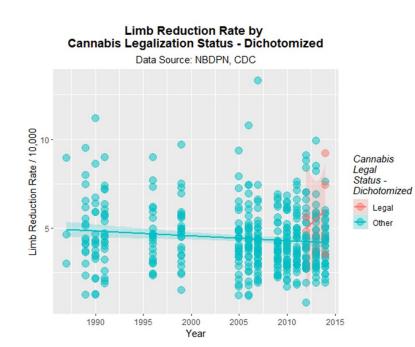
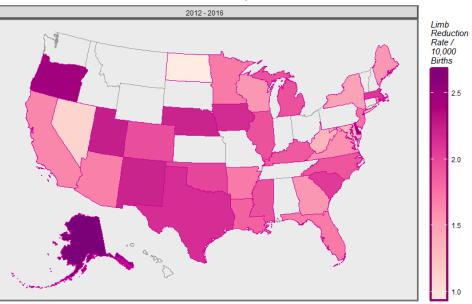
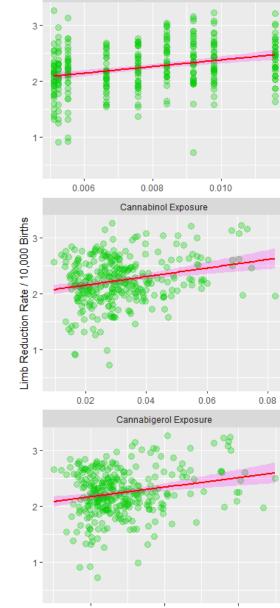

1 | Page


1	Epidemiological Association of Cannabinoid- and Drug- Exposures and
2	Sociodemographic Factors with Limb Reduction Defects Across USA 1989-2016: A
3	Geotemporospatial and Causal Inference Study
4	
5	
6	Short Title:
7	Limb Reduction Defects and Drug and Cannabinoid Exposure
8	
9	Albert Stuart Reece, MBBS(Hons.), FRCS(Ed.), FRCS(Glas.), FRACGP, MD (UNSW) ^{1,2}
10	Gary Kenneth Hulse, BBSc.(Hons.), MBSc., PhD. ^{1,2}
11	
12	Affiliations:
13	1 - Division of Psychiatry,
14	University of Western Australia,
15	Crawley, Western Australia 6009, Australia.
16	2 – School of Medical and Health Sciences,
17	Edith Cowan University,
18	Joondalup, Western Australia, 6027, Australia.
19	
20	* Address Correspondence to:
21	Albert Stuart Reece
22	39 Gladstone Rd.,
23	Highgate Hill,
24	Brisbane, Queensland, Australia.
25	Ph: (617) 3844-4000
26	FAX: (617) 3844-4015
27	Email: stuart.reece@bigpond.com
28	Word Count: 4,236.
29	
30	
31	Key words: cannabis, cannabinoid, $\Delta 9$ -tetrahydrocannabinol, cannabigerol, cannabis-related
32	teratology, limb reduction defects.
33	
	NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.



Daily Cannabis Use



2.5

2.0

1.5

0.02 0.04 0.06 Cannabinoid Exposure

Geospatial Interstate Links, - Queen Weights, USA

2 | Page

Abstract 34

35

Reports of major limb defects after prenatal cannabis exposure (PCE) in animals and of 36

- human populations in Hawaii, Europe and Australia raise the question of whether the 37
- increasing use of cannabis in USA might be spatiotemporally associated with limb reduction 38
- rates (LRR) across USA. Geotemporospatial analysis conducted in R. LRR was 39
- significantly associated with cannabis use and THC potency and demonstrated prominent 40
- cannabis-use quintile effects. In final lagged geospatial models interactive terms including 41
- cannabinoids were highly significant and robust to adjustment. States in which cannabis was 42
- not legalized had a lower LRR (4.28 v 5.01 / 10,000 live births, relative risk reduction = -0.15, 43
- (95%C.I. -0.25, -0.02), P=0.021). 37-63% of cases are estimated to not be born alive; their 44
- inclusion strengthened these associations. Causal inference studies using inverse probabilty-45
- weighted robust regression and e-values supported causal epidemiological pathways. 46
- Findings apply to several cannabinoids, are consistent with pathophysiological and causal 47
- mechanisms, are exacerbated by cannabis legalization and demonstrate dose-related 48 intergenerational sequaelae. 49
- 50

52 53 54	Highlights
55	• Limb reduction rates (LRR) were associated with cannabis use, and THC potency
56	• These relationships were robust to adjustment for ethic and economic covariates
57	• They were maintained at geospatiotemporal regression
58	• LRR elevated as stillborn and aborted cases were considered
59	• Criteria of causality was fulfilled
60	
61	

4 | Page

Introduction 62

63

Limb reductions (LR) are rare and dramatic defects which were first described several 64 thousand years ago in the literature of antiquity (Bermejo-Sanchez, Cuevas et al. 2011, 65 Bermejo-Sanchez, Cuevas et al. 2011). More recently they received prominence as the 66 hallmark and initial indication of the teratogenic action of the drug thalidomide (Bermeio-67 Sanchez, Cuevas et al. 2011, Bermejo-Sanchez, Cuevas et al. 2011). LR includes both 68 absence of proximal limb elements (intercalary segments, phocomelia) as well as complete 69 70 limb absence limbs (amelia). LR occurs at a mean rate of 4.20/10,000. Given CDC data indicate 3,791,715 US births in 2018 this suggests over 1,600 LR cases annually (CDC, 71 Centers for Disease Control et al. 2019). Leading studies from the International Clearing 72 House of Birth Defects Surveillance and Research (ICBDSR) noted that little was known 73 about the causes of these disorders (Bermejo-Sanchez, Cuevas et al. 2011, Bermejo-Sanchez, 74 Cuevas et al. 2011). Sometimes LR arise as part of exceedingly rare congenital syndromes or 75 together with multiple congenital anomalies, however their most common presentation is as 76 an isolated disorder. ICBDSR noted that intrauterine vascular catastrophes have been shown 77 to cause some cases with clear evidence of placental arteritis, vascular inflammation, 78 79 subacute thrombosis and vascular and placental fibrosis seen in some cases (Hoyme, Jones et al. 1982, Bermejo-Sanchez, Cuevas et al. 2011, Bermejo-Sanchez, Cuevas et al. 2011). The 80 81 upper limbs are known to be affected about twice as often as the lower. On the basis of minimal family inheritance isolated LR is not thought to have a genetic basis. Hotspots for 82 83 both phocomelia and amelia have been reported, particularly in Victoria, Australia (Bermejo-Sanchez, Cuevas et al. 2011, Bermejo-Sanchez, Cuevas et al. 2011). It should be noted that 84 not all cases are born alive. This is important as most registries list the numbers of cases as 85 rates per 10,000 live births so that cases which occur as still births and cases for which early 86 87 termination of pregnancy for the anomaly (ETOPFA) is performed can account for 37-63% of the total numbers as described below. This becomes an important issue analytically. 88 89 The embryology of limb development is complex and fascinating with limbs developing 90 along each of the three spatial axes as a complex interplay of transcription factor and inducer 91

gradients and an ordered and sequential cascade of molecular and signalling events. The 92

- emergence of the limb vessel which supplies the emerging structure is central to the 93
- maintenance of the whole process. It therefore becomes easy to understand how 94

5 | Page

- 95 environmental impacts at critical stages could severely impact this sophisticated and
- coordinated sequential process. 96
- 97
- A remarkably prescient paper from Hawaii found a greatly elevated rate of upper limb 98
- 99 reduction deformity amongst patients exposed to cannabis either together with other drugs, or
- by itself (Forrester and Merz 2007). On the basis of 7 and 3 cases exposed amongst 115 total 100
- 101 cases, rate ratios of 23.27 (95%C.I. 9.15-49.50) and 21.90 (4.45-65.63) were reported. Our
- hypothesis that rates of LR have a positive association with cannabis use was based on the 102
- previous Hawaiian findings and was formulated prior to the commencement of this work. 103
- Since both drug use and birth defect data was available for USA that nation formed our study 104
- setting. 105
- 106
- 107
- 108

6 | Page

Methods 109

110

Data. Birth defect data was taken from the annual reports of National Birth Defect 111 Prevention Network organized by Centers for Disease Control Atlanta Georgia (National 112 Birth Defects Prevention Network 2018). These reports are a collation of reports from state-113 based birth defects registries and normally report the dat in five year moving average style. 114 The central year of this period was taken as the nominal year of the report. Data on the 115 annual number of births in each state was taken from the CDC Wonder births registries 116 117 (CDC, Centers for Disease Control et al. 2019). US Census data for populations, age distributions, ethnicity and median household income was accessed from US Census Bureau 118 via tidycensus package from R. Drug use data was taken from the National Survey of Drug 119 Use and Health (NSDUH) conducted annually by the Substance Abuse and Mental Health 120 Services Administration (SAMHSA) (Substance Abuse and Mental Health Administration, 121 Department of Health and Human Services et al. 2018). NSDUH is a survey which is 122 carefully structured to be representative of the non-institutionalized US adult population. 123 Cannabinoid (Δ 9-tetrahydrocannabinol (Δ 9THC), cannabigerol (CBG), cannabichromene, 124 cannabinol, and cannabidiol) concentrations were taken from those reported in Federal 125 126 Seizures by the Drug Enforcement Agency (ElSohly, Ross et al. 2000, Forrester and Merz

2007) 127

128

Derived Variables. Quintiles were calculated based on the interval rather than the population 129 130 distribution and were calculated with the cut interval tool from ggplot2 in R. SAMHSA report different rates of intensity of cannabis use by days used last month by ethnicity at the 131 national level. These data were used to calculate mean numbers of days cannabis was 132 smoked. This figure was multiplied by the state cannabis use rate and the THC potency of 133 cannabis in that year to derive a state based cannabis ethnic index referred to in the Tables as 134 an ethnic "score." The last month cannabis use rates, abbreviated to "mrjmon" in NSDUH, 135 was multiplied by the cannabinoid concentration to derive an estimate of state-based levels of 136 exposure to individual cannabinoids. The only longitudinal series of early termination for 137 anomaly (ETOPFA) we were able to identify was the Western Australian Developmental 138 Anomalies Registry (WARDA) (Women and Newborn Health Service, Department of Health 139 et al. 2015). This series was used to calculate fractional maximal ETOPFA rates for each 140 year to convert live birth anomaly rates to total rates. 141

143	Statistics. Data was processed in "R-Studio" 1.2.1335 based on "R" 3.6.1 from CRAN.
144	Variables were log transformed guided by the Shapiro test. Data were manipulated and
145	matched in R-package dplyr, graphs were drawn in sf and ggplot2, geofacetting was done
146	with geofacet, linear regression was performed in base, panel regression was performed in
147	plm, two-step regression was performed in AER, spatial weights were prepared in spdep and
148	spatial regression was performed in splm. For linear and panel regression missing data was
149	casewise deleted. For spatial regression missing data was imputed by temporal kriging (mean
150	substitution) mas described. LR datapoints more than 10 standard deviations from the mean
151	were dropped. P<0.05 was considered significant.
152	
153	Inverse probability weights (IPW) were calculated on the balanced kriged data using the ipw
154	package in R. Causal inference was conducted using robust regression from the R-package
155	survey and mixed effects regression from package nlme both using IPW weights. E-Values
156	were used to estimated the strength of association an unknown confounder would require
157	with both the predictor (mrjmon) and the outcome (Case rate) to explain away the effects, and
158	were calculated using the package EValue in R.
159	
160	Data Sharing Statement. Key data including software code in R and a Data Dictionary key
161	has been made available in the Mendeley data repository at this URL:
162	http://dx.doi.org/10.17632/gtk7w24yvs.1 .
163	
164	
165	
166	Ethics. This research was approved by the Human Ethics Research Committee of the
167	University of Western Australia June 7th 2019, (RA/4/20/4724).
168	

169 Results

170

- 437 data points relating to LR rate (LRR) were retrieved from NBDPN from 1986-1988 to 2012-2016 is shown in Supplementary Table 1. Prior 171 to 2007-2011 LRR was listed separately for upper and lower limbs. After that time all limb defects were grouped under a single heading. Data 172 from the earlier period were summed to make it comparable with the data from the later time period. For analytical purposes the middle year of 173 each quoted time period is considered to be the nominal year of reference. A datapoint for Oklahoma 2005-2009 was omitted as it lay beyond 174 13.7 standard deviations outside the mean. 175 176 The median (±S.E.M.) LRR over the whole period of the NBDPN dataset was 4.20 (95%C.I. 2.51, 5.89) / 10,000 live births. The median figure 177 for 2012-2016 was 4.10 (3.88, 4.31). 178 179
- 180 This data is also shown as a panel plot in Supplementary Figure 1, and as a geofacetted panel plot with each state in approximately its 181 geographical location, in Supplementary Figure 2. The data is presented map graphically in Figure 1. Missing data points are evident.

- 183
- 184
- 185

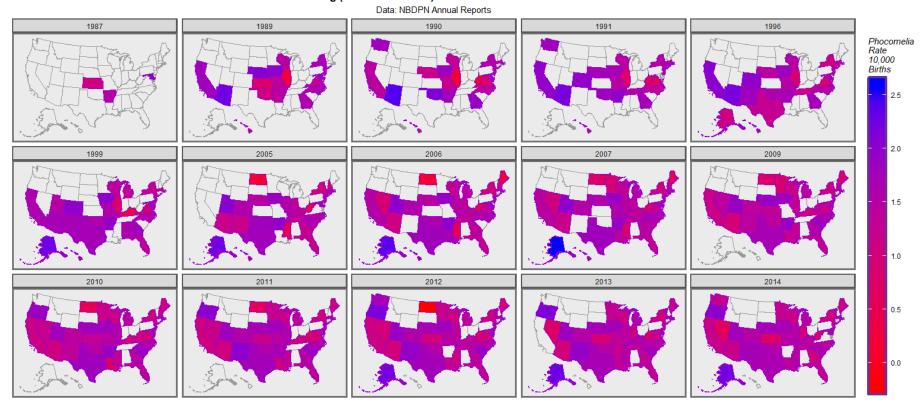


Figure 1.: Map-graph of the limb reduction rate across USA over time. Raw data plot.

Log (Phocomelia Rate) Over Time - Raw Data

193

194	States were divided into quintiles based on their last mont	h cannabis use rate in the 2017 NS	SDUH report as shown i	in Supplementary Table 2.
-----	---	------------------------------------	------------------------	---------------------------

195 Quintile 5 was made up of the states of Colorado, Alaska, Vermont, Puerto Rico and Quintile 4 of Maine, Rhode Island, Oregon, New

Hampshire. The corresponding quintile median (\pm S.E.M.) values for LRR are shown in Supplementary Table 3.

197

Figure 2 presents these data in an introductory manner. Panel A presents the LRR data over time. The time-trend appears essentially flat. Panel B presents it as a function of last month cannabis use. The trend appears to be rising. When these data are charted by quintile of cannabis use the highest quintile appears to be well above the others (Panel C). This is emphasized in Panel D where the highest quintile is charted alone and the lower four are grouped together. Panel E charts the LRR against cannabis exposure by cannabis use quintile. The highest quintile appears to be above the others. This is illustrated in Panel F where the highest quintile is shown compared to the remainder. Panel G presents a boxplot of LRR by quintile. Panel H presents a dichotomized plot of the highest quintile against the remainder.

<u>Figure 2.:</u> Univariate limb reduction trends. A: Trends over time. B. Trends by Cannabis use. C. Time trends by cannabis use quintile. D: Time trends by cannabis use dichotomized quintiles: highest quintile v. others. E: Limb reduction rates by cannabis use, by cannabis use quintile. F: Limb reduction rates by dichotomized cannabis use quintile by cannabis use. G: Boxplot of limb reduction rate by cannabis use quintile. Note jump from fourth to fifth quintile. H: Boxplot of limb reduction rate by dichotomized cannabis use quintile, highest v. others.

- The data are analyzed formally with results presented in Supplementary Table 4. The time trend is confirmed to not be significant, the quintile
- effect is highly significant (β -est.=0.434 (0.283, 0.585), P=2.9x10⁻⁸), the dichotomized quintile effect is highly significant (β -est.=0.416 (0.273,
- 215 0.559), P=2.2x10⁻⁸), the monthly cannabis use effect is significant (β -est.=8.507 (-0.040, 17.054), P=0.0492) and the THC exposure effect is also
- 216 highly significant (from β -est.=10.637 (3.704, 17.569), P=0.0029).
- 217
- Supplementary Figure 3 presents the mean national trends for daily or near daily use of cannabis (20-30 days per month) and for the numbers
 using cannabis whilst pregnant.
- 220
- Figure 3 presents graphically data looking at the log LRR plotted against (A) drugs, (B) cannabinoids and (C) ethnicity. There is little
- relationship against drug use, with a suggestion of a declining effect with alcohol abuse or dependence shown in the first panel. Contrariwise
- with monthly cannabis use, Δ 9THC exposure, cannabichromene, cannabinol and cannabigerol exposure there is a suggestion of a rising effect
- 224 with exposure. The ethnicity plot shows a falling relationship with Caucasian-American ancestry, but a rising relationship with Hispanic-
- 225 American and American Indian / Alaska Native identification.
- 226
- 227
- 228

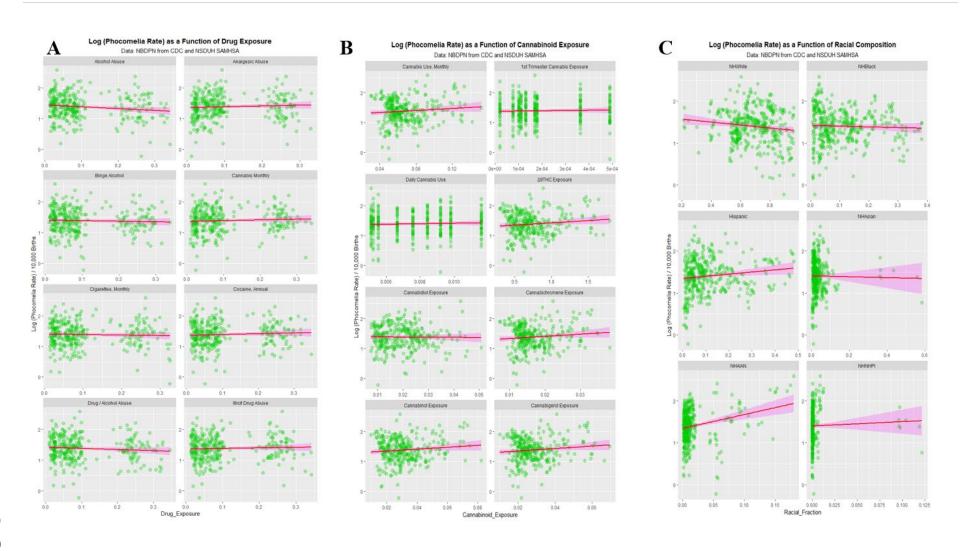


Figure 3.: Univariate exposure plots. Limb reduction rates (raw data) as a function of (A) drug exposure, (B) cannabinoid exposure and
 (C) census-identified ethnicity.

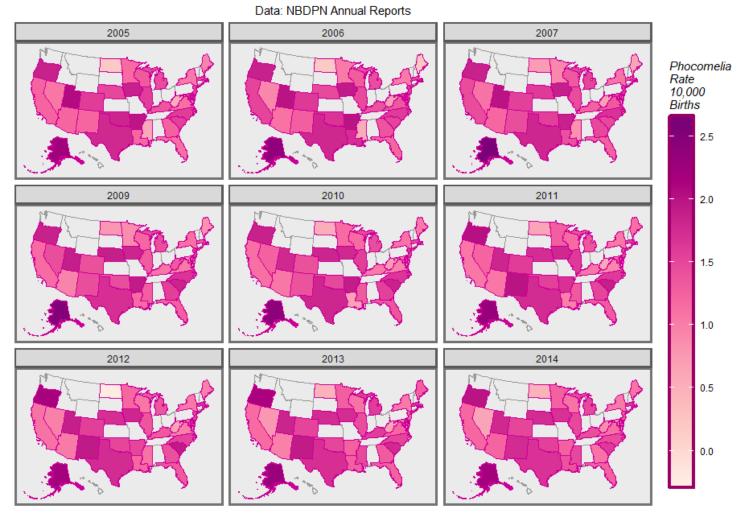
The effects with cannabinoids are formalized in Supplementary Table 5 which shows significant relationships between LRR and Δ 9THC, cannabigerol, cannabichromene and cannabinol.

236

237 Supplementary Figure 4 shows that the LRR is not impacted by median household income (abbreviation MHY).

238

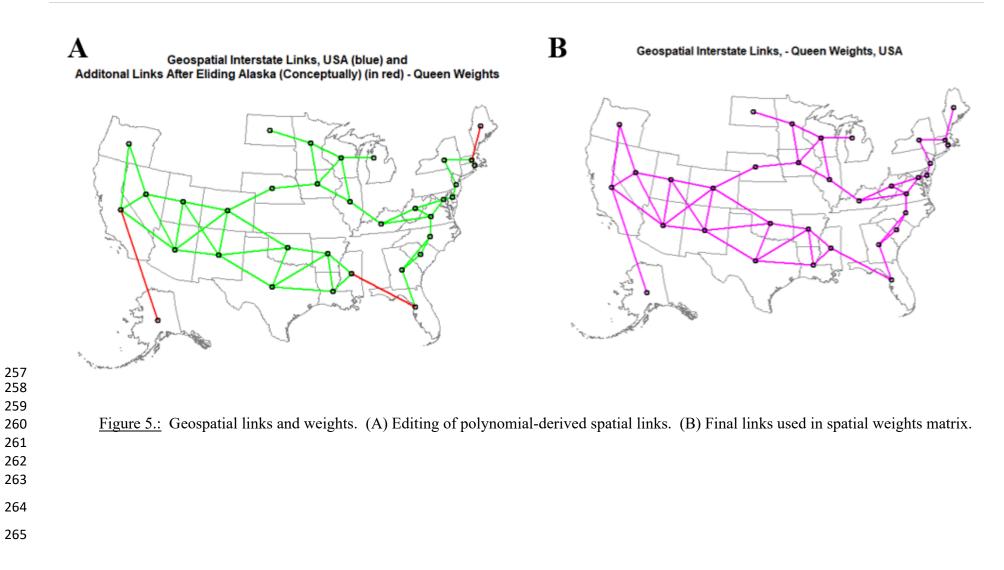
These data are well suited to panel regression a technique which was developed within econometrics and which tolerates missing values. The results are shown in Supplementary Table 6. The top half of this table presents regressions done in each domain of socioeconomics, ethnicity and drug exposure. MHY is confirmed not to be significant. Non-Hispanic American Indian / Alaska Native ancestry (NHAIAN) is alone significant amongst the races. When drug exposure, ethnicity and income are combined terms including cannabis exposure (from P=0.0084) and ethnicity are significant. When the model is lagged to two years only drugs, including cannabis, are significant.


244

It was of interest to conduct spatial regression on these data. As spatial regression algorithms do not permit missing data it became necessary to impute the missing values. Supplementary Table 7 illustrates this from temporal kriging (mean substitution over time). Limiting the data to the period 2005-2014, when it was relatively complete and the drug dataset from NSDUH was also complete, 27 kriged data points (9.3%) were added to the 288 NBDPN dataset to provide the kriged dataset of N=315 for spatial analysis.

249

Figure 4 shows this kriged data map-graphically. Figure 5 shows the neighbour links which were converted into the spatial weights matrix for
 the spatial regression.


252

Log (Phocomelia Rate) Over Time after Temporal Kriging

254

Figure 4.: Map-graph of the limb reduction rate across USA over time after temporal kriging 2005-2014.

266	Table 1 presents the result	s of the spatial analysis. Instrumental	l and lagged variables are show	vn in the	first colu	umn of the T	able. Wh	en
267	considering ethnicity, Hispanic ethnicity is significant. Median household income (MHY) is not significant. In a combined model with all three							
268	domains, drugs including cannabis (from β -est.= -4.122 (-6.760, -1.484), P=0.002) and Hispanic ethnicity are significant.							
269		······································	,			8		
	W			1 0		.1 1. 1		
270	When an interaction betwee	een (estimates of) the cannabinoids $\Delta 9$	9THC and CBG were used in p	place of	cannabis	the results s	hown in th	ne lower
271	part of this table were deri	ved. In an unlagged model Δ 9THC e	exposure was significant (from	β-est.=0	.589 (0.1	83, 0.995), I	P=4.5x10	³). In a
272	model lagged to four years	s which better accounts for the moving	g average style of data publish	ed by N	BDPN, th	ne Δ9THC: C	CBG inter	action was
273	significant (from β-est.= -	1.606 (-2.459, -0.753), P=2.2x10 ⁻⁴).						
274								
275								
276 277			Table 1 .					
277			<u>Table 1.:</u>					
279		Geospatial spreml Regression of	LRR on Drugs, Cannabinoi	ds. Race	e and Inc	ome		
280		<u> </u>						
281								
282								
	Instrumental <u>+</u> Lagged	Para	ameters			Moo	lel	
	Variables	Parameter	Estimate (C.I.)	P- Value	LogLik	Parameters	Value	P-Value
		Races						
	NHWhite_THCExposure	spreml(LR_Rate ~ NHWhite + NHBlack + H				1.		
	NHBlack_THCExposure	Hispanic	0.12 (0.00, 0.24)	0.0471		phi	3.4769	0.0026
	NHAIAN THCExposure					psi	0.7275	<2.0E-16
	Hispanic_THCExposure					rho	-0.0896	0.5083
	NHAsian THCExposure					lambda	-0.0650	0.6345

	1				1		
	Income						
	plm(LR Rate ~ Median.HH.Income)						
	Median.HH.Income	0.00 (0.00, 0.00)	0.7443		phi	3.9708	0.0007
					psi	0.7258	<2.0E-16
					rho	-0.0567	0.6749
					lambda	-0.0830	0.5479
	0 Lags						
	spreml(LR_Rate ~ Cigarettes * Cannabis * A	nalgesics + Alcohol.Abuse + Cocaine)					
$\Delta 9 THC_Exposure$	Cigarettes: Cannabis	-1.04 (-1.98, -0.10)	0.0293		phi	0.0065	0.0015
Cannabigerol_Exposure	Cigarettes: Cannabis: Analgesics	-0.34 (-0.63, -0.05)	0.0253		psi	0.9565	<2.0E-16
					rho	0.0301	0.6944
					lambda	-0.2218	0.5091
	All Variables						
THC_Exposure	0 Lags						
CBG_Exposure	spreml(LR_Rate ~ Cigarettes * Cannabis * Al	cohol.Abuse + Analgesics + Cocaine +	<i>MHY</i> + 5_1	Races)			
NHWhite_THCExposure	Cigarettes: Cannabis	-4.12 (-6.77, -1.47)	0.0022		phi	3.3295	0.0992
NHBlack_THCExposure	Cigarettes: Cannabis: Analgesics	-2.27 (-3.98, -0.56)	0.0087		psi	0.7423	<2.0E-16
NHAIAN_THCExposure	Cannabis: Analgesics	0.26 (0.04, 0.48)	0.0185		rho	-0.1138	0.3730
Hispanic_THCExposure	Hispanic	0.14 (0.02, 0.26)	0.0259		lambda	-0.0565	0.6572
NHAsian_THCExposure	Cigarettes: Analgesics	-2.59 (-5.08, -0.10)	0.0410				
	0 Lags - Cannabinoids						
THC_Exposure	spreml(LR_Rate ~ Cigarettes * THC_Exposul	re * Cannabigerol_Exposure * Alcohol.	Abuse + Al	nalgesics +	Cocaine + MI	HY+5_Races)	
CBG_Exposure	THC_Exposure: Analgesics	0.59 (0.18, 1.00)	0.0045	73.1187	phi	3.5723	0.0005
NHWhite THCExposure	Cigarettes: CBG_Exposure	-6.65 (-11.43, -1.87)	0.0064		psi	0.7548	<2.0E-16

NHBlack THCExposure	Cigarettes: THC_Exposure: Analgesics	-2.17 (-3.74, -0.6)	0.0065		rho	-0.0265	0.8352
NHAIAN THCExposure	Cigarettes: CBG_Exposure: Analgesics	-0.33 (-0.57, -0.09)	0.0068		lambda	-0.1140	0.3777
Hispanic THCExposure	CBG_Exposure	1.55 (0.33, 2.77)	0.0118				
NHAsian_THCExposure	Cigarettes	-18.58 (-34.16, -3.00)	0.0195				
THC Exposure, 0:2	2 Lags - Cannabinoids						
CBG Exposure, 0:2	spreml(LR_Rate ~ Cigarettes * THC_Exposure *	Cannabigerol Exposure * Alcohol	Abuse + A	nalgesics +	Cocaine + M	HY+5_Races)	
NHWhite_THCExposure, 0:2	Hispanic	0.12 (0, 0.24)	0.0383	10.8625	phi	1.9556	0.2548
NHBlack THCExposure, 0:2					psi	0.7141	0.0001
NHAIAN_THCExposure, 0:2					rho	-0.1751	0.3577
Hispanic_THCExposure, 0:2					lambda	0.0595	0.7522
NHAsian_THCExposure, 0:2							
	4 Lags - Cannabinoids						
	spreml(LR Rate ~ Cigarettes * THC Exposure *	Cannabigerol Exposure * Alcohol	Abuse + A	nalgesics +	<u>Cocaine + M</u>	HY+5_Races)	
THC_Exposure, 0:4	Cigarettes: THC_Exposure: CBG_Exposure	-1.61 (-2.47, -0.75)	0.00022	16.28796	phi	0.0149	NA
CBG_Exposure, 0:4	Cigarettes: CBG_Exposure	-9.81 (-15.3, -4.32)	0.0005		psi	0.9700	<2.0E-16
NHWhite_THCExposure, 0:4	Cigarettes: CBG_Exposure: Analgesics	-2.96 (-4.68, -1.24)	0.0008		rho	0.0291	0.9043
NHBlack_THCExposure, 0:4	THC_Exposure: Analgesics	0.38 (0.14, 0.62)	0.0010		lambda	-0.2131	0.3512
NHAIAN_THCExposure, 0:4	Analgesics	-2.07 (-3.42, -0.72)	0.0026				
Hispanic_THCExposure, 0:4							
NHAsian THCExposure, 0:4							

284

285 <u>Abbreviations:</u>

286 MHY:

- Median Household Income

287 Median.HH.Income:

- Median Household Income

200			
288 289	NHWhite:	- Non-H	Iispanic Caucasian-American
290	NHBlack:		Iispanic African-American
			1
291	NHAsian:		lispanic Asian-American
292	NHAIAN:	- Non-H	Iispanic American Indian / Alaskan Native
293			
294			
295	Technical Notes:		
296		phi:	- Idiosyncratic component of the spatial error term
297		psi:	- Individual time-invariant component of the spatial error term
298		rho:	- Spatial autoregressive parameter
299		lambda:	- Spatial autocorrelation coefficient
300			
301			
302			
303			
304	Supplementary Table 8 re	e-formats data from th	ne tables in the ICBDSR references limiting consideration to only registries reporting positive
305	values for ETOPFA or sti	llbirths (SB), a proce	dure suggested by leading public health schools (Mokdad, Dwyer-Lindgren et al. 2017, Roth,
306	Dwyer-Lindgren et al. 20	17, Dwyer-Lindgren,	Bertozzi-Villa et al. 2018). It shows that 37% of cases from the US registries from Texas,
307	Georgia and Utah were no	ot accounted for in liv	ver birth figures. Worldwide the equivalent figure was 63%. This combined ETOPFA+SB figure
308	is referred to as a "hidden	factor" or "silent fac	tor" in our Figures and Tables.
309			
310	The WARDA series (Sup	plementary Table 9)	was used to convert the reported live birth anomaly rate to a total rate inclusive of ETOPFA's and

- stillbirths. The time trend for the estimates of the full dataset appears in Supplementary Figure 5, the time-quintile plot in Supplementary Figure
- 6, the quintile analysis in Supplementary Figure 7, the dichotomized quintile analysis in Supplementary Figure 8, the map-graphical illustration

313	in Supplementary Figure 9 and the map-graph for the kriged data in Supplementary Figure 10. In each case apparently significant changes are
314	shown.
315	

- 316 Supplementary Figures 11-15 perform a similar role for an ETOPFA/SB factor of 63% as is applicable internationally. Even more striking
- 317 changes are noted.
- 318
- 319 Supplementary Figure 16 compares the univariate effects of no hidden factor adjustment, 37% and 63% adjustment on the relationships of the
- 320 LRR with drug covariates. Adjustment appears to accentuate the changes described above.

322 Figure 6 shows the effects of these adjustments on cannabinoid covariates, and they again seem to be accentuated.

323

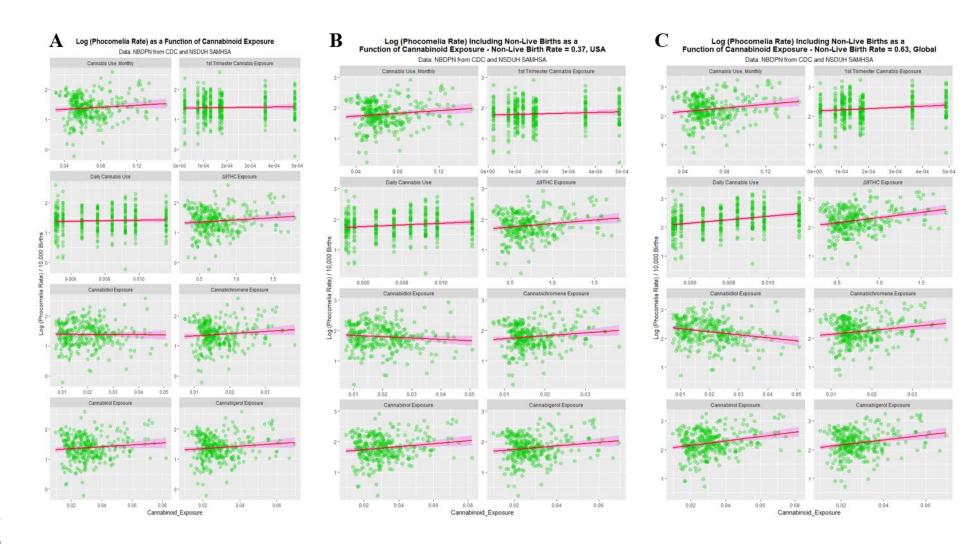
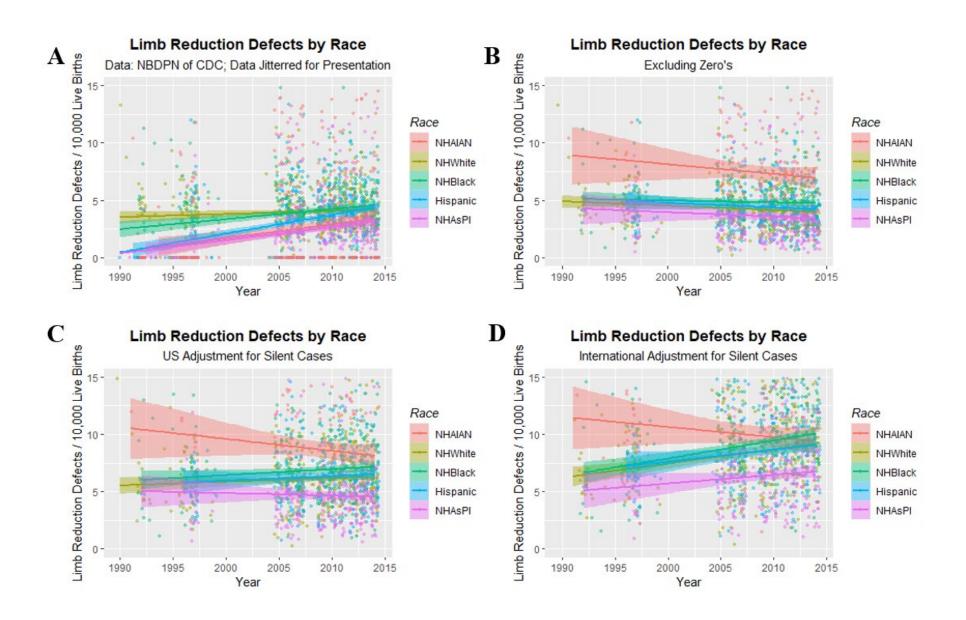


Figure 6.: Association plots for cannabinoids with silent factors of (A) 0%, (B) 37% and (C) 63% corresponding to raw data, USA and
 International data respectively


329	329 Supplementary Figure 17 does this for ethnicity with similar effects.								
330	330								
331	It is conceivable that the type of case finding conducted by the state registries might impact case rates. Supplementary Figure 18 compares the								
332	case rates by registry case practice and finds interestingly that the case rates in registries with passive case	ates are high	er than t	hose in reg	gistries				
333	practising active or mixed case finding. Compared to passive case finding active and mixed case finding,	t a silent facto	or of zer	o, were					
334	associated with rate reduction (β -estimate= -0.27 (-0.41, -0.14), P=0.0001 and -0.16 (-0.360, -0.33), P=0.0	52; model Ac	$dj. R^2 = 0$	0.0846,					
335	335 F=7.935, df=2,148, P=0.0005).	F=7.935, df=2,148, P=0.0005).							
336	336								
337	Table 2 and Supplementary Table 10 quantitate these effects by geospatial regression for 37% and 63% his	den factor ad	justment	. In each	case				
338	cannabinoids are highly significant (from β-est.=7.474 (3.172, 11.776), P=7x10 ⁻⁴ and β-est.=7.190 (2.817,	1.563), P=0.	001).						
339	339								
340	340								
341 342 343 344 345 346 347 348	2 <u>Table 2.:</u> 3 3 4 <u>Geospatial spreml Regression of LRR on Drugs, Cannabinoids, Race and Income,</u> 5 5 6 <u>USA Silent Factor = 37%</u> 7 7								
0.10	Parameters	Mod	el						
	Instrumental ± Lagged Variables Parameter P- LogL Estimate (C.I.) Value Value Value	x Parameters	Value	P-Value					

Full Model 0 Lags

THC_Exposure	spreml(LR_Rate ~ Cigarettes * Cannabis *	* Alcohol.Abuse + Analges	ics + Coca	ine + MHY	+ 5_Races		
CBG_Exposure	Cigarettes: Cannabis	-3.89 (-6.61, - 1.17)	0.0050	65.7980	phi	3.0544	0.0244
NHWhite DailyCan THCExposure	Cigarettes: Cannabis: Analgesics	-2.39 (-4.13, - 0.65)	0.0072		psi	0.7476	<
NHBlack DailyCan THCExposure	Cannabis: Analgesics	0.29 (0.05, 0.53)	0.0129		rho	-0.0935	0.5283
NHAIAN_DailyCan_THCExposure	Cigarettes: Analgesics	-3.04 (-5.59, - 0.49)	0.0196		lambda	0.0082	0.9551
Hispanic_DailyCan_THCExposure	Hispanic	0.15 (0.01, 0.29)	0.0235				
NHAsian DailyCan THCExposure							
	Full Model						
THC_Exposure, 0:2	2 Lags						
CBG Exposure, 0:2	spreml(LR_Rate ~ Cigarettes * Cannabis *	Alcohol.Abuse + Analges	ics + Coca	ine + MHY	+ 5_Races		
NHWhite_DailyCan_THCExposure, 0:2	Hispanic	0.16 (0.04, 0.28)	0.0035	4.1600	phi	2.1790	0.0542
NHBlack_DailyCan_THCExposure, 0:2					psi	0.6443	0.0002
NHAIAN_DailyCan_THCExposure, 0:2					rho	-0.2758	0.1378
Hispanic_DailyCan_THCExposure, 0:2					lambda	0.2459	0.1526
NHAsian_DailyCan_THCExposure, 0:2							
	Full Model						
THC_Exposure, 0:4	4 Lags						
CBG Exposure, 0:4	spreml(LR_Rate ~ Cigarettes * Cannabis *	Alcohol.Abuse + Analges	ics + Coca	ine + MHY	+ 5_Races		
NHWhite_DailyCan_THCExposure, 0:4	Cigarettes	67.82 (35.44, 100.2)	0.0000	17.9661	phi	1.5552	NA
NHBlack_DailyCan_THCExposure, 0:4	Cigarettes: Analgesics	14.94 (6.90, 22.98)	0.0003		psi	0.9612	<2e-16
NHAIAN_DailyCan_THCExposure, 0:4	Analgesics	-3.49 (-5.41, - 1.57)	0.0004		rho	0.0007	0.9975
Hispanic_DailyCan_THCExposure, 0:4	Cigarettes: Cannabis	7.47 (3.16, 11.78)	0.0007		lambda	-0.2196	0.3113
NHAsian_DailyCan_THCExposure, 0:4	Cannabis	-1.65 (-2.69, - 0.61)	0.0020				

				1	Í	1 1	
	Individual Cannabinoids						
	Full Model						
	0 Lags						
THC Exposure	spreml(LR_Rate ~ Cigarettes * THC_Exposure	e * CBG Exposure * A	llcohol.Ab	use + Analg	esics + Cocair	ne + MHY + 1	5 Races
CBG Exposure	Cigarettes:Cannabigerol Exposure:Analgesics	-1.63 (-2.96, -0.3)	0.0169	65.61285	phi	3.2410	0.0149
NHWhite_Can_THCExposure	Cigarettes:Cannabigerol_Exposure	-4.97 (-9.11, - 0.83)	0.0183		psi	0.7289	<2.0E- 16
NHBlack_Can_THCExposure	Cannabigerol_Exposure	1.23 (0.13, 2.33)	0.0263		rho	-0.1180	0.4118
NHAIAN_Can_THCExposure	Hispanic	0.14 (0, 0.28)	0.0280		lambda	0.0214	0.8789
Hispanic_Can_THCExposure	Cannabigerol_Exposure:Analgesics	0.39 (0.04, 0.74)	0.0311				_
NHAsian_Can_THCExposure							
	Full Model						
THC Exposure, 0:2	2 Lags						
CBG_Exposure, 0:2	spreml(LR_Rate ~ Cigarettes * THC_Exposure	e * CBG_Exposure * A	llcohol.Ab	use + Analg	esics + Cocair	ne + MHY + 1	5_Races
NHWhite_Can_THCExposure, 0:2	Hispanic	0.13 (0.01, 0.25)	0.0344	5.931167	phi	2.3134	0.0497
NHBlack Can THCExposure, 0:2	Cigarettes:THC_Exposure:Analgesics	-0.17 (-0.35, 0.01)	0.0546		psi	0.6190	0.0004
NHAIAN Can THCExposure, 0:2					rho	-0.2408	0.2016
Hispanic_Can_THCExposure, 0:2					lambda	0.1928	0.2843
NHAsian_Can_THCExposure, 0:2							
	Full Model						
THC Exposure, 0:4	4 Lags						
— • ·		* CD C					<i>c</i> . D
CBG_Exposure, 0:4	spreml(LR_Rate ~ Cigarettes * THC_Exposure	e * CBG_Exposure * A -1.63 (-2.96, -	icohol.Ab	use + Analg	esics + Cocair	he + MHY + h	5_Races
NHWhite_Can_THCExposure, 0:4	Cigarettes:Cannabigerol_Exposure:Analgesics	0.30)	0.0169	16.35349	phi	3.2410	0.0149
		-4.97 (-9.11, -					<2.0E-
NHBlack Can THCExposure, 0:4	Cigarettes:Cannabigerol_Exposure	0.83)	0.0183		psi	0.7289	<2.0E- 16

		Hispanic_Can_THCExposure, 0:4	Hispanic	0.14 (0.00, 0.28)	0.0280	lambda	0.0214	0.8789
		NHAsian_Can_THCExposure, 0:4	Cannabigerol_Exposure:Analgesics	0.39 (0.04, 0.74)	0.0311			
349								
350								
351	Abbre	viations:						
352								
353	THC	- Δ9-tetrahydr						
354	NHW	1						
355	NHBla	1		· .•				
356	NHAL		c American Indian / Alaskan N	ative				
357	NHAs 0:n	1	c Asian ging (inclusive)					
358 359	DailyC							
360	Danye	- Daily Califia	ois ose Rate					
361	Techn	cal Notes:						
362	reenn	phi:	- Idiosyncratic	component of the spatial	error term			
363		psi:	2	e-invariant component of		r term		
364		rho:		gressive parameter				
365		lambd	1	prrelation coefficient				
366			Ĩ					
367								
368								
369								
370	Figure	7A presents all of the official	NBDPN data on the ethnic rate	s of LR. May zeroes are	e entered in the da	ata, doubtle	ess most o	f them
371	meanin	glessly or due to low number	counts. However low rates are	not zero rates as well an	gued by University	ity of Wasł	nington res	searchers
372	(Mokd	ad, Dwyer-Lindgren et al. 201	7, Roth, Dwyer-Lindgren et al.	2017, Dwyer-Lindgren,	Bertozzi-Villa e	t al. 2018).	Followin	g their
373	approa	ch we therefore omit the zeros	s. Figure 7B shows that this me	thod brings out the high	rates in the Non-	Hispanic A	American l	ndian / Ala
374	Native	(NHAIAN) group. There is a	o significant trend with time.	When the data are adjust	ed for the US and	l internatio	nal hidder	factors the
375	appear	ances shown in Figure 7C and	7D are revealed.					

378 379 380 381 382 383 384 385	<u>Figure 7.:</u> Limb reduction rates by ethnic background (NBDPN data). (A) Limb reduction rates over time by ethnicity. (B) Limb reduction rates by ethnicity over time omitting uninformative zero's from data. (C) Same as (B) but adjusted for US "silent case" rate (37%) arising from ETOPFA's and stillbirths. (D) Same as (B) but adjusted for global "silent case" rate (63%) arising from ETOPFA's and stillbirths.
386	Supplementary Table 11 presents two-step regression results performed in R::AER using the Asian / Pacific Islander group as the controls and
387	the unadjusted LRR as the dependent variable. Very highly significant results are shown with the effects for NHAIAN and Non-Hispanic
388	African-Americans significant (from β-est.=0.999 (0.885, 1.113), P<2.2x10 ⁻¹⁶ , and β-est.=0.449 (0.357, 0.541), P<2.2x10 ⁻¹⁶). However when
389	the days of use of cannabis by each ethnicity and the THC potency of the cannabis smoked are used as interactive instrumental variables this
390	effect completely disappears. When the full complement of instrumental variables is employed in the exhaustive model only the NHAIAN
391	group is significant.
392	
393	This important result shows that whilst racial factors are apparently strong, they are completely accounted for by substance and particularly
394	cannabinoid exposure and are thus not robust to adjustment.
395	
396	Figure 8 presents the effects of cannabis legalization policies on LRR. The legalized status appears to have a higher LRR than comparators.
397	Panel B dichotomizes the legal status into legalized status compared to the others.
398	
399	
400	

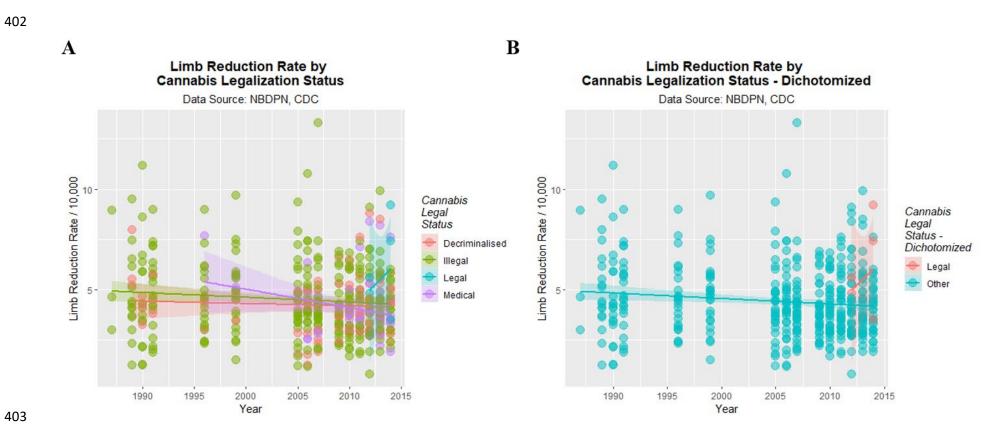


Figure 8.: Limb reduction rates by (A) cannabis legal status and (B) cannabis legal status dichotomized into legalized vs. other legal statuses. Data not corrected for silent factors.

410 Table 3 quantifies these effects with linear regression with silent factors of 0%, 36% and 63%. Increasingly significant changes are noted.

411 Supplementary Table 12 presents the numbers of cases and controls in each of the legal categories dichotomized to legal states vs. others.

Tab	le	3.	:

Time: Status Interactions by Silent Factor for Dichotomized Legal Status

		Parameter		Model Parameters			
Silent Factor	Parameter	Estimate (C.I.)	P-Value	Adj. R- Squar- ed	F	dF	P-value
	lm(LR_Rate ~ Legal_S	Status)					
0%	Year:Status_Legal	0.0007 (0.0001, 0.0013)	0.0396	0.0139	4.055	2,432	0.0180
37%	Year:Status_Legal	0.0011 (0.0001, 0.0021)	0.0236	0.0381	9.587	2,432	8.4E-05
63%	Year:Status_Legal	0.0020 (0.0006, 0.0034)	0.0071	0.1951	53.590	2,432	<2.0E-16

425 Table 4A presents the increased relative risk (RR) associated with cannabis legalization and Table 4B presents the relative risk reduction

426 associated with non-cannabis legalized status. As can be seen in Table 4A the elevated RR of LRR is 1.17 (1.02, 1.34), 1.26 (1.13, 1.40) and

427 1.39 (1.289, 1.51) for 0%, 36% and 63% silent factors respectively. The table also presents attributable risks in the exposed, attributable risks in
428 the population and applicable P-values. Table 4B presents the inverse of these results as relative risk reductions (RRR).

- -57

Т	able	4.:

Relative Risk Calculations for: (A) Risk Elevation by Legal Status and

(B) Risk Reduction by Not Legal Status

	LR+	LR-	Total	Risk	Incr RR	AFE	AFP	P-values
0% Silent Factor								
Legal_States	215	428,805	429,020	0.0005				
Others	14,398	33,630,778	33,645,176	0.0004	1.17 (1.02 to 1.34)	14.61 (2.30 to 25.36)	0.21 (0.02 to 0.41)	0.0212
36% Silent Factor								
Legal_States	338	428,682	429,020	0.0008				
Others	21,106	33,624,070	33,645,176	0.0006	1.26 (1.13 to 1.40)	20.38 (11.35 to 28.49)	0.32 (0.15 to 0.49)	3.1E-05
63% Silent Factor								
Legal_States	566	428,454	429,020	0.0013				
Others	31,954	33,613,222	33,645,176	0.0009	1.39 (1.28 to 1.51)	28.01 (21.78 to 33.75)	0.49 (0.34 to 0.63)	6.7E-15

(B) Relative Risk Reduction Accompanying Absence of Cannabis Legalization

	LR+	LR-	Total	Risk	RRR	AFE	AFP	P-values
0% Silent Factor								

Others	14,398	33,630,778	33,645,176	0.0004				
Logal States						-17.11 (-33.98 to -	-16.85 (-33.43 to -	
Legal_States	215	428,805	429,020	0.0005	0.15 (0.02 to 0.25)	2.36)	2.34)	0.0212
36% Silent Factor								
Others	21,106	33,624,070	33,645,176	0.0006				
Lagal States						-25.59 (-39.83 to -	-25.19 (-39.15 to -	
Legal_States	338	428,682	429,020	0.0008	0.20 (0.11 to 0.28)	12.80)	12.63)	3.1E-05
63% Silent Factor								
Others	31,954	33,613,222	33,645,176	0.0009				
Logal States						-38.91 (-50.94 to -	-38.23 (-49.99 to -	
Legal_States	566	428,454	429,020	0.0013	0.28 (0.21 to 0.34)	27.84)	27.40)	6.7E-15

441

442

443 Abbreviations:

LR-

Incr

RRR

AFE AFP

Silent Factor

444

446

447

448

449

450

451

- Linio Reductions	445	LR+	- Limb Reductions
--------------------	-----	-----	-------------------

- No Limb Reductions (Otherwise normal births)
- Increased
- RR Relative Risk
 - Relative Risk Reduction
 - Attributable Fraction in Exposed
 - Attributable Fraction in Population
 - Cases not born live due to still births and early termination of pregnancy for anomaly.

452 453

As the kriged dataset is balanced it lends itself to analysis by the techniques of formal causal inference including the calculation of inverse
 probability weights (IPW). IPW were therefore calculated on the kriged data with a 37% silent factor.

Table 5 shows the results of robust regression conducted in the package survey in R using IPW weights. The final model from a purely additive model, a model using a four way interaction between tobacco: binge alcohol: cannabis: analgesics, and a five-way interactive model between tobacco: binge alcohol: Δ 9THC: cannabigerol: analgesics are shown. Median household income, ethnicity and ethnic cannabis use scores are covariates. As shown in the second model eight terms including cannabis appear including four terms relating to ethnic cannabis use. Eight terms including cannabinoids also appear in the final model.

Table 5.: Robust Generalized Linear Regression Utilizing Inverse Probability Weights

Parameter		P-
	Estimate (C.I.)	Value
4420 M. 4.1		
Additive Model		
Median.HH.Income	3.22 (2.65, 3.78)	3.0E-12
Cigarettes	8.5 (5.4, 11.61)	8.3E-06
Alcohol.Abuse	-17.54 (-34.13, -0.96)	0.0468
4-Way Interactions with Cannabis		
Median.HH.Income	3.73 (2.19, 5.27)	0.0002

Hispanic.AmTPPot	11.15 (5.32, 16.98)	0.0015
Cigarettes: Alcohol.Abuse: Cannabis: Analgesics	1184.19 (458.6, 1909.77)	0.0050
AsianTPPot	2.68 (0.96, 4.39)	0.0068
Analgesics	63.11 (21.11, 105.11)	0.0087
Cigarettes: Cannabis	221.52 (63.28, 379.75)	0.0134
Cigarettes: Alcohol.Abuse: Analgesics	5615.47 (1490.34, 9740.61)	0.0157
AIANTPPot	2.77 (0.61, 4.94)	0.0220
Cigarettes: Alcohol.Abuse	7522.65 (1164.64, 13880.66)	0.0324
Cigarettes: Analgesics	-192.24 (-342.39, -42.1)	0.0219
Alcohol.Abuse	-2421.03 (-4205.3, -636.76)	0.0160
Cannabis	-58.77 (-101.89, -15.65)	0.0156
Alcohol.Abuse: Analgesics	-1606.67 (-2734.22, - 479.12)	0.0120
Alcohol.Abuse: Cannabis: Analgesics	-310.19 (-507.04, -113.34)	0.0063
Cauc.AmTPPot	-16.4 (-25.97, -6.82)	0.0035
5-Way Interactions with Cannabinoids		
Median.HH.Income	2.72 (1.55, 3.89)	0.0002
Analgesics	2.1 (1.17, 3.03)	0.0002
Cigarettes: Alcohol.Abuse: THC.Exposure: Cannabigerol.Exposure	581.94 (240.92, 922.97)	0.0029
THC.Exposure: Cannabigerol.Exposure	10.72 (2.6, 18.84)	0.0169
Cannabigerol.Exposure	37.48 (5.05, 69.91)	0.0337
Cigarettes: THC.Exposure	52.86 (6.86, 98.86)	0.0346
Cigarettes: Alcohol.Abuse: THC.Exposure	1486.79 (157.95, 2815.63)	0.0392
Alcohol.Abuse: Cannabigerol.Exposure	-464.72 (-856.23, -73.21)	0.0296
Alcohol.Abuse	-1517.4 (-2761.78, -273.01)	0.0259
Alcohol.Abuse: THC.Exposure	-512.91 (-862.75, -163.08)	0.0088
Alcohol.Abuse: THC.Exposure: Cannabigerol.Exposure	-272.41 (-424.46, -120.36)	0.0020

A similar exercise is conducted with IPW-weighted mixed effects regression with results shown in Supplementary Table 13. The models were of similar structure used to those employed for robust regression in Table 5. The benefit of using these models was that mixed effects models

477 have a model standard deviation which can be entered into e-value calculations, which is absent from robust models generated in the survey

478 package. As shown in Table 5 terms including cannabis or cannabinoids are significant and appear in final models in the additive, four-way

479 cannabis, and five-way cannabinoid models from very high levels of statistical significance.

480

481 Finally e-values were calculated from some of the major results above and are illustrated in Table 6. It is clear that many of the e-values are very

482 large, implying that some unmeasured confounder would require a large degree of co-association with both the outcome and the exposure

483 (mrjmon) to impact the results.

- 484
- 485
- 486
- 487
- 488

Parameter	Table	Regression Coefficient (C.I.)	R.R. (C.L.)	eValues
Linear Regression	eTable 4			
LR over Time	eTable 4	-0.21 (-0.043, 0.00012)	0.9892 (0.9785, 1.00001)	1.12, 1.00
LR by Monthly Cannabis Use	eTable 4	8.51 (3.11, 4.32)	95.17 (1.04, 8685.75)	189.85, 1.25
LR by Cannabis Use Quintile	eTable 4	0.43 (0.28, 0.59)	2.72 (1.92, 3.83)	4.87, 3.25
LR by Cannabis Use Quintile Dichotomized	eTable 4	0.42 (0.27, 0.56)	2.59 (1.86, 3.59)	4.62, 31.4
Legal Relationship	Table 4			
Cannabis Legalization, Silent Factor = 0%	Table 4	1.17 (1.02, 1.34)	1.17 (1.02, 1.34)	1.62, 1.16
Cannabis Legalization, Silent Factor = 37%	Table 4	1.26 (1.13, 1.40)	1.26 (1.13, 1.40)	1.83, 1.51

Cannabis Legalization, Silent Factor = 63%	Table 4	1.39 (1.28, 1.51)	1.39 (1.28, 1.51)	2.13, 1.88
Geotemporospatial Regression - 37% Silent Factor	Table 2			
No Lag	Table 2			
Cannabis: Analgesics	Table 2	0.28 (0.06, 0.51)	2.11 (1.17, 3.82)	3.65, 1.62
4 Lags				
Cannabis: Tobacco	Table 2	7.47 (3.17, 11.78)	4.44E+19 (2.30E+08, 8.58E+30)	8.89E+19, 4.61E+08
Individual Cannabinoids	Table 2			
No Lags	Table 2			
Cannabigerol	Table 2	1.23 (0.15, 2.32)	23.85 (1.46, 389.22)	47.19, 2.28
Cannabigerol: Analgesics	Table 2	0.38 (0.035, 0.74)	2.70 (1.09, 6.66)	4.85, 1.42
4 Years Lag	Table 2			
Tobacco: THC	Table 2	9.14 (4.22, 14.07)	4.31E+31 (4.30E+14, 4.34E+48)	8.62E+31, 6.61E+14
Cannabigerol: Analgesics	Table 2	0.61 (0.26, 0.96)	133.81 (8.21, 2.18E+03)	267.13, 15.91
Mixed Effects iptw Regression				
Additive Model	eTable 13			
Afrc.American.THC.Exposure	eTable 13	0.61 (0.57, 0.65)	1.000 (1.000, 1.000)	1.0048, 1.0046
Interactive Model				
NHWhite.THC.Exposure	eTable 13	4.06 (3.7, 4.42)	1.005 (1.004, 1.006)	1.024, 1.022
Cigarettes: Cannabis: Analgesics	eTable 13	480.35 (337.18, 623.51)	1.065 (1.045, 1.085)	1.32, 1.26
Cigarettes: Cannabis	eTable 13	1462.8 (1017.39, 1908.22)	1.21 (1.14, 1.28)	1.72, 1.54
Alcohol.Abuse: Cannabis: Analgesics	eTable 13	1102.5 (626.32, 1578.68)	1.16 (1.09, 1.23)	1.57, 1.39
Alcohol.Abuse: Cannabis	eTable 13	3224.18 (1743.59, 4704.78)	1.53 (1.26, 1.85)	2.42, 1.83

37 | Page

Discussion 490

491

Statement of Principal Findings 492

The key results of the study were that LRR was significantly associated with cannabis use, 493 and in a geospatiotemporal context with exposure to the cannabinoids Δ 9THC and 494 cannabigerol, although there was no time trend. Moreover these changes were robust to 495 adjustment for common sociodemographic covariates including socioeconomic and 496 ethnographic factors. There was a marked quintile effect with an apparently sharp jump from 497 498 the fourth to fifth quintile. The marked effects of race were completely dissipated by adjustment for cannabinoid exposure. 40-60% of the cases are not accounted for in live birth 499 rates. When either a US or an international adjustment correction is applied to these numbers 500 the changes described for the raw rates become intensified and more significant. Importantly 501 the legal paradigm relating to cannabis regulation was shown to be highly significant with a 502 relative risk reduction (RRR) of 15% (95%C.I. 0.02 to 0.25) for states where cannabis had 503 not been legalized increasing to 28% (C.I. 0.21 to 0.34) protection for a 63% international 504 silent factor protecting from 38% (27.40 to 49.99%) of the population attributable caseload 505 (also at 63% silent factor). Formal assessment of the potentially causal nature of the cannabis 506 - LRR relationship by IPW-weighted robust and mixed effects regression and the calculation 507 of e-values, confirmed that the association fulfilled formal criteria for a causal relationship. 508 509

Consistency with Other Reports 510

511 Our results are supported by the prior results from Hawaii (Forrester and Merz 2007) and also apparently by reports from German obstetric hospitals and French birth defect registries 512

where outbreaks of LR have been described (Agence France-Presse in Paris 2018, Willsher 513

K. 2018, Robinson M. 2019). The odds ratio reported in France was 58-times elevation 514

(Agence France-Presse in Paris 2018, Willsher K. 2018) which is within the confidence 515

interval reported from Hawaii (95%C.I. 4.45, 65.63). Similarly French cows in these areas 516

are more frequently born without forelimbs. Interestingly, both France and Germany along 517

with a number of other EU counties allow cannabinoids to enter the food chain whereas 518

Switzerland does not allow this practice. Public health enquiries in this regard are on-going. 519

Nearby Switzerland has not seen any such increase in cases. 520

521

Possible Explanations for Study Findings 522

523	It is important to note that cannabis can act by several cellular mechanisms to restrict cell
524	growth and inhibit cell division (McClean and Zimmerman 1976, Zimmerman and Raj 1980,
525	Tahir and Zimmerman 1991) and can act genomically and epigenomically (Zimmerman A.M.
526	and Zimmerman S. 1987, Zimmerman and Zimmerman 1990). Its mitochondrial inhibitory
527	actions (Bartova and Birmingham 1976, Hebert-Chatelain, Reguero et al. 2014, Wolff,
528	Schlagowski et al. 2015, Hebert-Chatelain, Desprez et al. 2016) carry serious downstream
529	genotoxic and epigenotoxic implications by reducing cellular energy charge for DNA-
530	dependent reactions (Canto, Menzies et al. 2015), by limiting the availability of numerous
531	chemical moieties which underpin epigenomic regulation and by inducing mitonuclear stress
532	response cascade (Canto, Menzies et al. 2015). Cannabinoid receptors exist at high density
533	on vascular endothelium (Yamaji, Sarker et al. 2003, van Diepen, Schlicker et al. 2008,
534	Bukiya A.N., Jackson S. et al. 2014, Gasperi, Evangelista et al. 2014, Pacher, Steffens et al.
535	2018) and can induce arteritis (Pacher, Steffens et al. 2018) be pro-coagulant and anti-
536	prostacyclin (Wang, Yuan et al. 2011, Murphy, Itchon-Ramos et al. 2018) and has been
537	associated with human vascular aging (Reece A.S., Norman et al. 2016). Moreover it has
538	been linked with gastroschisis in many studies (Reece A. S. and Hulse G.K. 2019, Reece A.
539	S. and Hulse G.K. 2019) which is a congenital defect now considered to have a vasculopathic
540	basis (Hoyme, Higginbottom et al. 1981, Van Allen and Smith 1981, Werler, Mitchell et al.
541	2009, Lubinsky 2014). These data imply that cannabis could be acting via the vasculopathic
542	pathway outlined in the Introduction. Thus various mechanistic pathways exist to underpin
543	the geospatial and causal epidemiological results reported in this study.
544	
545	
546	Absolute and Relative Strengths and Weaknesses of the Study
547	
548	This study has various strengths including its use of population-derived indices such as
549	ethnicity and median household income and a national birth anomalies dataset. It adjusts for
550	estimates of ETOPFA for which hard data does not exist and considers the impact of such
551	data on the findings described. Our study is the first to apply the analytical techniques of
552	geospatial regression and causal inference to this topic, and the first to our knowledge to
553	investigate the impact of drug exposure on this major teratological outcome in the geospatial
554	context. Study limitations are those related to its ecological design. We did not have access
555	to individual case data and were not able to directly correlate exposure with outcomes.

Moreover we did not have access to fine geospatial resolution birth defect data such as was 556

39 | P a g e

557	recently published by CDC (Short, Stallings et al. 2019). Uncontrolled confounding is
558	always a possibility in such investigations but seems most unlikely to account for the
559	described association in view of the large e-values calculated. In view of the public health
560	importance of the issue and the numbers of exposed individuals we feel that the area needs
561	further research at both the basic sciences and finer spatial epidemiological level.
562	
563	Generalizability
564	In that the USA is the world's leading nation on many metrics and provides the best publicly
565	available data on both drug exposure and birth defects, we feel that the present findings are
566	likely to be generalizable to similar contexts in other western nations.
567	
568	
569	Implications for Policy and Future Directions
570	Our interpretation of these results is that cannabis exposure has a strong geospatial link to
571	LRR which is robust to adjustment for socioeconomic and sociodemographic factors and
572	fulfils the criteria for causality. These results are particularly concerning given prior reports
573	of a wide spectrum of cardiovascular, neurological and other anomalies reported as being
574	cannabis-related from various locations including Hawaii, Colorado, Canada, France,
575	Switzerland and Australia (Forrester and Merz 2007, Report of the Queensland Perinatal
576	Maternal and Perinatal Quality Council and Queensland Health 2018, Reece A. S. and Hulse
577	G.K. 2019, Reece A.S. and Hulse G.K. 2019, Reece A. S. and Hulse G.K. 2020). The causal
578	nature of this relationship concerns us greatly. We feel that such results should be part of a
579	program of improved public awareness in relation to the risks associated with the use of
580	diverse cannabinoids and especially far-reaching intergenerational implications.
581	

40 | P a g e

582 583	Acknowledgements
584	All authors had full access to all the data in the study and take responsibility for the integrity
585	of the data and the accuracy of the data analysis.
586	
587	
588	Role of the Funding Source
589	No funding was provided for this study.
590	
591	
592	Contributorship Statement
593	ASR assembled the data, designed and conducted the analyses, and wrote the first manuscript
594	draft. GKH provided technical and logistic support, co-wrote the paper, assisted with gaining
595	ethical approval, provided advice on manuscript preparation and general guidance to study
596	conduct. ASR had the idea for the article, performed the literature search, wrote the first
597	draft and is the guarantor for the article.
598	
599	
600	Competing Interests Declaration
601	None.
602 603 604	

41 | Page

605 606	References
607 608 609	Agence France-Presse in Paris (2018) "France to investigate cause of upper limb defects in babies." <u>The Guardian</u> .
610 611	Bartova, A. and M. K. Birmingham (1976). "Effect of delta9-tetrahydrocannabinol on mitochondrial NADH-oxidase activity." <u>J Biol Chem</u> 251 (16): 5002-5006.
612 613 614 615 616 617 618	Bermejo-Sanchez, E., L. Cuevas, E. Amar, M. K. Bakker, S. Bianca, F. Bianchi, M. A. Canfield, E. E. Castilla, M. Clementi, G. Cocchi, M. L. Feldkamp, D. Landau, E. Leoncini, Z Li, R. B. Lowry, P. Mastroiacovo, O. M. Mutchinick, A. Rissmann, A. Ritvanen, G. Scarano, C. Siffel, E. Szabova and M. L. Martinez-Frias (2011). "Amelia: a multi-center descriptive epidemiologic study in a large dataset from the International Clearinghouse for Birth Defects Surveillance and Research, and overview of the literature." <u>Am J Med Genet C Semin Med Genet</u> 157 C(4): 288-304.
619 620 621 622 623 624 625	 Bermejo-Sanchez, E., L. Cuevas, E. Amar, S. Bianca, F. Bianchi, L. D. Botto, M. A. Canfield, E. E. Castilla, M. Clementi, G. Cocchi, D. Landau, E. Leoncini, Z. Li, R. B. Lowry, P. Mastroiacovo, O. M. Mutchinick, A. Rissmann, A. Ritvanen, G. Scarano, C. Siffel, E. Szabova and M. L. Martinez-Frias (2011). "Phocomelia: a worldwide descriptive epidemiologic study in a large series of cases from the International Clearinghouse for Birth Defects Surveillance and Research, and overview of the literature." <u>Am J Med Genet C</u> <u>Semin Med Genet</u> 157C(4): 305-320.
626 627 628 629 630	Bukiya A.N., Jackson S., Sullivan R., Tate D., Moore B., Mari G., Dopico A.M. and Schlabritz-Loutsevitch N. (2014). "Regulation of fetal cerebral arterial diameter by ethanol and endocannabinoids (eCBs) in a baboon model.Regulation of fetal cerebral arterial diameter by ethanol and endocannabinoids (eCBs) in a baboon model." <u>Alcoholism: Clinical</u> <u>and Experimental Research</u> 38 (Suppl. 1) : 31A.
631 632 633	Canto, C., K. J. Menzies and J. Auwerx (2015). "NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus." <u>Cell Metab</u> 22 (1): 31-53.
634 635 636	CDC, Centers for Disease Control, Atlanta and Georgia. (2019). "CDC Wonder, Natality Information, Live Births." Retrieved 30th December 2019, 2019, from <u>https://wonder.cdc.gov/natality.html</u> .
637 638 639 640	Dwyer-Lindgren, L., A. Bertozzi-Villa, R. W. Stubbs, C. Morozoff, S. Shirude, J. Unutzer, M. Naghavi, A. H. Mokdad and C. J. L. Murray (2018). "Trends and Patterns of Geographic Variation in Mortality From Substance Use Disorders and Intentional Injuries Among US Counties, 1980-2014." Jama 319 (10): 1013-1023.
641 642 643	ElSohly, M. A., S. A. Ross, Z. Mehmedic, R. Arafat, B. Yi and B. F. Banahan, 3rd (2000). "Potency trends of delta9-THC and other cannabinoids in confiscated marijuana from 1980-1997." <u>J Forensic Sci</u> 45 (1): 24-30.
644	Forrester, M. B. and R. D. Merz (2007). "Risk of selected birth defects with prenatal illicit

drug use, Hawaii, 1986-2002." J Toxicol Environ Health A 70(1): 7-18. 645

medRxiv preprint doi: https://doi.org/10.1101/2020.09.01.20186163; this version posted September 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

- 646 Gasperi, V., D. Evangelista, V. Chiurchiu, F. Florenzano, I. Savini, S. Oddi, L. Avigliano, M.
- V. Catani and M. Maccarrone (2014). "2-Arachidonoylglycerol modulates human endothelial
 cell/leukocyte interactions by controlling selectin expression through CB1 and CB2
- 649 receptors." Int J Biochem Cell Biol **51**: 79-88.
- 650 Hebert-Chatelain, E., T. Desprez, R. Serrat, L. Bellocchio, E. Soria-Gomez, A. Busquets-
- 651 Garcia, A. C. Pagano Zottola, A. Delamarre, A. Cannich, P. Vincent, M. Varilh, L. M. Robin,
- 652 G. Terral, M. D. Garcia-Fernandez, M. Colavita, W. Mazier, F. Drago, N. Puente, L.
- 653 Reguero, I. Elezgarai, J. W. Dupuy, D. Cota, M. L. Lopez-Rodriguez, G. Barreda-Gomez, F.
- Massa, P. Grandes, G. Benard and G. Marsicano (2016). "A cannabinoid link between
- 655 mitochondria and memory." <u>Nature</u> **539**(7630): 555-559.
- Hebert-Chatelain, E., L. Reguero, N. Puente, B. Lutz, F. Chaouloff, R. Rossignol, P. V.
- 657 Piazza, G. Benard, P. Grandes and G. Marsicano (2014). "Cannabinoid control of brain
- bioenergetics: Exploring the subcellular localization of the CB1 receptor." <u>Mol Metab</u> 3(4):
 495-504.
- Hoyme, H. E., M. C. Higginbottom and K. L. Jones (1981). "The vascular pathogenesis of
 gastroschisis: intrauterine interruption of the omphalomesenteric artery." J Pediatr 98(2): 228231.
- Hoyme, H. E., K. L. Jones, M. I. Van Allen, B. S. Saunders and K. Benirschke (1982).
 "Vascular pathogenesis of transverse limb reduction defects." J Pediatr 101(5): 839-843.
- Lubinsky, M. (2014). "A vascular and thrombotic model of gastroschisis." <u>Am J Med Genet</u>
 <u>A</u> 164A(4): 915-917.
- McClean, D. K. and A. M. Zimmerman (1976). "Action of delta 9-tetrahydrocannabinol on
 cell division and macromolecular synthesis in division-synchronized protozoa."
- 669 <u>Pharmacology</u> **14**(4): 307-321.
- Mokdad, A. H., L. Dwyer-Lindgren, C. Fitzmaurice, R. W. Stubbs, A. Bertozzi-Villa, C.
- Morozoff, R. Charara, C. Allen, M. Naghavi and C. J. Murray (2017). "Trends and Patterns of Disparities in Cancer Mortality Among US Counties, 1980-2014." Jama **317**(4): 388-406.
- Murphy, S. K., N. Itchon-Ramos, Z. Visco, Z. Huang, C. Grenier, R. Schrott, K. Acharya, M.
- H. Boudreau, T. M. Price, D. J. Raburn, D. L. Corcoran, J. E. Lucas, J. T. Mitchell, F. J.
- 675 McClernon, M. Cauley, B. J. Hall, E. D. Levin and S. H. Kollins (2018). "Cannabinoid
- 676 exposure and altered DNA methylation in rat and human sperm." <u>Epigenetics</u>.
- National Birth Defects Prevention Network. (2018). "National Birth Defects Prevention
 Network." Retrieved 15th July 2018, 2018, from https://www.nbdpn.org/ar.php.
- Pacher, P., S. Steffens, G. Hasko, T. H. Schindler and G. Kunos (2018). "Cardiovascular
- 680 effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly." <u>Nat Rev</u>
- 681 <u>Cardiol</u> **15**(3): 151-166.
- Reece A. S. and Hulse G.K. (2019). "Cannabis Consumption Patterns Parallel the East-West
- 683 Gradient in Canadian Neural Tube Defect Incidence: An Ecological Study." <u>Global Pediatric</u>
- 684 <u>Health</u> In Press.

medRxiv preprint doi: https://doi.org/10.1101/2020.09.01.20186163; this version posted September 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

- Reece A. S. and Hulse G.K. (2019). "Cannabis Teratology Explains Current Patterns of
 Coloradan Congenital Defects: The Contribution of Increased Cannabinoid Exposure to
 Rising Teratological Trends "<u>Clinical Pediatrics</u> 58(10): 1085-1123.
- Reece A. S. and Hulse G.K. (2019). "Explaining Contemporary Patterns of Cannabis
 Teratology." Clinical Pediatrics 4(1): 1000146.
- 690 Reece A. S. and Hulse G.K. (2020). "Canadian Cannabis Consumption and Patterns of
- 691 Congenital Anomalies: An Ecological Geospatial Analysis." Journal of Addiction Medicine
 692 In Press.
- 693 Reece A.S. and Hulse G.K. (2019). "Cannabis Teratology Explains Current Patterns of
- Coloradan Congenital Defects: The Contribution of Increased Cannabinoid Exposure to
 Rising Teratological Trends." <u>Clinical Pediatrics</u> 58(10): 1085-1123.
- Reece A.S., A. Norman and Hulse G.K. (2016). "Cannabis Exposure as an Interactive
- 697 Cardiovascular Risk Factor and Accelerant of Organismal Ageing A Longitudinal Study."
 698 BMJ Open In Press.
- 699 Report of the Queensland Perinatal Maternal and Perinatal Quality Council and Queensland
- Health (2018). Congenital Anomaly Linked File (CALF): Data Table and Notes, 2017.
- 701 Queensland Health. Brisbane, Queensland Health. 1: 5.
- Robinson M. (2019). "Babies born with deformed hands spark investigation in Germany."
 Retrieved 5th October 2019, 2019, from <u>https://edition.cnn.com/2019/09/16/health/hand-</u>
 deformities-babies-gelsenkirchen-germany-intl-scli-grm/index.html.
- Roth, G. A., L. Dwyer-Lindgren, A. Bertozzi-Villa, R. W. Stubbs, C. Morozoff, M. Naghavi,
- A. H. Mokdad and C. J. L. Murray (2017). "Trends and Patterns of Geographic Variation in
- 707 Cardiovascular Mortality Among US Counties, 1980-2014." Jama **317**(19): 1976-1992.
- Short, T. D., E. B. Stallings, J. Isenburg, L. A. O'Leary, M. M. Yazdy, M. K. Bohm, M.
- T09 Ethen, X. Chen, T. Tran, D. J. Fox, J. Fornoff, N. Forestieri, E. Ferrell, G. M. Ramirez, J.
- 710 Kim, J. Shi, S. J. Cho, K. Duckett, N. Nelson, K. Zielke, K. St John, B. Martin, C. Clark, M.
- P. Huynh, C. Benusa and J. Reefhuis (2019). "Gastroschisis Trends and Ecologic Link to
- 712 Opioid Prescription Rates United States, 2006-2015." <u>MMWR Morb Mortal Wkly Rep</u>
- **68**(2): 31-36.
- 714 Substance Abuse and Mental Health Administration, Department of Health and Human
- 715 Services and United States Government. (2018). "National Survey of Drug Use and Health
- 716 2018, NSDUH." Retrieved June 2nd, 2018, 2018, from https://www.samhsa.gov/data/all-
- 717 <u>reports</u>.
- Tahir, S. K. and A. M. Zimmerman (1991). "Influence of marihuana on cellular structures
 and biochemical activities." <u>Pharmacol Biochem Behav</u> 40(3): 617-623.
- Van Allen, M. I. and D. W. Smith (1981). "Vascular pathogenesis of gastroschisis." J Pediatr
 98(4): 662-663.
- van Diepen, H., E. Schlicker and M. C. Michel (2008). "Prejunctional and peripheral effects
- of the cannabinoid CB(1) receptor inverse agonist rimonabant (SR 141716)." <u>Naunyn</u>
- 724 <u>Schmiedebergs Arch Pharmacol</u> **378**(4): 345-369.

medRxiv preprint doi: https://doi.org/10.1101/2020.09.01.20186163; this version posted September 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in

- Wang, J., W. Yuan and M. D. Li (2011). "Genes and pathways co-associated with the 725
- exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, 726 cocaine, marijuana, morphine, and/or nicotine: a review of proteomics analyses." Mol
- 727
- Neurobiol 44(3): 269-286. 728
- 729 Werler, M. M., A. A. Mitchell, C. A. Moore, M. A. Honein and S. National Birth Defects
- Prevention (2009). "Is there epidemiologic evidence to support vascular disruption as a 730
- pathogenesis of gastroschisis?" Am J Med Genet A 149A(7): 1399-1406. 731
- Willsher K. (2018) "Baby arm defects prompt nationwide investigation in France." Guardian. 732
- 733 Wolff, V., A. I. Schlagowski, O. Rouver, A. L. Charles, F. Singh, C. Auger, V. Schini-Kerth,
- C. Marescaux, J. S. Raul, J. Zoll and B. Geny (2015). "Tetrahydrocannabinol induces brain 734
- mitochondrial respiratory chain dysfunction and increases oxidative stress: a potential 735 736 mechanism involved in cannabis-related stroke." Biomed Res Int 2015: 323706.
- 737 Women and Newborn Health Service, Department of Health and Government of Western
- Australia (2015). Western Australian Register of Developmental Anomalies 1980-2014. 738
- 739 Western Australia Health. Perth, Western Australia, Western Australia Health. 1:28.
- Yamaji, K., K. P. Sarker, K. Kawahara, S. Iino, M. Yamakuchi, K. Abeyama, T. Hashiguchi 740
- 741 and I. Maruyama (2003). "Anandamide induces apoptosis in human endothelial cells: its
- regulation system and clinical implications." Thromb Haemost 89(5): 875-884. 742
- Zimmerman A.M. and Zimmerman S. (1987). Cytogenetic Studies of Cannabinoid Effects. 743
- Genetic and Perinatal Effects of Abused Substances. Braude M.C. and Zimmerman A.M. 744
- 745 New York, Academic Press Inc.; Harcourt, Brace Jovanovich. 1: 95-112.
- Zimmerman, A. M. and A. Y. Raj (1980). "Influence of cannabinoids on somatic cells in 746 vivo." Pharmacology 21(4): 277-287. 747
- Zimmerman, S. and A. M. Zimmerman (1990). "Genetic effects of marijuana." Int J Addict 748 749 **25**(1A): 19-33.
- 750
- 751

Page | 1

Supplementary Material - Table of Contents

Item	Tables	Page
Supplementary Table1	Raw LR Data	2
Supplementary Table 2	Cannabis Use Quintiles	6
Supplementary Table 3	Median Values Full and Kriged Datasets	10
Supplementary Table 4	Introductory Regressions	11
Supplementary Table 5	Cannabinoid Regressions	12
Supplementary Table 6	Panel Regressions	13
Supplementary Table 7	Kriged Data	15
Supplementary Table 8	ICBDSR Data Re-Visited	17
Supplementary Table 9	WARDA Data on ETOPFA Rates	21
Supplementary Table 11	Spatial Regression with International Adjustment Factor for Silent Cases – 63%	23
Supplementary Table 12	Two-Step Instrumental Regression by Race	25
Supplementary Table 13	Mixed Effects Regression with IPW Weights	28
	Figures	
Supplementary Figure 1	Limb Reduction Rate by State – Facetted Plot	30
Supplementary Figure 2	Limb Reduction Rate by State – Geo-facetted Plot	31
Supplementary Figure 3	Daily Cannabis Use – General and in Pregnancy	32
Supplementary Figure 4	LRR- Income Association	33
Supplementary Figure 5	LR Non-Live Birth Rate – Scaled with USA Silent Factor, 37%	34
Supplementary Figure 6	LRR Over Time by Quintile Corrected for USA Silent Factor	35
Supplementary Figure 7	LRR Boxplots by Quintile Corrected for USA Silent Factor	36
Supplementary Figure 8	LRR Boxplots by Dichotomized Quintile Corrected for USA Silent Factor	37
Supplementary Figure 9	Map-Graphs of LRR Corrected for USA Silent Factor – Raw Data	38
Supplementary Figure 10	Map-Graphs of LRR Corrected for USA Silent Factor – Kriged Data	39
Supplementary Figure 11	LR Non-Live Birth Rate Over Time – Scaled with International Silent Factor, 63%	40
Supplementary Figure 12	LR Non-Live Birth Rate Boxplots – Scaled with International Silent Factor, 63%	41
Supplementary Figure 13	LR Non-Live Birth Rate Over Time by Quintiles – Scaled with International Silent Factor	42
Supplementary Figure 14	Map-Graphs of LRR Over Time – Adjusted with International Silent Factor – Raw Data	43

P a g e | 2

Supplementary Figure 15	Map-Graphs of LRR Over Time – Adjusted with International Silent Factor – Kriged Data	44
Supplementary Figure 16	Drug Exposure Plots for Hidden Factors of 0%, 37% and 63%	45
Supplementary Figure 17	Ethnic Composition Plots for Hidden Factors of 0%, 37% and 63%	46
Supplementary Figure 18	Effects of Registry Ascertainment and Case Finding Practices	47

State	1986-88	1989	1989-90	1991	1996	1998-99	2003-07	2004-08
Alabama						4.97		
Alaska					2.99	9.69	9.34	10.78
Arkansas	4.63	4.285	5.9	7.37	5.56	6.92	7.22	7.4
Arizona		9.49	11.19	8.97	8.97	5.56	3.35	3.02
California		6.15	4.3	7.19	7.69	5.12		4.61
Colorado				7.14	7.3	7.28	4.88	5.01
Connecticut				5.36	2.4	0	3.68	
Delaware						3.08		
Florida						3.78	3.09	3.38
Georgia		5.1	6.7	5.73	5.87	5.88	3.49	3.97
Hawaii		3.71	2.16	3.99	4.65	4.71	4.04	6.35
Illinois		1.24	1.23	2.15	2.44	2.4	4.84	4.36
Indiana							3.8	3.95
Iowa		7.45	6.36	5.62	6.17	7.5	6.49	6.93
Kansas	2.99	2.33						
Kentucky						1.5	3.9	4.02
Louisiana								5.66
Maine								1.25
Maryland	8.94	6.53	4.27		3.81	5.7	5.26	5.11
Massachusetts			3.41	3.19	3.24	2.47	4.4	4.49
Michigan						3.48		4.24
Minnesota								
Mississippi							1.8	1.75
Missouri		4.1	3.46	4.56	4.61	4.97		

Supplementary Table 1.: Raw Limb Reduction Data

Nebraska	7.98	3.26	5.76	4.27		4.46	4.35
Nevada							2.53
New Hampshire						2.35	3.37
New Jersey	4.05	4.06	4.22	4.11	4.51	4.44	4.86
New Mexico				6.11	5.61	3.35	
New York	5.5	4.66	4.47	3.03	3.43	2.85	2.8
North Carolina	5.22	4.15	3.81	4.55	4.76	4.91	4.95
North Dakota						1.2	1.17
Ohio							
Oklahoma	2.97	8.59	6.32	4.95	4.92	6.16	5.25
Oregon							
Puerto Rico						3.75	4.28
Rhode Island			2.56			2.08	2.52
South Carolina						4.77	
South Dakota							
Tennessee			4.7	3.14		3.67	3.83
Texas				3.55	5.79	5.99	6.04
Utah					4.49	7.91	7.4
Vermont							
Virginia	3.63	2.12	2.01	2.31	2.84		3.83
Washington		5.88	6.02				
West Virginia		1.27	1.87			1.7	1.97
Wisconsin	4.41	3.73	4.19	4.44	3.92		3.69

2005-09	2007-11	2008-12	2009-13	2010-14	2011-2015	2012-2016
13.3				9.1	9.9	9.2
6.5	6.9	6.8	5.5		3.5	
3.3	2.6	2.9	2.9	2.8	2.7	3.4
4.3	3.2	3.1	2.9	3		3.3
4.7	4.1	4.1	4.9	4.8	4.6	4.5
3.2						
2.9	3.4	5	7.1	8.4	8.2	7.6
3.5	3.6	3.9	3.7	3.8	3.5	3.5
4.4	4.8	4.7	4.5	4.1	3.7	3
3.9						
4.3	3.7	4.8	5	3.9	4.2	4.4
3.7					2.9	2.8
6.6	6.2	6	6	6.1	5.7	5.5
	3.9	3.7	3.5	2.8	2.5	2.1
3.5	2.9	2.8	2.9	3.8	4.9	4.2
4.1	3.2	2	2.7	3.3	3.6	4
1.9	2.3	2.8	3.1	2.7	3.6	3
4.4	2.3	2.9	3.1	3.4	3.1	2.4
4.1	3.7	4.2	4.7	5.3	5.5	5.1
4.6	4.2	4.2	3.9	3.9	4.9	4.4
2.5	2.4	3.2	3.6	3.3	3.6	3.5
2.3	3.6	3.7	3.8	3	4.4	4.4
5		4.5	4.4	4.4	3.8	4.6
5	6.6	6.2	5.7	5.6	5.8	5.8
3	4.2	3.5	3.4	2.7	2.2	1.9
3.6	4.3	2.4				
5.2	5.3	5	4.5	4.4	3.4	3.7

	4.2	4	7.4	7	6.9	5.8
3	3.1	3	2.9	2.9	2.8	2.8
5.4	5.3	5.2	5	4.6	4.5	4.3
2.1	2.2	1.7	1.9	0.8		
29.1	4.2	4.4	4.7	4.5	4.5	4.7
		6.5	7.6	8.8	8.5	7.4
5	5.8	6.4	7.2	6.4	6.8	6.5
2.8	4.1	3.8	3.5	2.8	2.8	3.5
4.4	6.3	6.4	6.6	7	5.9	5
4.3				4.1	4	4
6.1	5.6	6.1	5.8	5.8	5.6	5.4
7.4	6.7	6	6.2	6.6	6.3	6
				5.3	5.3	5
3.8	2.8	2.6	2.5	2.7	3.3	
				5.6		3.5
2	3.8	2.1	1.8	1.9	1.9	2.4
3.8	3.3	3.2	3.2	2.9	3	3

P a g e | **6**

Supplementary Table 2.: Cannabis Use Quintiles

Rank Ordered Listing of Cannabis Use Quintiles

State	Year	mrjmon	QuinCI	Quin	QuinCN
Colorado	2015	0.171216	(0.146,0.171]	Quintile 5	(0.113,0.171]
Vermont	2015	0.150801	(0.146,0.171]	Quintile 5	(0.113,0.171]
Alaska	2015	0.147986	(0.146,0.171]	Quintile 5	(0.113,0.171]
Maine	2015	0.139832	(0.122,0.146]	Quintile 4	(0.113,0.171]
Rhode Island	2015	0.132805	(0.122,0.146]	Quintile 4	(0.113,0.171]
Oregon	2015	0.130385	(0.122,0.146]	Quintile 4	(0.113,0.171]
New Hampshire	2015	0.123054	(0.122,0.146]	Quintile 4	(0.113,0.171]
District of Columbia	2015	0.121021	(0.0968,0.122]	Quintile 3	(0.113,0.171]
Massachusetts	2015	0.119083	(0.0968,0.122]	Quintile 3	(0.113,0.171]
Washington	2015	0.114177	(0.0968,0.122]	Quintile 3	(0.113,0.171]
Montana	2015	0.113184	(0.0968,0.122]	Quintile 3	(0.0817,0.113]
New Mexico	2015	0.103081	(0.0968,0.122]	Quintile 3	(0.0817,0.113]
Michigan	2015	0.102894	(0.0968,0.122]	Quintile 3	(0.0817,0.113]
California	2015	0.098151	(0.0968,0.122]	Quintile 3	(0.0817,0.113]
New York	2015	0.097454	(0.0968,0.122]	Quintile 3	(0.0817,0.113]
Connecticut	2015	0.097221	(0.0968,0.122]	Quintile 3	(0.0817,0.113]
Maryland	2015	0.096645	(0.072,0.0968]	Quintile 2	(0.0817,0.113]
Indiana	2015	0.087862	(0.072,0.0968]	Quintile 2	(0.0817,0.113]
Arizona	2015	0.085918	(0.072,0.0968]	Quintile 2	(0.0817,0.113]
South Carolina	2015	0.082666	(0.072,0.0968]	Quintile 2	(0.0817,0.113]
Missouri	2015	0.081698	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
Hawaii	2015	0.081108	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
Delaware	2015	0.081095	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]

Illinois	2015	0.080563	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
Georgia	2015	0.078868	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
Florida	2015	0.078732	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
Nevada	2015	0.078481	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
Ohio	2015	0.078167	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
Pennsylvania	2015	0.078005	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
Minnesota	2015	0.07738	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
North Carolina	2015	0.074308	(0.072,0.0968]	Quintile 2	(0.064,0.0743]
Kansas	2015	0.073762	(0.072,0.0968]	Quintile 2	(0.064,0.0743]
Arkansas	2015	0.072504	(0.072,0.0968]	Quintile 2	(0.064,0.0743]
Kentucky	2015	0.071327	[0.0472,0.072]	Quintile 1	(0.064,0.0743]
New Jersey	2015	0.070252	[0.0472,0.072]	Quintile 1	(0.064,0.0743]
West Virginia	2015	0.069969	[0.0472,0.072]	Quintile 1	(0.064,0.0743]
South Dakota	2015	0.069882	[0.0472,0.072]	Quintile 1	(0.064,0.0743]
Wisconsin	2015	0.068192	[0.0472,0.072]	Quintile 1	(0.064,0.0743]
Virginia	2015	0.067445	[0.0472,0.072]	Quintile 1	(0.064,0.0743]
Louisiana	2015	0.064257	[0.0472,0.072]	Quintile 1	(0.064,0.0743]
Nebraska	2015	0.063974	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
Tennessee	2015	0.063807	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
Oklahoma	2015	0.063326	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
Idaho	2015	0.063242	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
Wyoming	2015	0.062962	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
Texas	2015	0.060034	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
North Dakota	2015	0.059227	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
Alabama	2015	0.053685	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
Mississippi	2015	0.053619	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
Utah	2015	0.051131	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
Iowa	2015	0.047242	[0.0472,0.072]	Quintile 1	[0.0472,0.064]

Alphabetical Listing of Cannabis Use Quintiles

State	Year	mrjmon	QuinCI	Quin	QuinCN
Alabama	2015	0.053685	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
Alaska	2015	0.147986	(0.146,0.171]	Quintile 5	(0.113,0.171]
Arizona	2015	0.085918	(0.072,0.0968]	Quintile 2	(0.0817,0.113]
Arkansas	2015	0.072504	(0.072,0.0968]	Quintile 2	(0.064,0.0743]
California	2015	0.098151	(0.0968,0.122]	Quintile 3	(0.0817,0.113]
Colorado	2015	0.171216	(0.146,0.171]	Quintile 5	(0.113,0.171]
Connecticut	2015	0.097221	(0.0968,0.122]	Quintile 3	(0.0817,0.113]
Delaware	2015	0.081095	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
District of Columbia	2015	0.121021	(0.0968,0.122]	Quintile 3	(0.113,0.171]
Florida	2015	0.078732	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
Georgia	2015	0.078868	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
Hawaii	2015	0.081108	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
Idaho	2015	0.063242	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
Illinois	2015	0.080563	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
Indiana	2015	0.087862	(0.072,0.0968]	Quintile 2	(0.0817,0.113]
Iowa	2015	0.047242	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
Kansas	2015	0.073762	(0.072,0.0968]	Quintile 2	(0.064,0.0743]
Kentucky	2015	0.071327	[0.0472,0.072]	Quintile 1	(0.064,0.0743]
Louisiana	2015	0.064257	[0.0472,0.072]	Quintile 1	(0.064,0.0743]
Maine	2015	0.139832	(0.122,0.146]	Quintile 4	(0.113,0.171]
Maryland	2015	0.096645	(0.072,0.0968]	Quintile 2	(0.0817,0.113]
Massachusetts	2015	0.119083	(0.0968,0.122]	Quintile 3	(0.113,0.171]
Michigan	2015	0.102894	(0.0968,0.122]	Quintile 3	(0.0817,0.113]
Minnesota	2015	0.07738	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
Mississippi	2015	0.053619	[0.0472,0.072]	Quintile 1	[0.0472,0.064]

Missouri	2015	0.081698	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
Montana	2015	0.113184	(0.0968,0.122]	Quintile 3	(0.0817,0.113]
Nebraska	2015	0.063974	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
Nevada	2015	0.078481	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
New Hampshire	2015	0.123054	(0.122,0.146]	Quintile 4	(0.113,0.171]
New Jersey	2015	0.070252	[0.0472,0.072]	Quintile 1	(0.064,0.0743]
New Mexico	2015	0.103081	(0.0968, 0.122]	Quintile 3	(0.0817,0.113]
New York	2015	0.097454	(0.0968,0.122]	Quintile 3	(0.0817,0.113]
North Carolina	2015	0.074308	(0.072,0.0968]	Quintile 2	(0.064,0.0743]
North Dakota	2015	0.059227	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
Ohio	2015	0.078167	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
Oklahoma	2015	0.063326	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
Oregon	2015	0.130385	(0.122,0.146]	Quintile 4	(0.113,0.171]
Pennsylvania	2015	0.078005	(0.072,0.0968]	Quintile 2	(0.0743,0.0817]
Rhode Island	2015	0.132805	(0.122,0.146]	Quintile 4	(0.113,0.171]
South Carolina	2015	0.082666	(0.072,0.0968]	Quintile 2	(0.0817,0.113]
South Dakota	2015	0.069882	[0.0472,0.072]	Quintile 1	(0.064,0.0743]
Tennessee	2015	0.063807	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
Texas	2015	0.060034	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
Utah	2015	0.051131	[0.0472,0.072]	Quintile 1	[0.0472,0.064]
Vermont	2015	0.150801	(0.146,0.171]	Quintile 5	(0.113,0.171]
Virginia	2015	0.067445	[0.0472,0.072]	Quintile 1	(0.064,0.0743]
Washington	2015	0.114177	(0.0968,0.122]	Quintile 3	(0.113,0.171]
West Virginia	2015	0.069969	[0.0472,0.072]	Quintile 1	(0.064,0.0743]
Wisconsin	2015	0.068192	[0.0472,0.072]	Quintile 1	(0.064,0.0743]
Wyoming	2015	0.062962	[0.0472,0.072]	Quintile 1	[0.0472,0.064]

Supplementary Table 3.: Median Values Full and Kriged Datasets

Quintile	Full Dataset 1988- 2016	Kriged Dataset 2003-2016
	Median \pm S.E.M.	Median <u>+</u> S.E.M.
Quintile 1	6.06 (5.61, 6.51)	9.2 (8.49, 9.91)
Quintile 2	5.93 (5.5, 6.36)	9.41 (8.68, 10.14)
Quintile 3	6.03 (5.5, 6.56)	8.89 (7.91, 9.87)
Quintile 4	5.55 (4.26, 6.84)	8.67 (6.51, 10.83)
Quintile 5	10.61 (8.41, 12.81)	16.36 (12.95, 19.77)

Supplementary Table 4.: Introductory Regressions

Dovometov	Parameter		Мо	del Para	ameters	
Parameter	Estimate (C.I.)	Pr(> t)	R-Squared	F	dF	Р
lm(LR_Rate ~ Year)						
Year	-0.02 (-0.0396, - 0.0004)	0.0513	0.0065	3.821	1,433	0.0513
lm(LR_Rate ~ Quintile)						
Quintile 5	0.43 (0.27, 0.59)	2.9E- 08	0.0759	9.915	4,430	1.1E- 07
lm(LR_Rate ~ Dichotomized_Quintiles)						
Highest Quintile	0.42 (0.28, 0.56)	2.2E- 08	0.0677	32.49	1,433	2.2E- 08
lm(LR Rate ~ Cannabis Use)						
Cannabis_Monthly	8.51 (0.06, 16.96)	0.0492	0.0091	3.898	1,314	0.0492
Im(LR_Rate ~ Cannabis_Use * THC Potency)						
Cannabis: THC	10.64 (3.7, 17.58)	0.0029	0.0310	4.356	3.312	0.0050
THC_Concentration	-0.7 (-1.17, -0.23)	0.0037				
Cannabis_Monthly	-109.27 (-186.69, - 31.85)	0.0060				

Parameter -	Parameter		Model Parameters					
Cannabinoid	Estimate (C.I.)	Pr(> t)	R-Squared	F	dF	Р		
lm(LR_Rate ~ Cannabinoid)								
THC_Exposure	0.70 (0.05, 1.35)	0.0368	0.0107	4.395	1,314	0.0369		
Cannabigerol_Exposure	21.01 (3.15, 38.87)	0.0218	0.0135	5.315	1,314	0.0218		
Cannabichromene_Exposure	36.33 (2.03, 70.63)	0.0387	0.0104	4.308	1,314	0.0388		
Cannabinold_Exposure	14.26 (0.02, 28.50)	0.0506	0.0090	3.852	1,314	0.0506		
Cannabidiol_Exposure	2.90 (-19.23, 25.03)	0.7980	-0.0030	0.0658	1,314	0.7977		

Supplementary Table 5.: Cannabinoid Regressions

Supplementary Table 6.: Panel Regressions

I. d		Parameter			Mo	del Paramete	rs	
Instrumental <u>+</u> Lagged Variables	Parameter	Estimate (C.I.)	Pr(> t)	Adj. R- Squar-ed	ChiSqu.	F	dF	P-value
	0 Lags							
	Drugs							
	plm(LR_Rate ~ Median.HH.Income)							
	Median.HH.Income	-7.7E-07 (-4.5E-06, 3.0E-06)	0.6804	0.001957 1		0.1699	1,424	0.6804
	plm(LR Rate ~ NHWhite + NHBlac	ck + Hispanic + NHAsian + NHAIAN)						
	NHAIAN	0.08 (0.04, 0.12)	4.7E- 05	0.038985		16.9425	1,392	4.7E-05
		abis * Alcohol.Abuse + Analgesics + Co			[]			
	Cannabis	-1.08 (-1.73, -0.43)	0.0010	0.05335		5,310	5	0.0005
	Cigarettes: Cannabis	4.23 (1.66, 6.80)	0.0014					
	Cannabis: Alcohol.Abuse	15.33 (5.35, 25.31)	0.0028					
	Cigarettes: Cannabis: Alcohol.Abuse	-54.34 (-92.93, -15.75)	0.0061					
	Analgesics	0.32 (0.03, 0.61)	0.0290					
	plm(ASD_Rate ~ Cigarettes * Cann	abis * Alcohol.Abuse + Analgesics + Co	ocaine + 5	Races + MHY	[][?)			
	Cannabis	-0.87 (-1.52, -0.22)	0.0084	0.0443		3.8072	5,298	0.0023
	Cannabis: Alcohol.Abuse	13.44 (3.48, 23.40)	0.0085				<i>,</i>	
	Cigarettes: Cannabis	3.37 (0.76, 5.98)	0.0117					
	Cigarettes: Cannabis: Alcohol.Abuse	-45.32 (-84.07, -6.57)	0.0226					
	NHAIAN	0.06 (0.02, 0.10)	0.0243					

THC_Exposure, 0:2	2 Lags						
CBG Exposure, 0:2	plm(ASD_Rate ~ Cigarettes * Cann	abis * Alcohol.Abuse + Analgesics + Co	caine + 5	Races + MHY)		
NHWhiteDailyCannExposure, 0:2	Cigarettes: Cannabis: Alcohol.Abuse	113.87 (22.67, 205.07)	0.0144	0.0474	11.8102	4	0.0188
NHBlackDailyCannExposure, 0:2	Cigarettes: Alcohol.Abuse	304.89 (50.07, 559.71)	0.0190				
HispanicDailyCannExposure, 0:2	Alcohol.Abuse	-69.76 (-129.48, -10.04)	0.0221				
NHAsianDailyCannExposure, 0:2	Cannabis: Alcohol.Abuse	-24.4 (-46, -2.80)	0.0268				
NHAIANDailyCannExposure, 0:2							
NHHNPIDailyCannExposure, 0:2							

State	2005	2006	2007	2009	2010	2011	2012	2013	2014
Arizona	3.35	3.02	3.3	2.6	2.9	2.9	2.8	2.7	3.4
Colorado	4.88	5.01	4.7	4.1	4.1	4.9	4.8	4.6	4.5
Florida	3.09	3.38	3.5	3.6	3.9	3.7	3.8	3.5	3.5
Georgia	3.49	3.97	4.4	4.8	4.7	4.5	4.1	3.7	3
Illinois	4.84	4.36	4.3	3.7	4.8	5	3.9	4.2	4.4
Iowa	6.49	6.93	6.6	6.2	6	6	6.1	5.7	5.5
Kentucky	3.9	4.02	3.5	2.9	2.8	2.9	3.8	4.9	4.2
Maryland	5.26	5.11	4.4	2.3	2.9	3.1	3.4	3.1	2.4
Massachusetts	4.4	4.49	4.1	3.7	4.2	4.7	5.3	5.5	5.1
Mississippi	1.8	1.75	2.3	3.6	3.7	3.8	3	4.4	4.4
Nebraska	4.46	4.35	5	6.6	6.2	5.7	5.6	5.8	5.8
New Jersey	4.44	4.86	5.2	5.3	5	4.5	4.4	3.4	3.7
New York	2.85	2.8	3	3.1	3	2.9	2.9	2.8	2.8
North Carolina	4.91	4.95	5.4	5.3	5.2	5	4.6	4.5	4.3
Oklahoma	6.16	5.25	29.1	4.2	4.4	4.7	4.5	4.5	4.7
Puerto Rico	3.75	4.28	5	5.8	6.4	7.2	6.4	6.8	6.5
Rhode Island	2.08	2.52	2.8	4.1	3.8	3.5	2.8	2.8	3.5
Texas	5.99	6.04	6.1	5.6	6.1	5.8	5.8	5.6	5.4
Utah	7.91	7.4	7.4	6.7	6	6.2	6.6	6.3	6
West Virginia	1.7	1.97	2	3.8	2.1	1.8	1.9	1.9	2.4
Louisiana	3.3	5.66	4.1	3.2	2	2.7	3.3	3.6	4
Maine	2.6	1.25	1.9	2.3	2.8	3.1	2.7	3.6	3
Michigan	4.3	4.24	4.6	4.2	4.2	3.9	3.9	4.9	4.4
Nevada	2.9	2.53	3	4.2	3.5	3.4	2.7	2.2	1.9
South	4.77	4.6	4.4	6.3	6.4	6.6	7	5.9	5

Carolina									
Wisconsin	3.7	3.69	3.8	3.3	3.2	3.2	2.9	3	3
Arkansas	7.22	7.4	6.5	6.9	6.8	5.5	4.5	3.5	3.5
California	3.4	4.61	4.3	3.2	3.1	2.9	3	3.2	3.3
Delaware	6.1	4.5	2.9	3.4	5	7.1	8.4	8.2	7.6
Minnesota	3.2	2.8	2.5	2.4	3.2	3.6	3.3	3.6	3.5
New Mexico	3.35	3.6	4.2	4.2	4	7.4	7	6.9	5.8
North Dakota	1.2	1.2	2.1	2.2	1.7	1.9	0.8	1.6	1.6
Virginia	3.1	3.83	3.8	2.8	2.6	2.5	2.7	3.3	3.1
Alaska	9.34	10.78	13.3	12.3	11.2	10.2	9.1	9.9	9.2
Oregon	6.5	6.5	6.5	6.5	6.5	7.6	8.8	8.5	7.4

Temporally kriged data inserted in red.

Supplementary Table 8.: ICBDSR Data Re-Visited

Worldwide

Phocomelia								Combined Result
% SB				%ETOPFA				
Registry	Cases	% SB	nSB		Cases	%ETOPFA	nETOPFA	
Atlanta	11	27.3	3	Canada	5	16.7	1	
Texas	12	8.3	1	Atlanta	11	9.1	1	
Mexico	9	11.1	1	Finland	2	100	2	
SAMerica	7	28.6	2	Anhalt	4	50	2	
France	19	10.5	2	France	19	44.8	9	
Spain	12	25	3	Tuscany	3	100	3	
Beijing	11	72.7	8	Campaigna	8	12.5	1	
Victoria	20	35	7	Victoria	20	10	2	
Totals	101		27		72		20	
Fractions			0.2672				0.2826	
Total Percent							54.99%	14.35%
Amelia								
SB				ETOPFA				
Registry	Quoted ETOPFA Mean							

1		%	I	l	1	l	I	
	Cases	SB	nSB		Cases	%ETOPFA	nETOPFA	
Canada	17	23.5	4	Canada	17	41.2	7	
Utah	2	50	1	Atlanta	20	31.6	6	
Atlanta	20	25	5	Texas	30	13.3	4	
Texas	30	16.7	5	Finland	9	44.4	4	
Mexico	25	44	11	Anhalt	2	50	1	
SAmerica	52	34.6	18	France	46	63	29	
Anhalt	2	50	1	Italy NE	5	20	1	
Slovak	6	16.7	1	Italy Romagna	9	22.2	2	
France	46	2.2	1	Campaigna	3	33.3	1	
Spain	15	13.3	2	Sicily	4	25	1	
Beijing	47	44.7	21	Israel	3	33.3	1	
Victoria	24	58.3	14	 Victoria	24	25	6	
Totals	286		84		172		63	
Fractions			0.2937				0.3679	
Total Percent							66.17%	48.90%
Overall Result - Percent								63.25%

			USA	On	ly				
Phocomelia									Combined Result
% SB					%ETOPFA				
Registry	Cases	% SB	nSB			Cases	%ETOPFA	nETOPFA	
Atlanta	1	1 27.3	3						
Texas	1	2 8.3	1		Atlanta	11	9.1	1	
Totals	2	3	4			11		1	
Fractions			0.1739					0.0910	
Total Percent								26.49%	8.12%
Amelia									
SB					ETOPFA				
	Quoted ETOPFA								

Cases %ETOPFA

nETOPFA

Registry

Mean

Cases

% SB

nSB

Utah	2	50	1	Atlanta	20	31.6	6	
			-					
Atlanta	20	25	5	Texas	30	13.3	4	
Texas	30	16.7	5					
Totals	52		11		50		10	
Fractions			0.2117				0.2062	
Total Percent							41.79%	28.98%
Overall Result -								
Percent								37.10%

Year	Live.Births	ETOPFA	Total.T21	WA.T21.TOP.Rate	TopRt	FMaxTR
1980	1.0987	0.0000	1.0987	0.0000	0.0000	0.0000
1981	0.8537	0.1254	0.9791	0.1275	0.1275	0.1645
1982	1.1136	0.1184	1.2320	0.0941	0.0941	0.1215
1983	1.0850	0.1115	1.1965	0.0923	0.0923	0.1191
1984	0.9987	0.1910	1.1897	0.1581	0.1581	0.2041
1985	1.1504	0.3283	1.4787	0.2183	0.2183	0.2818
1986	1.1651	0.4079	1.5729	0.2496	0.2496	0.3222
1987	1.0283	0.3144	1.3427	0.2131	0.2131	0.2750
1988	1.0863	0.5670	1.6533	0.3323	0.3323	0.4289
1989	0.9783	0.2932	1.2716	0.2276	0.2276	0.2938
1990	1.1156	0.3368	1.4523	0.2135	0.2135	0.2756
1991	1.0437	0.4235	1.4673	0.2722	0.2722	0.3514
1992	1.2603	0.5247	1.7851	0.2834	0.2834	0.3658
1993	1.4625	0.5250	1.9875	0.2521	0.2521	0.3253
1994	0.6695	0.8570	1.5265	0.5557	0.5557	0.7173
1995	1.0231	1.1168	2.1399	0.5080	0.5080	0.6557
1996	1.0882	0.8358	1.9241	0.4141	0.4141	0.5345
1997	0.8433	1.0092	1.8525	0.5322	0.5322	0.6869
1998	0.7498	0.9517	1.7015	0.5301	0.5301	0.6842
1999	0.8149	1.0241	1.8390	0.5399	0.5399	0.6969
2000	1.2767	1.7022	2.9789	0.5606	0.5606	0.7236
2001	0.7289	1.3779	2.1068	0.6454	0.6454	0.8330
2002	1.1402	1.5080	2.6482	0.5430	0.5430	0.7008
2003	0.8232	1.4073	2.2304	0.6058	0.6058	0.7819
2004	1.0974	1.7032	2.8006	0.5800	0.5800	0.7487

Supplementary Table 9.: WARDA Data on ETOPFA Rates

2005	1.0400	1.8621	2.9021	0.6341	0.6341	0.8184
2006	0.8383	1.6893	2.5276	0.6539	0.6539	0.8440
2007	1.0044	1.6823	2.6868	0.6008	0.6008	0.7755
2008	0.7523	1.5095	2.2618	0.6224	0.6224	0.8033
2009	0.9761	1.9857	2.9618	0.6489	0.6489	0.8375
2010	0.9582	2.2352	3.1935	0.6997	0.6997	0.9031
2011	0.6527	2.2291	2.8819	0.7815	0.7815	1.0087
2012	0.7383	2.1802	2.9185	0.7531	0.7531	0.9720
2013	0.7200	2.0825	2.8024	0.7461	0.7461	0.9630
2014	0.5122	1.8075	2.3198	0.7748	0.7748	1.0000
2015	0.5122	1.8075	2.3198	0.7748	0.7748	1.0000

	Param	eter	Model					
Instrumental <u>+</u> Lagged Variables	Parameter	Estimate (C.I.)	P- Value	LogLik	Parameters	Value	P- Value	
	Full Model							
	0 Lags							
THC_Exposure	spreml(LR_Rate ~ Cigarettes * Co	annabis * Alcohol.Abi	use + Ana	lgesics + Co	caine + MHY +	- 5_Races)		
CBG Exposure	NHAIAN	-0.06 (-0.10, -0.02)	0.0024	46.97534	phi	3.2020	0.00305	
NHWhite_DailyCan_THCExposure	Cigarettes: Cannabis: Analgesics	-2.71 (-4.53, -0.89)	0.0034		psi	0.7132	<2E-16	
NHBlack_DailyCan_THCExposure	Cigarettes: Analgesics	-3.87 (-6.52, -1.22)	0.0043		rho	-0.2693	0.04542	
NHAIAN_DailyCan_THCExposure	Cannabis: Analgesics	0.33 (0.09, 0.57)	0.0052		lambda	0.3297	0.00316	
Hispanic DailyCan THCExposure	Cigarettes: Cannabis	-3.92 (-6.74, -1.1)	0.0064					
NHAsian_DailyCan_THCExposure	Hispanic	0.16 (0.04, 0.28)	0.0112					
	Full Model							
THC Exposure, 0:2	2 Lags							
CBG Exposure, 0:2	spreml(LR Rate ~ Cigarettes * Co	annabis * Alcohol.Abi	use + Ana	lgesics + Co	caine + MHY +	- 5 Races)		
NHWhite_DailyCan_THCExposure, 0:2	Cocaine	-0.26 (-0.42, -0.10)	0.0006	-1.70233	phi	1.3786	0.2854	
NHBlack_DailyCan_THCExposure, 0:2	Hispanic	0.14 (0.04, 0.24)	0.0075		psi	0.7051	3.1E-05	
NHAIAN_DailyCan_THCExposure, 0:2	Cannabis	0.20 (0.00, 0.40)	0.0456		rho	-0.3564	0.01851	
Hispanic_DailyCan_THCExposure, 0:2					lambda	0.4214	0.0006	
NHAsian_DailyCan_THCExposure, 0:2								
	Full Model							
THC Exposure, 0:4	4 Lags							

Supplementary Table 10.: Spatial Regression with International Adjustment Factor for Silent Cases – 63%

CBG_Exposure, 0:4 spreml(LR_Rate ~ Cigarettes * Cannabis * Alcohol.Abuse + Analgesics + Cocaine + MHY + 5_Races)								
NHWhite_DailyCan_THCExposure, 0:4	Cigarettes	65.50 (32.67, 98.33)	0.0001	17.49213	phi	0.0139	0.9917	
NHBlack_DailyCan_THCExposure, 0:4	Analgesics	-3.61 (-5.55, -1.67)	0.0003		psi	0.9637	<2E-16	
NHAIAN_DailyCan_THCExposure, 0:4	Cigarettes: Analgesics	14.46 (6.31, 22.61)	0.0005		rho	0.0148	0.9499	
Hispanic_DailyCan_THCExposure, 0:4	Cigarettes: Cannabis	7.19 (2.82, 11.56)	0.0013		lambda	-0.2077	0.3652	
NHAsian_DailyCan_THCExposure, 0:4	Cannabis	-1.46 (-2.52, -0.40)	0.0070					

Supplementary Table 11.: Two-Step Instrumental Regression by Race

	Р	arameter			Model Par	ameters	
Instrumental Variables	Parameter	Estimate (C.I.)	P- Value	Adj. R- Squar- ed	Wald Test	dF	P-value
	0 Instrumental Variables						
	ivreg(LR_Rate ~ Race)						
	NHAIAN	1.00 (0.89, 1.11)	< 2e- 16	0.1794	77.89	4,1403	<2.0E-16
	NHAfric.American	0.45 (0.36, 0.54)	< 2e- 16				
	NHCauc.American	0.29 (0.2, 0.38)	2.7E- 10				
	Hispanic	0.30 (0.20, 0.40)	7.2E- 10				
	2 Instrumental Variables						
	ivreg(LR_Rate ~ Race)						
MeanDaysCann x mrjmon	NHCauc.American	5.11 (-32.48, 42.70)	0.7900	-168.1	0.114	3,1237	0.9519
Potency	NHAfric.American	-16.95 (-159.97, 126.07)	0.8160				
	NHAIAN	-0.13 (-33.35, 33.09)	0.9940				
	10 Instrumental Variables						
	ivreg(LR_Rate ~ Race)						
Cigarettes Month	NHAIAN	2.45 (0.02, 4.88)	0.0477	-2.313	6.563	4,1236	3.17E-05
Analgesic Abuse	NHCauc.American	-0.63 (-1.90, 0.64)	0.3302			,	
Cocaine Annual	Hispanic	-1.52 (-6.44, 3.40)	0.5454				
Median_Household_Income	NHAfric.American	0.6 (-1.59, 2.79)	0.5935				
MeanDaysCann x Cannabis							
Potency							
THC_Exposure							

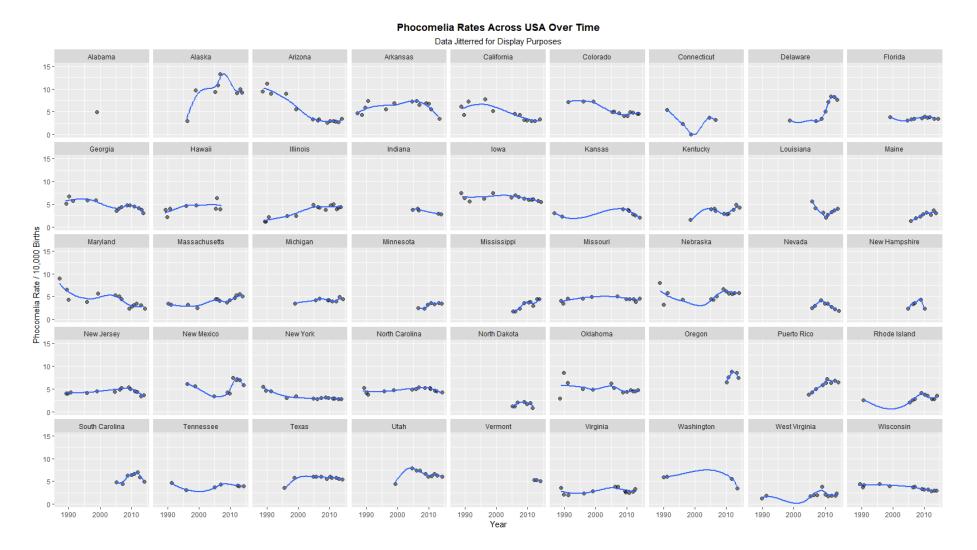
Cannabigerol_Exposure				
Cannabichromene_Exposure				
Cannabinol_Exposure				

Supplementary Table 12.:

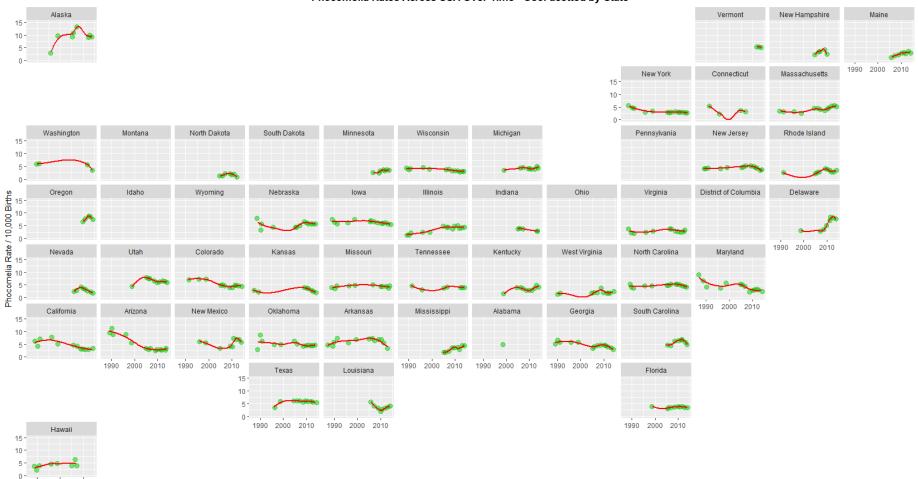
Numbers of Cases and Controls in States with Legal Cannabis vs. Other Paradigms

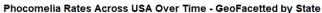
Dichotomized Status	No. Limb Reductions	No. Limb Reductions 37% Silent Factor	No. Limb Reductions 63% Silent Factor	Total Births	Normal Births	Normal Births 37% Silent Factor	Normal Births 63% Silent Factor
Other	14,398	21,106	31,954	33,645,176	33,630,778	33,624,070	33,613,222
Legal	215	338	566	429,020	428,805	428,682	428,454

Supplementary Table 13:


Inverse Probability-Weighted Mixed Effects Regression – Final Models

Par		Model			
Parameter	Estimate (C.I.)	P- Value	AIC	BIC	logLik
Additive					
Afric.Am.THC.Exposure	0.61 (0.57, 0.65)	< 0.0001	2882.746	2930.68	-1428.373
Alcohol.Abuse	30.68 (27.6, 33.75)	< 0.0001			
Cigarettes	3.36 (2.97, 3.74)	< 0.0001			
Cauc.Am	11.54 (7.29, 15.79)	< 0.0001			
Afric.Am	0.35 (0.16, 0.53)	0.0002			
Cocaine	-0.17 (-0.24, -0.1)	< 0.0001			
Asian.Am	-1.94 (-2.27, -1.61)	< 0.0001			
Analgesics	-0.94 (-1.08, -0.81)	< 0.0001			
Median.HH.Income	-0.96 (-1.08, -0.84)	< 0.0001			
Hispanic.Am	-7.98 (-8.39, -7.57)	< 0.0001			
4-Way Interactions with Cannabis					
Cauc.Am.THC.Exposure	4.06 (3.7, 4.42)	< 0.0001	2083.733	2174.869	-1016.866
Asian.THC.Exposure	0.91 (0.83, 0.99)	< 0.0001			
Cigarettes: Analgesics	1621.82 (1233.55, 2010.1)	< 0.0001			
Cigarettes	4946.23 (3744.11, 6148.36)	< 0.0001			
Cauc.Am	8.06 (5.71, 10.41)	< 0.0001			
Cigarettes: Cannabis: Analgesics	480.35 (337.18, 623.51)	< 0.0001			
Cigarettes: Cannabis	1462.8 (1017.39, 1908.22)	< 0.0001			
Alcohol.Abuse: Analgesics	4086.78 (2807.4, 5366.17)	< 0.0001			
Alcohol.Abuse	12104.21 (8150.79, 16057.62)	< 0.0001			
Alcohol.Abuse: Cannabis: Analgesics	1102.5 (626.32, 1578.68)	< 0.0001			
Alcohol.Abuse: Cannabis	3224.18 (1743.59, 4704.78)	< 0.0001			
Cigarettes: Alcohol.Abuse: Cannabis	-17394.37 (-23740.4, -11048.35)	< 0.0001			
Cannabis	-286.85 (-391.41, -182.28)	< 0.0001			


Cigarettes: Alcohol.Abuse: Cannabis: Analgesics	-5802.53 (-7852.78, -3752.27)	< 0.0001			
Cannabis: Analgesics	-95.46 (-128.93, -62)	< 0.0001			
Cigarettes: Alcohol.Abuse	-60908.76 (-77951.49, -43866.03)	< 0.0001			
Cigarettes: Alcohol.Abuse: Analgesics	-20233.76 (-25770.67, -14696.85)	< 0.0001			
Analgesics	-336.46 (-426.72, -246.2)	< 0.0001			
Afric.Am	-0.69 (-0.87, -0.51)	< 0.0001			
Asian.Am	-1.16 (-1.47, -0.86)	< 0.0001			
Median.HH.Income	-1.02 (-1.13, -0.91)	< 0.0001			
Afric.Am.THC.Exposure	-3.65 (-4.01, -3.3)	< 0.0001			
5-Way Interactions with Cannabinoids					
Cauc.Am.THC.Exposure	8.51 (7.99, 9.03)	< 0.0001	2083.381	2174.517	-1016.69
Asian.THC.Exposure	1.177 (1.09, 1.27)	< 0.0001			
Cigarettes: THC.Exposure: Cannabigerol.Exposure	465.801 (385, 547.09)	< 0.0001			
Analgesics	0.559 (0.45, 0.67)	< 0.0001			
Cigarettes: THC.Exposure	1496.707 (1190, 1805.27)	< 0.0001			
Alcohol.Abuse: THC.Exposure: Cannabigerol.Exposure	1352.223 (1070, 1631.66)	< 0.0001			
Alcohol.Abuse: THC.Exposure	4316.283 (3240, 5391.08)	< 0.0001			
Cigarettes: Cannabigerol.Exposure	201.087 (130, 272.14)	< 0.0001			
Cigarettes	643.833 (413, 874.77)	< 0.0001			
Cauc.Am	8.728 (5.17, 12.29)	< 0.0001			
Alcohol.Abuse: Cannabigerol.Exposure	569.126 (335, 802.89)	< 0.0001			
Alcohol.Abuse	1781.128 (1020, 2541.34)	< 0.0001			
Cannabigerol.Exposure	-41.58 (-58, -25.12)	< 0.0001			
Cigarettes: Alcohol.Abuse	-8898.557 (-12200, -5638.91)	< 0.0001			
Cigarettes: Alcohol.Abuse: Cannabigerol.Exposure	-2807.926 (-3810, -1805.22)	< 0.0001			
THC.Exposure	-324.953 (-399, -250.66)	< 0.0001			
Cigarettes: Alcohol.Abuse: THC.Exposure	-20546.282 (-25000, -16089.52)	< 0.0001			
THC.Exposure: Cannabigerol.Exposure	-99.945 (-119, -80.66)	< 0.0001			
Cigarettes: Alcohol.Abuse: THC.Exposure: Cannabigerol.Exposure	-6441.429 (-7620, -5264.54)	< 0.0001			
Asian.Am	-1.607 (-1.89, -1.33)	< 0.0001			
Hispanic.Am	-4.5 (-5.05, -3.95)	< 0.0001			
Afric.Am.THC.Exposure	-6.43 (-6.83, -6.03)	< 0.0001			


Supplementary Figures

Supplementary Figure 1.: Limb Reduction Rate by State – Facetted Plot

Supplementary Figure 2.: Limb Reduction Rate by State – Geo-facetted Plot

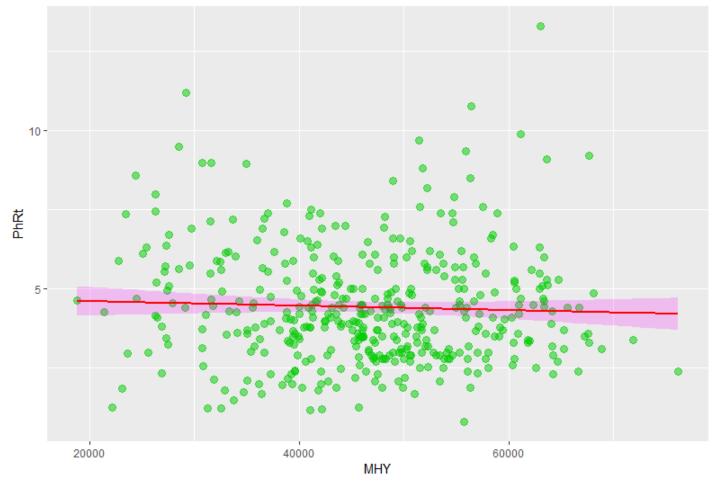
1990 2000 2010

Supplementary Figure 3.: Daily Cannabis Use – General and in Pregnancy

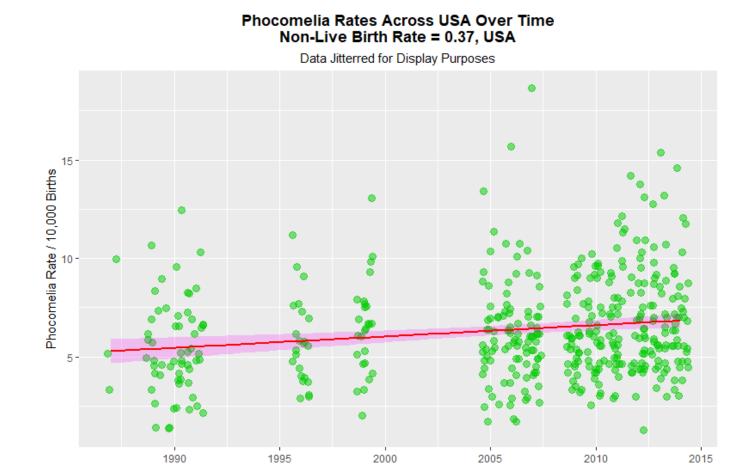
Mean Near Daily Cannabis Use Rates Corrected for the Age Structure of the US Popultation

Page | 34

•


2015

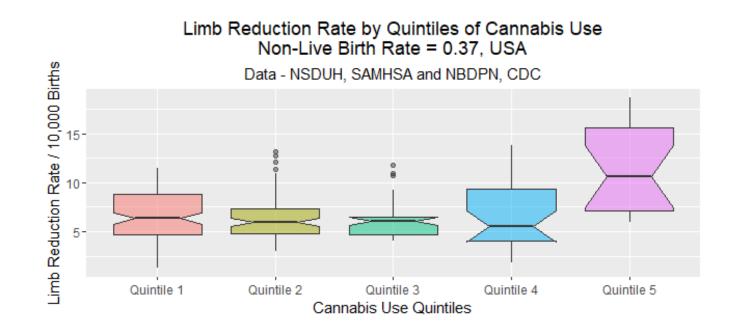
First Trimester Cannabis Exposure


2010

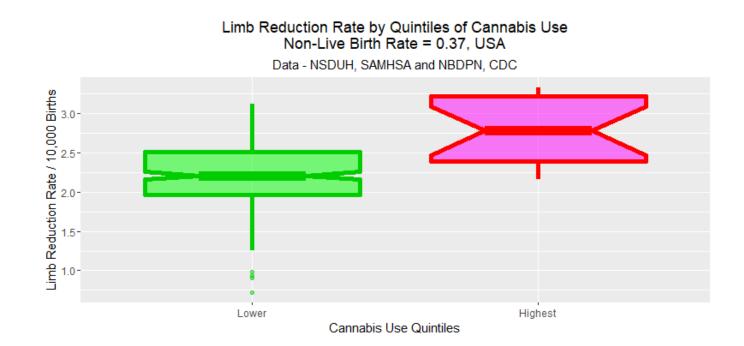
Year

Supplementary Figure 4.: Limb Reduction Rate Median Household Income (MHY)

Limb Reduction Rate as a Function of Median Household Income

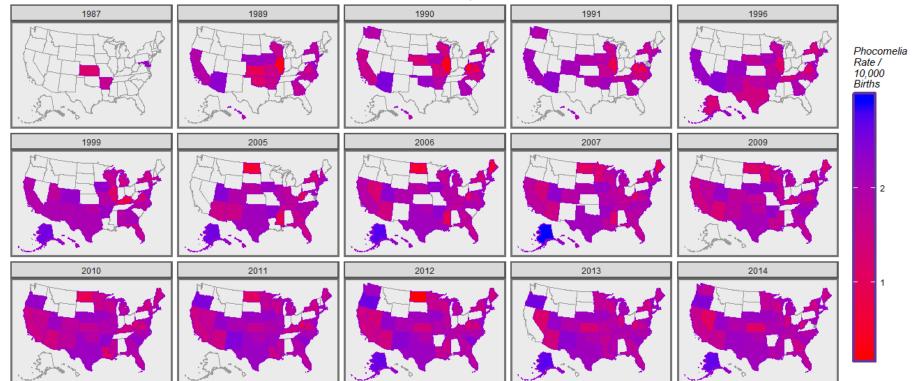


Year



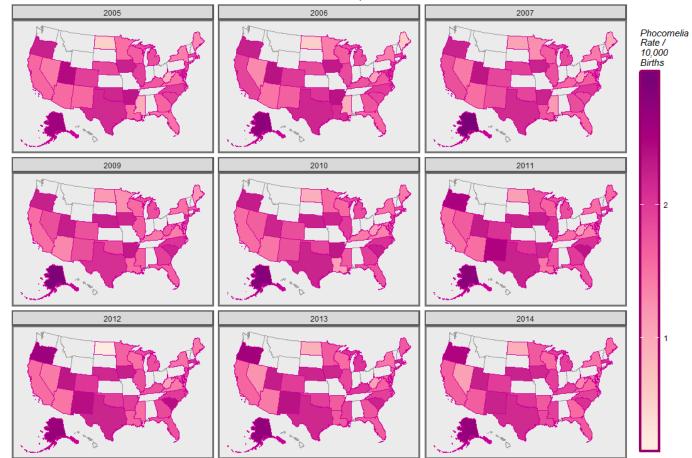
Supplementary Figure 6: LRR Over Time by Quintile Corrected for USA Silent Factor

Supplementary Figure 7: LRR Boxplots by Quintile Corrected for USA Silent Factor


Supplementary Figure 8.: LRR Boxplots by Dichotomized Quintile Corrected for USA Silent Factor

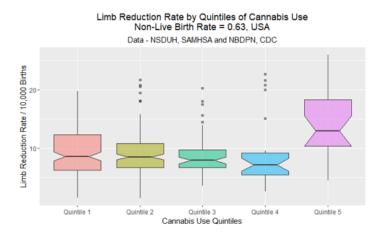
Supplementary Figure 9.: Map-Graphs of LRR Corrected for USA Silent Factor – Raw Data

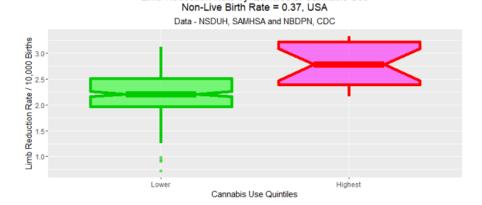
Log (Phocomelia Rate) Over Time - Raw Data Non-Live Birth Rate = 0.37, USA


Data: NBDPN Annual Reports

Supplementary Figure 10.: Map-Graphs of LRR Corrected for USA Silent Factor – Kriged Data

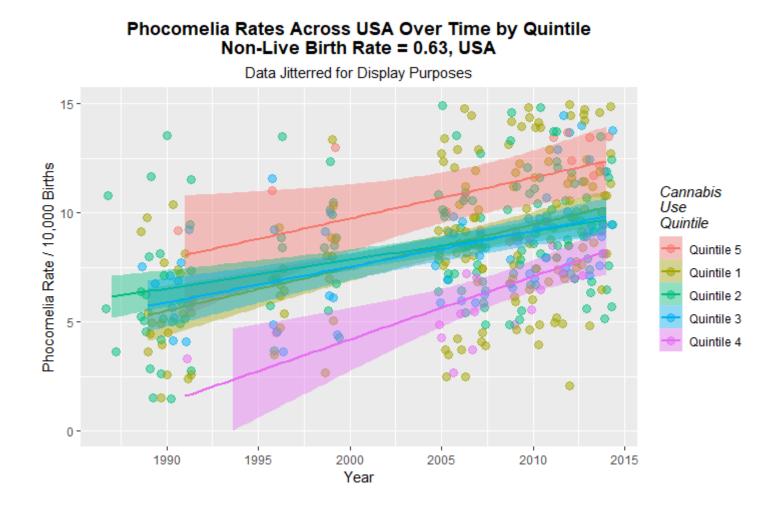
Log (Phocomelia Rate) Over Time after Temporal Kriging Non-Live Birth Rate = 0.37, USA

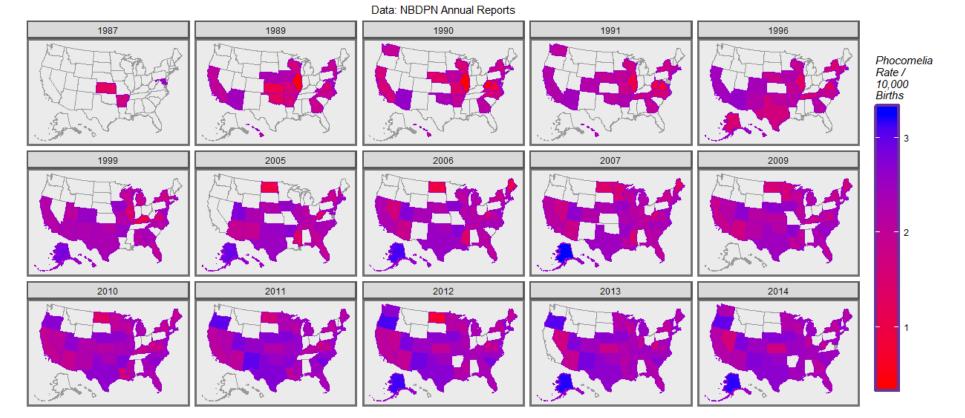

Data: NBDPN Annual Reports



Phocomelia Rates Across USA Over Time Non-Live Birth Rate = 0.63, USA

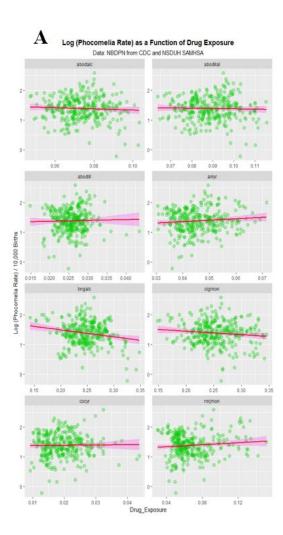
Supplementary Figure 11.: LR Non-Live Birth Rate Over Time – Scaled with International Silent Factor, 63%

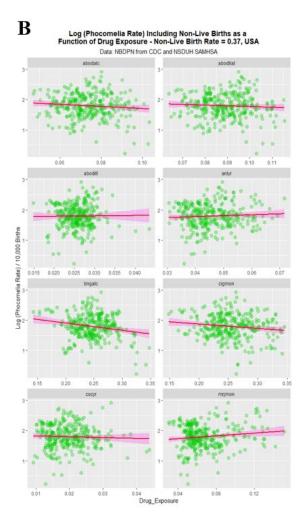


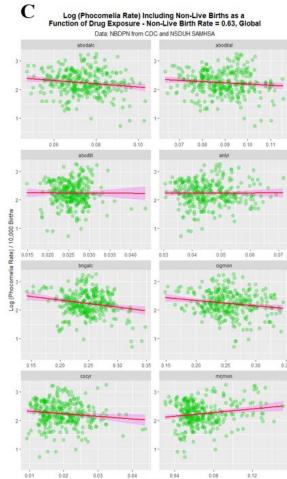

Supplementary Figure 12: LR Non-Live Birth Rate Boxplots – Scaled with International Silent Factor, 63%

Limb Reduction Rate by Quintiles of Cannabis Use

Supplementary Figure 13.: LR Non-Live Birth Rate Over Time by Quintiles – Scaled with International Silent Factor

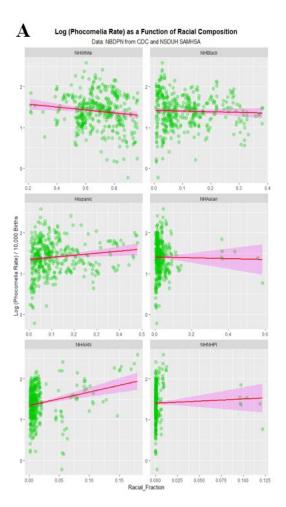

Log (Phocomelia Rate) Over Time - Raw Data

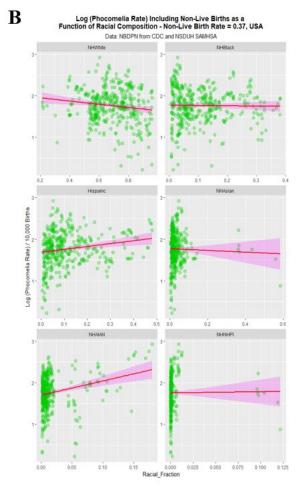

Supplementary Figure 15.: Map-Graphs of LRR Over Time – Adjusted with International Silent Factor – Kriged Data

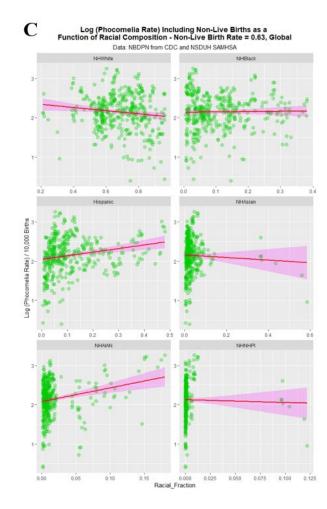

Page | 46

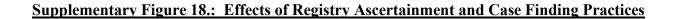
Log (Phocomelia Rate) Over Time after Temporal Kriging Non-Live Birth Rate = 0.63, Global Rate Data: NBDPN Annual Reports 2006 2005 2007 Phocomelia Rate / 10,000 Births 3.0 2009 2010 2011 2.5 2.0 2013 2012 2014 1.5 1.0

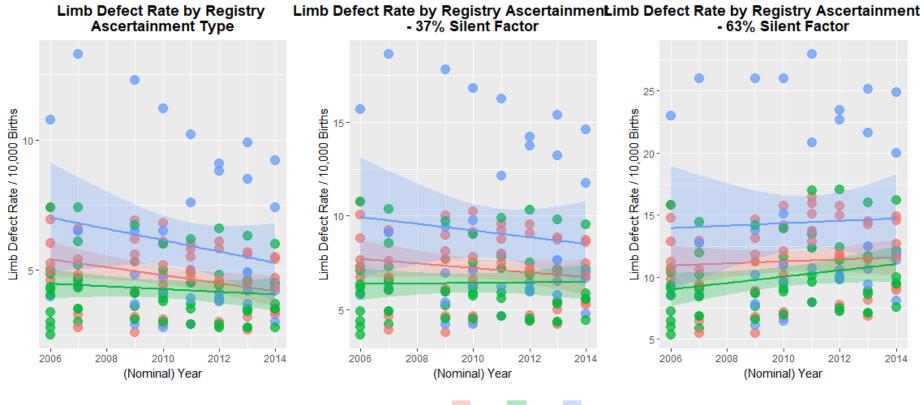
Supplementary Figure 16.: Drug Exposure Plots for Hidden Factors of 0%, 37% and 63%








Drug_Exposure


Supplementary Figure 17.: Ethnic Composition Plots for Hidden Factors of 0%, 37% and 63%

Registry Ascertainment Type 🔶 Active 🔶 Mixed 🔶 Passive