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ABSTRACT 

Differential diagnosis of tuberculosis (TB) and latent TB infection (LTBI) remains a public health priority in high TB burden 
countries. Pulmonary TB is diagnosed by sputum smear microscopy, chest X-rays, and PCR tests for distinct 
Mycobacterium tuberculosis (Mtb) genes. Clinical tests to diagnose LTBI rely on immune cell stimulation in blood plasma 
with TB-specific antigens followed by measurements of interferon-γ concentrations. The latter is an important cytokine 
for cellular immune responses against Mtb in infected lung tissue. Sputum smear microscopy and chest X-rays are not 
sufficiently sensitive while both PCR and interferon-γ release assays are expensive. Alternative biomarkers useful for 
developing diagnostic tests to discern TB disease states are desirable. This study’s objective was to discover biomarkers 
in sputum, assessing the proteomes and microbiomes of 74 TB patients, 46 individuals with LTBI, and 51 negative 
community controls (NCC). Study participants were from the South Omo province, a pastoral region in southern 
Ethiopia. A total of 161 and 115 samples were used to determine the 16S rRNA sequence-based bacterial taxonomies 
and proteomic profiles, respectively. Sputum microbiota did not reveal statistically significant differences in α-diversity 
comparing the three groups. The genus Mycobacterium, representing Mtb, was only identified for the TB group. The 
latter featured reduced abundance of the genus Rothia in comparison to the LTBI and NCC groups. Rothia is a human 
respiratory tract commensal and may be sensitive to the inflammatory milieu caused by TB infection. Proteomic data 
strongly supported innate immune responses against Mtb in subjects with pulmonary TB. Ferritin, an iron storage 
protein released by damaged host cells, was markedly increased in abundance in TB sputum compared to the LTBI and 
NCC groups, along with α-1-acid glycoproteins ORM1 and ORM2. These proteins are acute phase reactants and inhibit 
excessive neutrophil activation. Proteomic data also supported effector roles of neutrophils in the anti-Mtb response 
which was not observed for LTBI cases. Less abundant in sputum of the LTBI group versus the NCC group were two 
immunomodulatory proteins, mitochondrial TSPO and the extracellular ribonuclease T2. If validated, these proteins are 
of interest as diagnostic biomarkers for LTBI. 
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1 INTRODUCTION 

Diagnosis of active tuberculosis (TB) and latent TB infection (LTBI) is important to control the spread of Mycobacterium 
tuberculosis (Mtb), a persistent and increasingly multi-antibiotic drug resistant (MDR) pathogen. TB remains an urgent 
public health issue in thirty high disease burden countries [1]. Eight to twelve million Mtb infection cases per year 
advance to stages with clinical symptoms; 90% of all cases do not cause systems [2]. The primary manifestation is 
pulmonary TB (PTB). Extrapulmonary TB which affects other organs is less prevalent [3]. Severity of TB is influenced by 
intrinsic (genetic) factors [4-7] and extrinsic (environmental) factors such as nutrition and immunological status of the 
host. Helminth infections, and particularly HIV/AIDS are comorbidities prevalent in African countries and increase risk of 
progression to symptomatic TB [3, 8]. Less well investigated has been the role of distinct oral and alveolar niche 
microbiomes as modulators of disease outcome [9, 10]. In PTB, the focus of this study, transmission occurs through 
inhalation of aerosolized bacteria in droplets.  

Certain Mtb strains are more transmissible than others [11], but the reasons for differences in the severity of patient 
outcomes appear to be linked to the immune response. Mtb invades and manipulates the function of alveolar 
macrophages, resulting in the formation of granulomas that consist of differentiated epithelioid and multinucleated 
macrophages, dendritic cells, CD4 and CD8 T-cells as well as B-cells at the infection site [12]. Key cytokines for the 
immune responses against Mtb in the lungs are interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). While IFN-γ is 
mostly produced by T-cells, TNF-α is released by T-cells and macrophages [12]. Neutrophils are recruited to the infection 
site and contribute to local inflammation and pathogen containment. In the chronic phase of TB, a balance between Th1 
and Th17 responses controls bacterial growth and limits the immunopathology [13]. Bacterial pathogen cells largely 
reside in the macrophages of granulomas. The latter act as barriers to bacterial spread to other regions of the lungs. 
Individuals with delayed-type hypersensitivity responses to TB antigens such as ESAT-6 and CFP10 and lack of symptoms 
are deemed to be latently infected. While not contagious [12], they are susceptible to disease activation at a later 
timepoint. IFN-γ release assays (IGRAs) that relies on the stimulation of blood plasma immune cells with TB antigens 
followed by quantitative measurements of secreted IFN-γ are the current gold standard of LTBI diagnosis [14]. Using 
cytokine antibody arrays, we surveyed the blood plasma of TB, LTBI, and negative community controls (NCC) from the 
cohort under study here and identified RANTES as a potential plasma biomarker of LTBI. The chemokine was 
differentially abundant with statistical significance (LTBI vs TB), with and without prior TB antigen stimulation [15].  

Sputum is a great source of TB biomarker discovery due to the low health risk associated with sampling and proximity to 
infection sites. Widely used, but slow or not sufficiently sensitive diagnostic TB tests are acid-fast bacilli smear 
microscopy and isolation of Mtb strains from sputum culture, respectively [16]. The PCR-based test Xpert MTB/RIF assay 
(Cepheid, USA) has higher sensitivity for Mtb detection in smear-positive than in smear-negative patients and also 
detects rifampicin resistance allowing assessment of the antibiotic treatment options [16]. Sputum is also a biomarker 
source to measure inflammation of the lungs derived from other diseases, such as cystic fibrosis [17]. Such biomarkers 
may not be specific for a respiratory pathogen, irritant or intrinsic factor. Quantitative changes of metabolites and 
proteins have been evaluated in clinical samples for the diagnosis, latency and progression of TB or treatment 
responses. Miranda et al. detected sustained levels of ferritin and C-reactive protein (CRP) in patients who remained 
Mtb culture-positive during antibiotic treatment of TB in a Brazilian cohort. These biomarkers indicated persistence of 
lung inflammation as compared to those who became culture-negative [18]. Gopal et al. identified calcium-mobilizing 
calprotectins as mediators of neutrophil-linked inflammation in granuloma-positive PTB patients and suggested that 
silencing their activities may attenuate patient symptoms [19]. Goletti et al. highlighted the need of developing 
predictive biomarkers as surrogate endpoints in clinical trials for new investigational TB drugs [20]. Using highly parallel 
“omics” analysis, a neutrophil-driven blood transcriptional signature induced by IFN-γ was identified for active TB [21], 
consistent with neutrophil infiltration of the infected lungs. Jiang et al. demonstrated reduced CD27 expression in TB 
antigen-targeting CD4 T cells during persistent infection and commented on the role of this T-cell surface biomarker in 
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chronic TB diagnosis [22]. Of particular interest are biomarkers that discern LTBI from healthy controls since there is a 
risk of pathogen reactivation. One study revealed proteomic fingerprints in TB antigen-stimulated plasma of patients 
describing greater than 82% specificity and 89% sensitivity distinguishing TB from LTBI [23]. A proteomic approach was 
reported to discern LTBI from healthy controls at greater than 85% specificity and sensitivity using non-stimulated 
plasma samples [24]. Protein biomarkers suggesting protective effects of vaccines are of high clinical interest. Gopal et 
al. found IL-17 to be involved in protective immunity against a virulent Mtb strain. A role of IL-17 in driving Th1 cell 
responses upon BCG vaccination was suggested [25, 26].  

The impact of oral and respiratory tract microbiomes on human health are in an exploratory phase and difficult to study 
due to the enormous complexity of microbiome-host relationships [27]. Distinct respiratory tract-colonizing bacterial 
taxa may correlate with, cause susceptibility to, or mediate protection from lung diseases, including TB. Causal 
relationships were demonstrated for asthma development in infants, for example [28]. Studies of oral and respiratory 
tract microbiomes in the context of TB patients have been limited to date, as reviewed by Hong et al. [29] and Naidoo et 
al. [30]. Our objectives were to analyze sputum microbiomes and proteomes for an interesting multi-ethnic cohort of 
Ethiopian pastoralists and to interpret the data to gain new insights into the host-pathogen-microbiome crosstalk and to 
identify disease outcome-related biomarkers.  

2 MATERIALS AND METHODS 

2.1 Human Subjects and TB Diagnostic Approaches. Human subject recruitment occurred in a multi-ethnic southern 
Ethiopian region (South Omo province). Covering eight districts, a study named “Systems Biology for Molecular Analysis 
of Tuberculosis in Ethiopia” resulted in informed consent of ~ 2,100 individuals aged 15 years or older at local or regional 
clinics. Some individuals had symptoms consistent with TB. Negative community controls (NCC) often were household 
contacts of those suspected to be infected with TB. Nearly 1,200 sputum and blood samples were collected. Of those, 
nearly 13% were positive using acid-fast bacilli (AFB) smear microscopy or by isolating Mycobacterium tuberculosis 
complex (MTBC) strains on Lowenstein Jensen medium [31]; 50.5% were positive for LTBI employing IFN-γ assays [32]. 
Subjects positive for PTB were offered DOTS treatment [33] at a clinic close to their residences. Information on 
geographic and socio-economic characteristics, ethnic affiliations, exclusion from participation, and other medical data 
were reported recently [31, 32]. The Institutional Review Board at Aklilu Lemma Institute of Pathobiology, Addis Ababa 
University (ALIPB-AAU) under ref. no. ALIPB/IRB/22-B/2012/13, the National Research Ethics Committee of Ethiopia (ref 
no. 3.10/785/07), and the J. Craig Venter Institute (JCVI) IRB (ref. no. 2014-200) approved the human subject protocol. 
The LTBI sub-group was later distinguished from NCC subjects based on data from QuantiFERON-TB Gold In-Tube test 
(GFT-GIT) assays. We set the positivity threshold for LTBI at the recommended ≥ 0.35 IU/ml [32].  

2.2 Sputum Sample Collection and Processing. Study participants were instructed to cough up sputum. It was collected 
in pre-labeled cups. Where possible, subjects completed three cycles of sputum expectoration using 3-5% hypertonic 
sodium chloride. The single-timepoint specimens were combined and processed as described previously [34]. Briefly, 
collected sputum aliquots for proteome and microbiome analysis were disinfected with SDS buffer (1% SDS, 10 mM Na-
EDTA, 50 mM DTT, 0.03% Tween-20, 50 mM Tris/Tris−HCl, pH 8.0) and centrifuged at 16, 000 x g to recover the 
supernatants. SDS-denatured and heat-treated lysates (85°C) were shipped to the site of “omics” analyses (JCVI) and 
stored long-term at −80°C prior to analyte extraction. Protein samples were run in SDS-PAGE gels (4-12%T) to estimate 
total protein concentrations. Aliquots of 150 µg protein extract were subjected to S-Trap Ultra-Fast sample preparation 
[34], digesting proteins with trypsin at a 50:1 mass ratio. Peptides were desalted prior to LC-MS/MS analysis using the 
spinnable StageTip protocol [35]. rDNA extraction and analysis are described below.  

2.3 Shotgun proteomics. An Ultimate 3000-nano liquid chromatography (LC) system coupled to a Q-Exactive mass 
spectrometer (both units from Thermo Scientific) was used for LC-MS/MS analysis. The workflow and data acquisition 
methods have been described comprehensively [36]. Briefly, peptide digestion products of approximately 10 µg were 
separated over a 150 min gradient from 2% to 80% acetonitrile (120 min to 35%, 10 min to 80%), with 0.1% formic acid 
in buffers A and B. The flow rate using an in-house packed column (75 µm x 15 cm, 3.0 µm ReproSil-Pur C18-AQ media) 
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was 200 nl/min. MS survey scans were acquired at a resolution of 70,000 over a mass range of m/z 350-1,800. During 
each cycle in a data-dependent acquisition mode, the ten most intense ions were subjected to high-energy collisional 
dissociation (HCD) applying a normalized collision energy of 27%. MS/MS scans were performed at a resolution of 
17,500. Two technical replicate LC-MS/MS runs were performed per sample, and the MS data were combined in the 
MaxQuant analysis process.  

2.4 Identification and Quantitation of Proteins. The MS raw data were processed using the Proteome Discoverer 
platform (version 1.4, Thermo Scientific) and the Sequest HT algorithm. The database contained protein sequences from 
the Mtb strain ATCC 25618/H37Rv (7,955 entries) and human proteins (20,195 sequence entries; reviewed sequences 
only; version 2015_06). The search parameters included two missed tryptic cleavages, oxidation (M), protein N-terminal 
acetylation and deamidation (N, Q) as variable modifications, and carbamidomethylation (C) as a fixed modification. 
Minimum peptide length was seven amino acids. The MS and MS/MS ion tolerances were set at 10 ppm and 0.02 Da, 
respectively. The false discovery rate (FDR) was estimated employing the integrated Percolator tool. Only protein hits 
identified with a 1% FDR threshold were accepted. For protein quantification, the MaxQuant and Andromeda software 
suite (version 1.4.2.0) was used, accepting most default settings provided in the software tool [37]. Label-free 
quantification (LFQ) generates relative protein abundance data from integrated MS1 peak areas of the high-resolution 
MS scans [38]. Only proteins quantified by at least one unique peptide were used for analysis. LFQ values were log (base 
2) transformed, and then imputed with respect to missing values. Clustering and correlation analyses were performed 
using functions embedded in the Perseus (version 1.5.0.15) software. The LC-MS/MS data were deposited in 
ProteomeXchange via the PRIDE partner repository under the dataset identifier is PXD012412.  

2.5 16S rDNA Sequencing. Aliquots of 300 µl of the SDS-denatured sputum lysates were subjected to phenol-chloroform 
extraction to isolate total DNA. Ethanol-precipitated enriched DNA extracts were subjected to PCR amplification using 
515F and 806R forward and reverse primers, respectively, to amplify the V4 region of microbial DNA in the extracts. The 
PCR amplification method was previously described [39]. A two-step amplification was performed to reduce the risk of 
non-specific binding when using adapters/sequencing primers of more than 100 base pairs (bp). For 167 individual 
specimens, sufficient quantities of the V4 sequence region (254 bp) were amplified as visualized by ethidium bromide 
staining in agarose gels. Samples for DNA library preparation were obtained by excising bands of approximately 300 bp 
and normalizing the DNA quantity per sample by quantifying with Quanti-iTTM PicoGreen® (Life Technologies, USA). 
Amplicons were pooled at 100 ng each. A positive control (Escherichia coli DNA extract) was subjected to the same 
amplification and purification protocol. A standard Illumina sequencing-based library preparation and sequencing 
protocol (MiSeq Reagent Kit v3, 600 cycles) was used as described [39]. The library dilution had 15% PhiX as an internal 
control at a 4 pM concentration. 

2.6 Processing and Filtering of 16S Sequence Reads. We generated operational taxonomic units (OTUs) de novo from 
raw Illumina 16S rDNA sequence reads using the UPARSE pipeline (Edgar 2013). Methods for trimming of the adapter 
sequences, barcodes and primers, the elimination of sequences of low quality, the de-replication step and sequence 
read abundance determinations were analogous to those applied previously [40]. Chimera filtering of the sequences 
occurred during the clustering step. We used the Wang classifier, bootstrapping using 100 iterations and mothur to 
report full taxonomies for only those sequences where 80 or more of the 100 iterations were the same (cutoff=80).  The 
taxonomies were assigned to OTUs using mothur [41] with the version 123 of the SILVA 16S ribosomal RNA database as 
the reference [42]. From the tables of OTUs with corresponding taxonomy assignments, we removed likely non-
informative OTUs (rare OTUs and taxa strongly affected by MiSeq sequencing errors). Unbiased metadata-independent 
filtering was applied at each taxonomy level by eliminating features that did not pass the selected criteria (< 2000 reads 
and OTUs present in less than 10 samples), as described previously [40]. 

2.7 Identification of Phylogenetic Groups for Gut and Oral Microbiota. The phyloseq package version 1.16.2 in R 
package version 3.2.3 was used for the microbiome census data analysis [43]. The plot_richness function was used to 
create a plot of alpha diversity index estimates for each sample. The differences in microbial richness (α-diversity) were 
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evaluated using Wilcoxon t-test. The ordination analysis was performed using the non-metric multi-dimensional scaling 
(NMDS) with the Bray–Curtis dissimilarity matrix [44]. The data output was used for the generation of a heatmap using 
the plot_heatmap function including a side bar where clinical variables associated with each sample were assigned to 
look for specific associations [43]. 

2.8 Statistical Analyses of Microbiome and Proteomic Data. To detect differential abundances in microbiota at a genus 
or species level the DESeq2 package version 1.12.3 in R was used. Phyloseq data are converted into a DESeq2 object 
using the function phyloseq_to_deseq2 function. DESeq2 [45] is a method for the differential analysis of count data that 
uses shrinkage estimation for dispersions and fold changes to improve both stability and interpretability of the 
estimates. The DESeq2 test uses a negative binomial model rather than simple proportion-based normalization or 
rarefaction to control for different sequencing depths, which may increase the power and also lower the false positive 
detection rate [46]. Default options of DESeq2 were used for multiple testing adjustment applying the Benjamini-
Hochberg method [47]. To detect differential abundances in proteomic datasets, we used the Welch t-test, an unequal 
variance two-sample location test embedded in the Perseus software tool. The P-value significance threshold was set at 
≤ 0.01. To identify enriched biological pathways from differentially abundant proteins (TB vs LTBI), we employed GO 
term analysis (http://geneontology.org/). To determine the enriched expression of proteins in tissues or anatomical 
locations, we reviewed relevant information in the Protein Atlas database (https://proteinatlas.org/). 

2.9 Western Blotting. Approximately 10 µl of the sputum lysates were run in 4-12%T SDS-PAGE gels, electroblotted onto 
PVDF membranes (1.5h at 150 V), and incubated with antibody dilutions separated by intermittent PBS/0.1% Tween-20 
wash steps as reported earlier [48]. A primary anti-human α-1-acid glycoprotein (α1AGP) polyclonal IgG fraction 
antibody developed in rabbit (Sigma-Aldrich; A0534) was used at a 1:2,000 dilution (overnight at 4°C). A secondary goat 
anti-rabbit IgG-HRP conjugate (Sta. Cruz Biotech; sc-2004) was used at a 1:10,000 dilution (2 h at 20°C). HRP-catalyzed 
color development with 3,3'-diaminobenzidine (DAB) required circa 5 minutes of incubation at 20°C.  

3 RESULTS 

3.1 Human subjects. Inhabitants of the South Omo province in southern Ethiopia are highly diverse with respect to 
ethnicities, cultures, and languages. Many of its people have a traditional lifestyle as cattle herders or in subsistence 
agriculture with little access to medical care. A subset of the nearly 2,000 participants in a molecular epidemiological 
study of TB [32] were used here to analyze sputum proteomes and microbiomes. The major ethnic groups were Hamar, 
Daasanech, Bena, Tsemay, Selamago, Maale, Ari, and Nyangatom. The prevalence of TB and LTBI were of interest given 
the diverse inhabitants, lack of urbanization, and increases in tourism. We reported on the MTBC lineage diversity for 
TB-positive subjects, the low prevalence of isolates resistant to first-line antibiotic drugs, and the high prevalence of LTBI 
[15, 31, 32]. Human subject ages ranged from 12 to 70 (mean = 38.5) and 46% were female. We analyzed 115 sputum 
samples using proteomics, and 161 samples using microbiome surveys. The datasets were categorized into the PTB, LTBI 
and NCC groups as specified in the Methods and Materials section and as denoted in Supplementary File S1.  

3.2 Sputum proteome. Collapsing identifications regardless of disease group, 2,039 and 207 non-redundant human and 
Mtb proteins were obtained, respectively. The numbers pertain to those proteins represented by at least 2 unique 
peptides (Supplementary File S2). Mycobacterial proteins are not discussed in this report. LC-MS/MS technical replicates 
had higher correlation values for protein abundance than datasets where different biological samples were compared 
(R-values of 0.93-0.98 vs 0.57-0.76, as shown in Supplementary File S3). This was indicative of good quantitative 
accuracy achieved by the proteomic workflow and computational analysis. To assess the protein contributions from 
upper respiratory tract (saliva) and lower respiratory tract (expectorated sputum), we compared the data with three 
other studies, two of those for saliva [49-51]. The Venn diagram in Fig. 1 displays protein identification (ID) overlaps 
among all datasets. As expected, protein ID overlaps of our study and the one by Cao et al. on a sputum proteome [49] 
was highest (~87%). We conclude that sputum proteomes contain proteins derived from both upper and lower 
respiratory tract origin. Examples of proteins present in our data that have been reported to be enriched in saliva and 
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sputum are the basic salivary proline-rich protein 3 (PRB3) [52] and the pulmonary surfactant-associated protein A1 
(SFTPA1) [53], respectively. 

3.3 Sputum proteomics reveals neutrophil infiltration and acute phase responses in the respiratory tract of PTB 
subjects. We selected datasets with at least 150 protein IDs per sample and protein IDs detected in at least nine 
subjects; 75 datasets were retained for quantification and clustering analyses, each with 432 distinct proteins 
(Supplementary File S2). Pearson Correlation hierarchical clustering (HCPC) was used to assess whether gender-specific 
differential analyses were warranted. While HCPC did not show significant gender-specific clustering, clusters were 
observed based on presence of infection (PTB) (Supplementary File S4). Next, the (gender-integrated) data were 
submitted to a Principal Component Analysis (PCA). PTB datasets largely clustered separately, although some overlap 
with the LTBI and NCC groups was observed (Fig. 2). Lack of separation between LTBI and NCC datasets in the PCA 
suggested that latency of TB does not strongly influence the sputum proteome compared to absence of infection. 
Differential sputum proteome analysis using unequal variance Welsh t-tests [54] resulted in 103 proteins with ≥ 2-fold 
changes (Benjamini-Hochberg method corrected P-values < 0.01; PTB versus LTBI data). Twelve proteins are listed in 
Table 1. All 103 proteins are displayed in the Volcano Plot of Fig. 3. Detailed data are presented in Supplementary File 
S5. Protein functions and cell-specific expression were evidence of immune responses towards Mtb and inflammation in 
the PTB group alone: 16 and 14 of the 47 proteins increased in the PTB group (vs LTBI) are acute phase reactants or are 
highly expressed in leukocytes, respectively. The Protein Atlas tissue expression profiles supported that the 14 proteins 
were mostly released from neutrophils. All of them are expressed in neutrophils, and four of them had consensus data 
for unique presence in neutrophil granules or membranes (Supplementary File S5). Other differentially abundant 
proteins have oxidative stress response functions (superoxide dismutase 2, apolipoprotein D, catalase, and 
mitochondrial glutathione reductase). GO term biological process enrichment (Fig. 4) and protein network analysis in 
Cytoscape (Fig. 5) were consistent with leukocyte (primarily neutrophil)-mediated immune and acute phase response 
pathways. Neutrophils generate inflammation and kill pathogens using various mechanisms, while acute phase and 
oxidative stress responses limit the consequences of host cell collateral damage. Of the 56 proteins decreased in the PTB 
datasets in comparison to the LTBI datasets half are expressed, often distinctly enriched, in esophageal and oral mucosal 
tissues (Table 1; Supplementary File S5). Four of the proteins are secreted by salivary glands. Mucosal cells express and 
release specialized proteins important to form a barrier to the external environment. Protein network analysis and 
enriched GO term categories supported that relative quantitative increases of the 56 proteins (LTBI vs PTB) are 
associated with processes reflecting normal physiology of the respiratory tract squamous epithelium such as 
keratinocyte differentiation, keratinization, peptide cross-linking, stress responses, and epidermal development  (Figs. 4 
and 5). Given that inflammatory cells and proteins are released into sputum during anti-Mtb responses, those that 
represent normal squamous epithelial secretion and cell shedding are reduced in abundance, relatively to the LTBI 
group. 

3.4 α-1-Acid glycoproteins. Both complement system activation and negative regulation of endopeptidase activities are 
elements of the acute phase response. Proteins with these functions were increased in the PTB group (Figs. 3 and 4). In 
addition to ferritin, two isoforms of α-1-acid glycoprotein (α1-AGP), also named ORM1 and ORM2, had greater than 4.4-
fold increases in the PTB group while no differences were measured comparing LTBI and NCC groups (Fig. 6). α1-AGP is 
released by alveolar macrophages during pulmonary inflammation [55], in addition to its secretion by hepatocytes into 
blood plasma. Western Blots for 18 sputum samples revealed a wide range of Mr values of α1-AGP and made proteomic 
data validation in a defined Mr range difficult (Supplementary File S6). But α1-AGP bands in PTB samples had overall 
higher staining intensities than LTBI and NCC samples. 

3.5 Sputum proteomic analyses reveal a few abundance differences comparing LTBI and NCC groups. Five proteins 
were differentially abundant comparing the IGRA-positive and NCC datasets: lamin B1 (LMNB1), nucleobindin-1 
(NUCB1), ribonuclease T2 (RNASET2), lactate dehydrogenase B chain (LDHB), and translocator protein (TSPO). Detailed 
data are provided in Supplementary File S5. These proteins had at least two-fold decreases for the LTBI group compared 
to the NCC group (Fig. 7) and may be biomarkers in sputum to discern the latent disease stage from healthy controls. Of 
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course, if inaccuracies in IFN-γ release data and LTBI assignments occurred, differential analyses of sputum proteome 
data (LTBI vs NCC) are adversely affected. 

3.6 Microbiome comparisons reveal altered abundances for Rothia and Haemophilus in the comparison of PTB and 
LTBI cohorts. Using the V4 region of 16S rRNA to classify sputum microbial taxa, we determined Streptococcus to be the 
most abundant genus (Fig. 8) and noted the absence of α-diversity differences at the level of genera (Supplementary File 
S7) among the cohorts. There was no separation of the oral microbial profiles of the three cohorts based on PCA data 
(Supplementary File S8). Mycobacterium, as a genus, was detected only for individuals in the PTB group (adjusted P-
value of 3 x 10-11, PTB vs LTBI). This finding generated confidence in the accuracy of the V4-region 16S rRNA sequence 
analyses (Supplementary File S9). We identified significant abundance differences for the taxa Rothia and Haemophilus. 
The former genus had a three-fold decrease with an adjusted P-value of 8.9 x 10-8; PTB vs LTBI (Fig. 9). The latter genus 
had a 2.2-fold increase with an adjusted P-value of 0.029; PTB vs LTBI. Interestingly, Rothia and Haemophilus were also 
the on average most abundant genera for their respective phyla, Actinobacteria and Proteobacteria (Fig. 8). We 
identified 13 additional genera with statistically significant differences (adjusted P-value < 0.05), but the fold changes 
were either lower than 1.5 or the genus had a low number of sequence assignments (Supplementary File S10). 

4 DISCUSSION 

4.1 Neutrophil effectors and APR proteins are sputum biomarkers for PTB. We report quantitative differences for 
proteins and microbial taxa derived from sputum samples comparing a PTB cohort from South Omo with asymptomatic 
cohorts, one of which was designated as LTBI based on our data from a WHO-approved IGRA [14]. The study followed 
investigations of lineage analysis of MTBC isolates derived from individuals with TB as well as cohort and immunological 
characterizations of the LTBI group from this multi-ethnic pastoralist region of Ethiopia [15, 31, 32, 61]. A PCA revealed 
good separation of PTB proteome profiles from those of the other groups. LTBI and NCC clusters were not discernable. 
More than 100 differentially abundant proteins (PTB vs LTBI) allowed insights into immune responses linked to lung 
infection of individuals diagnosed with PTB (Figs. 3, 4, and 5). Our interpretation of functions and networks of such 
proteins is highly consistent with the infiltration of neutrophils (and perhaps other leukocytes) in the respiratory tract 
and the release of antimicrobial effectors into sputum for subjects with PTB. Examples of such effectors are 
peptidoglycan recognition protein 1, the collagenase MMP8, and myeloperoxidase (MPO). Proteins part of the 
complement system and/or APR were also increased in abundance in the PTB cohort. Other innate immune response 
pathways were apparently activated to eliminate the pathogen and limit or resolve host cell damage. To counteract the 
inflammation-generating effects of immune effectors, three serpins were elevated in abundance in the PTB group 
compared to the LTBI group: serpin B1, which inhibits neutrophil proteases and modulates innate immunity [62, 63]; 
serpin B10, which appears to control TNF-α-induced cell death [64]; and serpin G, which inhibits complement activity 
and other pro-inflammatory signals [65]. Oxidative stress response enzymes including catalase, SOD2, and ApoD were 
also increased in the PTB group, suggesting a role in controlling damage by ROS. ROS levels rise when leukocytes 
degranulate and activate NADPH oxidase (subunit CYBB was increased in abundance in the PTB group) and MPO. High 
density lipoproteins harboring ApoD and ApoB (also increased in abundance in the PTB group) are known to suppress 
TNF-α release from Mtb-infected macrophages [66]. Two APR proteins that scavenge heme and iron extracellularly 
(hemopexin and ferritin, respectively) were elevated in abundance in sputum of subjects with PTB compared to LTBI. 
Sequestering iron/heme limits the growth of pathogens in infected tissues [67]. Mtb is able to enter a persistent state in 
necrotic granulomas under iron sequestration challenges [68], thus enabling long-term survival in the host. Given that 
sputum proteome profiles of the LTBI group were much more similar to the NCC group than to the PTB group, the host 
defense and inflammation-associated pathways were apparently absent, or immeasurably small, during latent infection. 
The systemic role of neutrophils in the response to PTB was linked to a neutrophil-driven IFN-γ inducible transcriptional 
signature in whole blood that correlated with disease severity [21]. Whether persistent neutrophil activation is 
detrimental to clinical outcomes of chronic TB manifestations is a matter of debate [69]. Since TB severity was not 
assessed in our work, we were unable to correlate the APR and neutrophil biomarkers with the severity of infection.  
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4.2 Proteins of epithelial and salivary gland origin are decreased in abundance in PTB vs LTBI subjects. Most of the 56 
proteins decreased in abundance in the PTB group compared to the LTBI group are enriched in squamous epithelial cells. 
Supported by tissue-specific expression data using the Protein Atlas Resource [60], high expression is reported for 
esophagus, the oral mucosa and salivary glands. Since label-free LC-MS/MS quantification calculates protein 
contributions relative to total proteome, we argue that decreased abundances of these proteins in sputum of PTB 
patients is a consequence of infiltration, degranulation and lysis of immune cells along with APR proteins that are 
secreted via the microvasculature into the airways. It was reported that viral respiratory infections induce mucin 
secretion to enable trapping the viruses in mucus [70]. We do not see an analogy to Mtb infection. Two mucins secreted 
into the respiratory tract (MUC7 and MUC5AC) were actually less abundant in PTB compared to LTBI sputum profiles. 
Psoriasin (S100-A7), a squamous epithelial protein also decreased in PTB datasets has antimicrobial and neutrophil-
degranulating functions in the upper airways [71]. Thus, our data do not support a role of S100-A7 in the anti-Mtb 
response. We speculate that Mtb infection does not trigger host defenses in the mucosa of the upper airways, in line 
with the finding that upper respiratory tract TB is a rare clinical event [72].  

4.3 α-1-Acid glycoproteins are strong sputum biomarkers for PTB. APR proteins were invariably higher in abundance in 
sputum of PTB compared to LTBI subjects. APR protein increases were previously linked to Mtb infections and a 
biomarker role: serum α-1-antitrypsin in the context of TB diagnosis [73]; serum CRP and ferritin as biomarkers of 
disease persistence during anti-TB therapy [18]. Ferritin concentrations were reported to be increased in acute 
inflammatory lung injury in order to bind extracellular and intracellular iron to reduce host susceptibility to oxidative 
damage [74]. Ferritin was also associated with leakage from damaged cells [75]. In addition to ferritin, we found two α1-
AGP proteins (ORM1 and ORM2) to be elevated in abundance in PTB patients. Earlier, α1-AGP was described as induced 
in alveolar macrophages upon lung inflammation, with a 4-fold increased secretion in patients afflicted by interstitial 
lung injuries [55]. A murine study identified foamy macrophages located in pneumonic areas of Mtb-infected lungs as an 
important source of α1-AGP; administration of antibodies neutralizing this glycoprotein led to lower bacillary loads and 
less tissue damage, suggesting an adverse effect of α1-AGP during disease progression [76]. We surmise that sputum α1-
AGPs and ferritin are surrogate biomarkers of PTB and also influence the outcome of Mtb infections. The contribution of 
α1-AGPs to the immunopathology of PTB needs to be evaluated further in disease models. Their roles as sensitive and 
specific protein biomarkers in sputum, in the context of early diagnosis or disease progression, requires further 
validation by surveying larger cohorts. 

4.4 LTBI biomarker candidates. Five proteins were differentially abundant comparing LTBI and NCC cohorts (P-value < 
0.01), all of them less abundant in the sputum of the LTBI group. The proteins may be biomarker candidates for LTBI 
diagnosis complementary to IGRAs. IGRA specificity as well as negative and positive predictive values were reported to 
be high for LTBI diagnosis [77]. However, the test kits are expensive and moderate performances were noted for their 
sensitivity (55% - 70%) to diagnose latent disease in children [78]. With respect to the proteins identified by our 
differential proteomic analysis, only the translocator protein TSPO was previously linked to the disease pathology and a 
biomarker function to monitor TB in situ [79]. Radioiodinated DPA-713, a TSPO synthetic ligand, was used to visualize 
anti-TB host responses in vivo. Strong TSPO and CD68 co-staining was observed for macrophages in granulomas [79]. 
TSPO, a protein enriched in mitochondrial outer membranes [80], is also endogenously expressed in bronchoalveolar 
epithelial cells [81], mediates cholesterol translocation and was physiologically linked to neuroinflammation by 
influencing MAPK pathways and the NLRP3 inflammasome [80]. Interestingly, Mtb activates the NLRP3 inflammasome 
via the ESX-1 secretion system [82]. TSPO was not differentially abundant in our PTB vs LTBI cohort comparisons. We 
hypothesize that low abundance of TSPO in macrophages alters the crosstalk of pathogen and immune cells in infected 
lungs, but this does not explain why there would be quantitative differences for this protein between LTBI and NCC 
cohorts. LDHB, another protein decreased in the LTBI vs NCC cohort, may also influence anti-Mtb immune responses. 
The mitochondrial enzyme’s product, lactate, was reported to promote the switch of CD4 T cells to an IL-17 T cell subset 
and reduce CD8 T cell cytolytic capacity [83]. A third protein was ribonuclease T2, part of a family of ribonucleases that 
have immunomodulatory and antimicrobial properties [84].   
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4.5 Rothia, a respiratory tract microbial biomarker for PTB? We conducted the largest microbiome profiling effort 
related to TB and the use of respiratory secretions to date. While there were no differences in overall α- or β-diversity in 
sputum microbiomes among the cohorts, we identified statistically significant differences in abundance for the genera 
Rothia and Haemophilus, two oral microbiome community members, in the comparison of PTB and LTBI datasets. Rothia 
mucilaginosa was recently reported to produce the siderophore enterobactin in the human oral niche [85]. Mtb is also a 
producer of siderophores (mycobactins) released to acquire iron from the host in infected lung tissue [86]. Enhanced 
iron sequestration during an active host inflammatory response in PTB possibly diminishes the fitness and growth of 
Rothia species in the upper respiratory tract. Rothia is a ubiquitous commensal organism of the oral cavity [40, 85]. One 
may speculate that the genus Haemophilus increased in abundance in respiratory secretions of PTB compared to LTBI 
subjects due to better adaptation to inflammatory conditions caused by infection with Mtb. The pathogen Haemophilus 
influenzae indeed adapts to the neutrophil-rich milieu in the inflamed airways of asthmatic patients [87]. Our 16S rRNA 
analysis did not allow species-level resolution for Haemophilus. Other oral microbiome studies surveying TB patient and 
control cohorts did not report statistically significant differences for the aforementioned genera [30]. Only one study 
analyzed close to 100 specimens [10] and associated sputum microbiota with different treatment outcomes for TB. LTBI 
subjects were not included. The most significant genus-level change was Prevotella, an anaerobic bacterium with higher 
abundance in healthy controls compared to subjects with TB [10]. A recent intriguing discovery was the role of 
Helicobacter colonization of the gut in IFN-γ-dependent reduced susceptibility to active TB progression, observed in a 
primate study that may translate to Helicobacter colonization in humans [88]. The production of metabolites by 
anaerobic respiratory bacteria was discussed as a potential modulatory influence on risk of TB progression [30]. Given 
the high compositional variability of oral and gut microbiota for different socio-economic and geographic settings, such 
comparisons remain challenging. Our study is certainly influenced by diverse diets of the many ethnic groups enrolled in 
the study and also the occurrence of malnutrition. Further studies will be needed to determine the functional relevance 
of Rothia and Haemophilus abundance changes in the context of PTB and inflammation of the human airways. 
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7 FIGURE CAPTIONS 

Figure 1. Venn diagram with protein identifications derived from two studies of saliva proteomes and two studies of 
sputum proteomes. The Cao study included analysis of samples associated with asthma. The Wu study included samples 
associated with squamous epithelial cell carcinoma of the oral cavity. In all studies, at least 800 proteins were identified. 

Figure 2. Principle component analysis (PCA) of sputum proteomes for PTB (red), LTBI (blue) and negative community 
controls (NCC, green). Two principle components explaining 15.8% and 14.1% of the variance among the groups are 
displayed. The data represent quantities of 432 human proteins. No separation of clusters is observed for the LTBI and 
NCC subjects while PTB datasets cluster separately. 

Figure 3. Volcano plot depicting protein abundance differences for the comparison of PTB and LTBI groups. Data are 
derived from sputum shotgun proteomic analyses. The unequal variance Welch t-test with multiple testing corrections 
was used in the Perseus software, and 103 proteins (marked with UniProt short names) had differences with a P-value < 
0.01 and a fold change > 2. Red and blue dots denote proteins increased and decreased in the PTB group, respectively.  

Figure 4. Gene Ontology (GO) biological process enrichments based on differentially abundant proteins (PTB vs. LTBI). 
The top-10 enriched terms and their significances (P-values) are plotted. The numbers placed next to a bar indicate the 
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proteins in our datasets belonging to that category. GO term analysis details are included in a worksheet of a 
Supplemental Dataset (File S5). 

Figure 5. Protein network analysis and functional enrichment clusters. The network was built from 103 differentially 
abundant proteins comparing PTB and LTBI sample groups as input data and the String App in Cytoscape software. The 
score cut-off for interaction confidence was set to 0.4. Color coding is in accordance with the fold changes. Diamond 
shape depicts proteins associated with a response to stimulus. Protein clusters were annotated based on enrichment, a 
function embedded in Cytoscape.   

Figure 6. Quantitative differences for the α-1-acid glycoproteins ORM1 and ORM2 in box plots comparing datasets for 
PTB vs LTBI as well as PTB vs NCC. The P-values were highly significant indicating the important role for the acute phase 
reactants in modulating the PTB pathology. LFQ values are based on summed MS1 peak integrations for all peptides 
assigned to protein of origin. 

Figure 7. Volcano plot depicting protein abundance differences comparing the LTBI and NCC groups. A P-value < 0.01 
and a fold change > 2 were applied to identify the differentially abundant proteins (each denoted in green and marked 
with the UniProt short name).   

Figure 8. Microbial taxonomy profiling performed at the phylum level denoting the differentially abundant genera based 
on sequence analysis of the V4 region of 16S bacterial rRNA on a MiSeq platform. The phyla are shown denoting the 
most abundant genera for each phylum by color codes. Streptococcus is the most abundant genus of Firmicutes and 
dominant in oral microbiota. Among Actinobacteria, Rothia and Atopobium were dominant with variations in abundance 
among LTBI, NCC and PTB datasets. Mycobacterium, also an Actinobacterium, revealed low abundance so that it is not 
visualized in the segmented bars for this phylum. Haemophilus was the most abundant genus, followed by Neisseria, in 
the phylum Proteobacteria. 

Figure 9. Quantitative differences for Rothia displayed in box plots comparing PTB datasets with those of LTBI and NCC 
groups. *** P-values were highly significant in both comparisons (< 0.001). 

8 TABLES 

 Table 1. Subset of differentially abundant proteins (PTB vs LTBI). 

Protein name1 Protein SN  
2 

Fold-change Welch test 3, -
log10 P-value  

Extracellular or cellular 
functions 4 

Body fluid and tissue 
enrichment 5 

Ferritin FTH1 5.39 6.60 Acute phase response NA 

α-1-Acid glycoprotein 1 ORM1 5.89 5.06 Acute phase response Plasma, *alveolar macs 
[55] 

α-1-Acid glycoprotein 2 ORM2 4.46 4.59 Acute phase response Plasma, *alveolar macs 
[55] 

Neutrophil collagenase MMP8 4.19 4.74 ECM degradation *Neutrophils [56] 

Peptidoglycan recognition 
protein 1 

PGLYRP1 3.52 3.34 Bactericidal protein 
recognizing cell wall 

*Neutrophils [57] 

C-reactive protein CRP 4.03 4.47 Acute phase response Plasma [58] 

Protein S100-A7 S100A7 0.10 7.96 Antimicrobial, 
Keratinization  

Esophagus,  
oral mucosa, tons. 

14-3-3 protein sigma SFN 0.11 6.59 Keratinization, 
cell proliferation 

Esophagus,  
oral mucosa, tons. 

Cornulin CRNN 0.16 5.48 Keratinization,  
Cell proliferation  

Esophagus,  
oral mucosa, tons. 
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Aldehyde dehydrogenase 
3A 

ALDH3A1 0.26 4.99 Detoxification,  
Cell proliferation  

Esophagus,  
oral mucosa, tons. 

Mucin-7 MUC7 0.20 3.45 Cell-protective in upper 
respiratory tract cells 

Salivary glands [59] 

Small proline-rich protein 
3 

SPRR3 0.08 4.95 Keratinization Esophagus,  
oral mucosa, tons. 

Twelve proteins with high statistical significance comparing abundances in PTB vs LTBI proteome datasets and a fold change of >3.5 
(Welch test). 1common protein name; 2short name as listed in UniProt database; 3negative logarithmic P-value; 4functions derived 
from UniProt database entries or literature; 5enrichment in human body fluid, cell type or tissue (if no reference listed, data from 
Protein Atlas database [60]. 

9 SUPPLEMENTARY MATERIAL (list with headlines) 

Supplementary File S1 (Table). Human subject cohort with disease category, gender, ethnic group identity from the 
geographic region of South Omo in Ethiopia.    

Supplementary File S2 (Dataset). All protein identifications from LC-MS/MS analysis, with human and Mycobacterium 
tuberculosis protein IDs listed separately, and the MaxQuant data matrix for LFQ-quantified human proteins. 

Supplementary File S3 (Figure). Display of correlation coefficients (R) for LC-MS/MS proteomes, technical replicates and 
biologically distinct samples (based on 432 quantified and quality-filtered sputum proteins).  

Supplementary File S4 (Figure).  Pearson Correlation hierarchical clustering applied to 75 sputum proteomic datasets. 

Supplementary File S5 (Dataset). Analysis of fold changes and statistical differences of proteins using MaxQuant output 
for 75 samples comparing PTB vs LTBI datasets with associated GO term enriched biological processes and comparing 
LTBI vs NCC datasets.  

Supplementary File S6 (Figure). Western blots of α-1-acid glycoprotein in sputum analyzing seven TB, six LTBI and five 
NCC samples.  

Supplementary File S7 (Figure). α-Diversity analysis of the sputum microbiomes using Chao1 and Shannon index 
calculations. 

Supplementary File S8 (Figure). Principle component analysis of sputum microbiome datasets for pulmonary TB (PTB), 
latently infected, and negative community controls. 

Supplementary File S9 (Figure). 16S rRNA analysis reveals presence of genus Mycobacterium in only PTB specimens 
supporting detectable levels of M. tuberculosis. 

Supplementary File S10 (Table). Differentially abundant taxa from 16S rRNA taxonomy, OTUs and genus assignments 
comparing pulmonary TB (PTB) with latent infection (LTBI) specimens. 
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