. 2007; 43(6):770, 772, 774.
- 34. Morgan AP, Brazeau NF, Ngasala B, et al. Falciparum malaria from coastal Tanzania
 and Zanzibar remains highly connected despite effective control efforts on the
 archipelago. Malar J. **2019**; 19(1):47.
- 556 35. Oyola SO, Ariani CV, Hamilton WL, et al. Whole genome sequencing of Plasmodium
 557 falciparum from dried blood spots using selective whole genome amplification. Malar
 558 J. 2016; 15(1):597.
- 36. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
 data. Bioinformatics. 2014; 30(15):2114–2120.
- 561 37. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
 562 arXiv; 2013 Mar p. 3.
- 38. Broad Institute. Picard tools. Broad Institute, GitHub repository available at
 https://broadinstitute.github.io/picard/.
- 39. McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce
 framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;
 20(9):1297–1303.
- 40. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic
 features. Bioinformatics. 2010; 26(6):841-842.
- 570 41. Wickham H. ggplot2. 1st ed. New York: Springer-Verlag; 2009.
- 42. Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nat
 Biotechnol. 2011; 29(1):24–26.
- 43. Plucinski MM, Herman C, Jones S, et al. Screening for Pfhrp2/3-Deleted Plasmodium
 falciparum, Non-falciparum, and Low-Density Malaria Infections by a Multiplex
 Antigen Assay. J Infect Dis. 2019; 219(3):437–447.
- Kamau E, Alemayehu S, Feghali KC, Saunders D, Ockenhouse CF. Multiplex qPCR for
 detection and absolute quantification of malaria. PLoS One. 2013; 8(8):e71539.

- 578 45. Srisutham S, Saralamba N, Malleret B, Rénia L, Dondorp AM, Imwong M. Four human
 579 Plasmodium species quantification using droplet digital PCR. PLoS One. 2017;
 580 12(4):e0175771.
- 46. Veron V, Simon S, Carme B. Multiplex real-time PCR detection of P. falciparum, P. vivax
 and P. malariae in human blood samples. Exp Parasitol. 2009; 121(4):346–351.
- 47. Perandin F, Manca N, Calderaro A, et al. Development of a real-time PCR assay for
 detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for
 routine clinical diagnosis. J Clin Microbiol. 2004; 42(3):1214–1219.
- 48. Lucchi NW, Poorak M, Oberstaller J, et al. A new single-step PCR assay for the detection
 of the zoonotic malaria parasite Plasmodium knowlesi. PLoS One. 2012; 7(2):e31848.

588 SUPPLEMENTARY MATERIAL

589

590 **Supplementary Table 1. Characteristics of study subjects by health zone.**

Province	Overall	Bas-Uele		Kinshasa		Sud-Kivu	
Health zone		Buta	Ganga	Limete	Nsele	Idjwi	Kadutu
n	3627	598	605	629	619	587	589
Age, mean years (SD)	20.7 (18.5)	18.4 (17.5)	20.6 (18.2)	20.8 (18.8)	20.7 (18.6)	21.2 (18.5)	22.9 (19.2)
Age strata, n (%)							
<5 years	1025 (28.7)	177 (30.7)	193 (32.1)	188 (29.9)	147 (23.7)	179 (30.5)	141 (25.2)
5-14 years	579 (16.2)	107 (18.5)	63 (10.5)	115 (18.3)	156 (25.2)	51 (8.7)	87 (15.6)
15-24 years	639 (17.9)	116 (20.1)	116 (19.3)	95 (15.1)	86 (13.9)	133 (22.7)	93 (16.6)
25-34 years	513 (14.4)	79 (13.7)	91 (15.1)	64 (10.2)	80 (12.9)	107 (18.2)	92 (16.5)
35-44 years	344 (9.6)	34 (5.9)	67 (11.1)	64 (10.2)	67 (10.8)	50 (8.5)	62 (11.1)
45-54 years	249 (7.0)	37 (6.4)	36 (6.0)	66 (10.5)	42 (6.8)	31 (5.3)	37 (6.6)
55 years and older	223 (6.2)	27 (4.7)	35 (5.8)	37 (5.9)	41 (6.6)	36 (6.1)	47 (8.4)
Female gender, n (%)	2130 (58.7)	403 (67.4)	377 (62.3)	302 (48.0)	344 (55.6)	342 (58.3)	362 (61.5)
Pregnant, n (%)	350 (16.4)	81 (20.1)	24 (6.4)	4 (1.3)	22 (6.4)	119 (34.8)	100 (27.6)
Slept under bednet the night before, n (%)	2238 (79.5)	396 (93.8)	190 (54.3)	480 (85.6)	422 (76.2)	355 (85.7)	395 (77.0)
Diagnosed with malaria in the last six months, n (%)	1556 (43.1)	390 (65.2)	368 (60.8)	173 (28.3)	289 (46.8)	196 (33.4)	140 (23.8)
Microscopy-positive, n (%)	1397 (38.7)	189 (31.7)	311 (51.6)	246 (39.5)	287 (46.6)	298 (50.8)	66 (11.2)
RDT-positive, n (%)	1545 (42.6)	334 (55.9)	424 (70.1)	99 (15.7)	281 (45.4)	342 (58.3)	65 (11.0)
RDT-negative, microscopy-positive, n (%)	426 (11.8)	14 (2.3)	37 (6.1)	178 (28.5)	89 (14.4)	69 (11.8)	39 (6.6)

591 Supplementary Table 2. Comparison of malaria diagnostic test results: HRP2-based

- 592 RDT, *P. falciparum* 18S rRNA real-time PCR, and microscopy (micro) comparisons, counts
- 593 (percent). A) RDT versus PCR. B) RDT versus microscopy. C) Microscopy versus PCR. D)
- 594 RDT and PCR profiles by province.
- 595

A.			PCR+	PCR-		
		RDT+	404 (40)	36 (4)		
		RDT-	134 (13)	426 (43)		
B.			Micro+	Micro-		
		RDT+	267 (27)	173 (17)		
		RDT-	108 (11)	452 (45)		
C.			PCR+	PCR-		
		Micro+	287 (29)	88 (9)		
		Micro-	251 (25)	374 (37)		
D.			RDT-/PCR-	RDT-/PCR+	RDT+/PCR+	RDT+/PCR-
	e	Kinshasa	234 (66)	17 (5)	87 (25)	15 (4)
	vin	Sud-Kivu	142 (45)	54 (17)	112 (35)	11 (3)
	<u>Pr(</u>	Bas-Uele	50 (15)	63 (19)	205 (62)	10(3)

Pfhrp2/3 gene deletion assessment

Supplementary Figure 1. Sample selection for assessment of pfhrp2/3 deletions and

diagnostic performance. Abbreviations: Pf, P. falciparum; Pm, P. malariae; Po, P. ovale; Pv,

P. vivax; Pk, P. knowlesi.

Summary of Coverage Depth by Sample

smpl	n	min	q25	median	mean	q75	max
SANHRP_01_CTATAC_S1_L004	23332839	0	74	138	214.48137	254	150751
SANHRP_02_CTCAGA_S2_L004	23332839	0	134	237	349.39586	422	237333
SANHRP_03_GCGCTA_S3_L004	23332839	0	76	133	190.67555	232	129011
SANHRP_04_TAATCG_S4_L004	23332839	0	50	94	148.57108	175	100947
SANHRP_05_TACAGC_S5_L004	23332839	0	36	66	97.06442	118	71313
SANHRP_06_TATAAT_S6_L004	23332839	0	143	254	367.86268	445	268162
SANHRP_07_TCGAAG_S7_L004	23332839	0	77	169	330.98488	374	219252
SANHRP_08_TCGGCA_S8_L004	23332839	0	122	203	263.40878	330	202749

Supplementary Figure 2. Genomic coverage statistics by sample.

Supplementary Figure 3. Malaria prevalence was high (57% overall) and non-

falciparum co-infection common (15% overall) among symptomatic subjects.

Plasmodium PCR prevalence and species-specific real-time PCR results for *P. falciparum, P. ovale, P. malariae,* and *P. vivax* among 1,000 samples tested, with counts reported by province. Province-level prevalence of pan-*Plasmodium* PCR-positivity is displayed in white font.

Supplementary Figure 4. Parasite densities determined by *pfldh* qPCR and

microscopy were similar, with moderate correlation (Spearman correlation coefficient = 0.63, p <0.001).

Supplementary File. PCR primers, probes, and reaction conditions.