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Abstract

Since the emergence of a new strain of coronavirus known as SARS-CoV-2, many
countries around the world have reported cases of COVID-19 disease caused by this
virus. Numerous people’s lives have been affected both from a health and an economic
point of view. The long tradition of using mathematical models to generate insights
about the transmission of a disease, as well as new computer techniques such as
Artificial Intelligence, have opened the door to diverse investigations providing relevant
information about the evolution of COVID-19. In this research, we seek to advance the
existing epidemiological models based on microscopic Markov chains to predict the
impact of the pandemic at medical and economic levels. For this purpose, we have made
use of the Spanish population movements based on mobile-phone geographically-located
information to determine its economic activity using Artificial Intelligence techniques
and have developed a novel advanced epidemiological model that combines this
information with medical data. With this tool, scenarios can be released with which to
determine which restriction policies are optimal and when they have to be applied both
to limit the destruction of the economy and to avoid the feared possible upsurge of the
disease.

Introduction 1

As of 22 January 2020, the outbreak of coronavirus disease has infected more than 2

6.400.000 people worldwide, raising more than 370.000 deceases [1]. Epidemiological 3

models are a mathematical approach used to analyze the evolution of infectious viral 4

processes and to predict the development of these in the future [2]. They are based on 5

the usage of statistics, assumptions and data to adjust mathematical parameters so they 6

suit the most to the epidemic or the particular phase of a disease. It is an integral part 7

of the preliminary studies carried out by competent bodies to understand the soundness 8

of possible interventions that may be carried out, both from a social and an economic 9

point of view [3,4]. It is precisely this point one of the biggest problems to address since 10

it has a direct impact on many people’s lives. Making intelligent use of data optimizes 11

decisions regarding the control of the epidemic. 12

Epidemiological models have been developed from the available data both to 13

understand the disease and to predict what would happen in the future [5]. One of the 14

classic models used as a basis for many more advanced ones is the SIR model [6, 7]. The 15

acronym refers to ”susceptible”, ”infected” and ”recovered”, which are the possible 16
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states in which a subject can be found within a specific population. Based on each of 17

these conditions, a series of differential equations are drawn to define how a subject can 18

step forward from one state to another. The basic SIR model assumes that the 19

population is randomly mixed within itself, dealing with early assumptions that usually 20

never happen in the real world. Since it is not a very realistic human behavior, some 21

more complex ones have been defined around it, such as the MSIR model -which 22

includes immunity to birth- [8], SEIR -including exposed state- [9] or SIX - in which 23

there is no immunity [10]. SIR principles set the basis for most of the epidemics state of 24

the art. However, it is important to notice that many other dimensions may lead to 25

human interactions, rather than just geographical locations. Populations can be 26

structured into age, risk or ethnic groups. Even though some authors have modeled 27

these facts as a geographic dimension [11,12], a whole scientific branch has been 28

developed out of it, reaching what it is known as metapopulation spatial models [13–16]. 29

These are represented as networks with groups considered as nodes and interactions 30

modeled like links. This general approach to the state of the art settles the basis of the 31

presented research, which will make use of a Microscopic Markov Chain approach to 32

handle both metapopulation dimensions and possible disease states. 33

In the specific case of the epidemic due to COVID-19 disease, numerous recent 34

studies have sought to model the evolution of the disease by stratifying the population 35

according to its demographic and spatial distribution, age and previous 36

pathology [17–19]. They present each of these parameters within a Microscopic Markov 37

Chain approach formulation with specific states to identify the spread of the virus in 38

complex human networks [20,21]. Some other interesting studies rely on Artificial 39

Intelligence techniques to forecast the contagion trajectory of COVID-19 [22–24]. These 40

recent studies have served as a basis for our research. In particular, the paper presented 41

by the University of Zaragoza [25] has been the scientific basis on which we have tried 42

to push forward. Our research is novel to the extent that we have sought to advance, 43

optimize and improve as much as possible the principles on which their research is 44

focused. 45

It has been shown that the particularities of COVID-19 have forced a sharp reaction 46

and an intense search for the causes of its rapid expansion throughout the world [26–28]. 47

The effect of asymptomatic people has been considered a fundamental vector of the 48

virus that has led many infected people to continue living a normal life while keeping 49

infecting others [29,30]. Cases of asymptomatic often occur in young people, who 50

unknowingly bring the virus into the homes of their relatives with adult or elderly 51

people who end up suffering the consequences. It also seems to be true that COVID-19 52

is transmitted through the air [33,34], so measures taken by governments and 53

prevention institutions, such as the distribution of masks, disinfection of public spaces, 54

or the prohibition of leaving homes, are considered critical [28]. Finally, people who are 55

severely affected by the disease and require medical services are usually affected in their 56

lungs, preventing their proper functioning and leading to episodes of drowning [35]. The 57

use of respirators in Intensive Care Units has been essential to saving lives [36]. 58

However, some countries have experienced high-risk circumstances when medical 59

services collapsed [37,38]. People requiring them could be left unattended due to high 60

occupancy. It is these three reasons that led to the development of an epidemiological 61

model such as the one proposed in this publication: A model capable of taking into 62

account the impact of asymptomatic people, air transmission dependent on population 63

movements and the state of medical services. Besides, we have sought to make our 64

system qualified for launching multiple possible future scenarios. For this purpose, it 65

has been designed a complex set-up for adjusting parameters to the historical evolution 66

of the COVID-19 employing a genetic algorithm based on Artificial Intelligence [39]. It 67

also has been developed an interactive platform that allows users to manually indicate 68
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the possible value of the parameters in the future so that an expert team can produce 69

reports based on this tool. It can be also used to monitoring and assessing the impact of 70

confinement measures through contextualized mobility information. The underlying 71

intention is to support the decision-making of health authorities for the epidemiological 72

control to face large-scale biological emergencies and to discern the economical costs of 73

it. In this regard, we have developed a Markov-based algorithm to automatically predict 74

the percentage of the population that stands in each state of the disease for each defined 75

region at each time instant. It has been tested and effectively applied to the Spanish 76

population from March to October 2020. 77

Materials and methods 78

In this section, each of the components that have constituted the designed system is 79

examined. There are several differentiated parts. However, only their intended use will 80

be mentioned except for the epidemiological model, which will be explained as detailed 81

and precise as possible. Fig. 1 shows each of the blocks that make up the model and 82

their connections. The system is composed of four large subgroups. 83

Figure 1. high-level block diagram. The epidemiological model forms the central
core between the population mobility model, government interventions and possible
disease evolution scenarios, leading to predictive results for the future.

• A contextualized mobility model. This is a series of unsupervised Artificial 84

Intelligence algorithms that are capable of discovering typologies of people’s 85

movements. People’s mobility data are partially tagged, making it easier to find 86

patterns and associate them with a specific economic activity. They are obtained 87

from anonymous mobile operators’ data that have been provided by the Spanish 88

National Statistics Institute (INE) [40]. At the time the experiments were carried 89

out, mobility data was available until May 31, 2020. 90

• An interactive model of social and economic interventions. This tool allows 91

end-users to simulate all kinds of scenarios by modifying relevant parameters that 92

may affect the spread of the epidemic such as control measurements. 93

• A scenario launcher. The proposed system is capable of calculating the 94

parameters of the epidemiological model that best fit the historical evolution of 95

the disease as a result of a genetic algorithm. However, it is also possible to 96

manually assign certain parameters in order to understand possible new scenarios 97

in the evolution of the disease. It is designed so that experts in the field can 98

interact with different alternatives and proposals. 99
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• An epidemiological model. Which will be detailed in-depth in the following 100

subsection and which forms the core of this publication. 101

Epidemiological model 102

We propose an epidemiological model that has been tested for COVID-19. Fig. 2 shows 103

an outline of the model. It is based on the following concepts which form the initial 104

assumptions of the system: 105

• The population is divided into three age segments. It has been shown that the 106

evolution of patients with COVID-19 is dependent on age range [1, 32]. Infected 107

young people are usually asymptomatic or have very mild symptoms that can be 108

mistaken for the common flu [31]. Older age groups have a risk of more severe 109

symptoms that are more likely to require the limited health services, which in case 110

of collapse, could lead to the death of people who could not be assisted. 111

• The population is divided into three thousand geographical patches (in the case of 112

Spain). Population movement has proven to be a determining factor since 113

contagion occurs from person to person. The number of regions is determined by 114

the dataset to be used. The higher the granularity, the better the accuracy in 115

determining population movements. There is a compromise between the size of 116

the region and the ability to anonymize the dataset, so it is common to find large 117

sections. For example, a territory like Spain, counting more than 500 thousand 118

square kilometers with a population of almost 50 million people is divided into 119

only 3000 regions to guarantee the privacy of the population’s movements. 120

• Every person in the population must be located in one and only one state at a 121

certain time. The epidemiological model counts with eleven states that represent 122

each of the possible phases in which a person might be found. It considers that 123

every person is susceptible to contracting the disease (no birth immunity). 124

• Each of the states is connected to at least other state. 125

• Connections between states are modeled as a time-fixed ratio except for those that 126

connect Confined, Susceptible and Infected states. 127

The model incorporates states that allow the evaluation of the evolution of the 128

disease in a context where the representation of asymptomatic patients has been very 129

relevant. Besides, some hospital states are included to assess the saturation of medical 130

services, both emergency and ordinary. Each of the states has a discrete-time 131

dependency. Each time step corresponds to twenty-four hours. 132

The model contains eleven states that are defined as: 133

• SUSCEPTIBLE (S): a person who maintains his/her professional or academic 134

activity and who has possibility to interact outside their region of belonging. 135

– Initial status of all persons not immune to COVID-19. 136

– Reached from confined state (C) at a rate η(t). 137

– Eq. (1) defines the total population in state S and handles the transition 138

from one instant of time (defined by t) to the next for each age stratum 139

(defined by g) and for each geographical patch (defined by i). 140

Sgi (t+ 1) = Sgi (t)(1 − πgi (t) − αgi (t)) + Cgi (t)ηgi (t) (1)

September 2, 2020 4/17

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.20186551doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.02.20186551
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2. Epidemiological model. The epidemiological model forms the central
core between the population mobility model, government interventions and possible
disease evolution scenarios. It is composed of a total of eleven states.

• CONFINED (C): a person who has suspended his/her professional or academic 141

activity and who does not has the possibility to interact outside its region of 142

belonging. 143

– Reached from susceptible state (S) at a rate π(t). 144

– Eq. (2) defines the total population in state C and handles the transition 145

from one instant of time (defined by t) to the next for each age stratum 146

(defined by g) and for each geographical patch (defined by i). 147

Cgi (t+ 1) = Cgi (t)(1 − ηgi (t)) + Sgi (t)πgi (t) (2)

• INFECTED (I): an exposed person who is a carrier of the virus, but it’s not 148

contagious yet. 149

– Reached from susceptible state (S) at a rate α(t). 150

– Eq. (3) defines the total population in state I and handles the transition from 151

one instant of time (defined by t) to the next for each age stratum (defined 152

by g) and for each geographical patch (defined by i). 153

Igi (t+ 1) = Igi (t)(1 − βg) + Sgi (t)αgi (t) (3)

• ASYMPTOMATIC (A): a person who is a carrier of the virus, can transmit it and 154

has mild symptoms (or no symptoms) of COVID-19 and carries on his/her usual 155

activities. 156

– Reached from infected state (I) at a rate β. 157

– Eq. (4) defines the total population in state A and handles the transition 158

from one instant of time (defined by t) to the next for each age stratum 159

(defined by g) and for each geographical patch (defined by i). 160

Agi (t+ 1) = Agi (t)(1 − γg − ζg − ξg) + Igi (t)βg (4)

• SICK (E): a person who is a carrier of the virus and has symptoms of COVID-19. 161

This status is not a transmission vector of the virus, since the person is isolated at 162

home. 163
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– Reached from asymptomatic contagious state (A) at a rate γ. 164

– Eq. (5) defines the total population in state E and handles the transition 165

from one instant of time (defined by t) to the next for each age stratum 166

(defined by g) and for each geographical patch (defined by i). 167

Egi (t+ 1) = Egi (t)(1 − λg − δg − τg − Γg) +Agi (t)γ
g (5)

• QUARANTINE (Q): a person forced into confinement because they have been 168

positively detected by COVID-19. Therefore, this state is not a transmission 169

vector of the virus. 170

– Reached from: 171

∗ Asymptomatic state (A) at a rate ζ. 172

∗ Sick state (E) at a rate ρ. 173

– Eq. (6) defines the total population in state Q and handles the transition 174

from one instant of time (defined by t) to the next for each age stratum 175

(defined by g) and for each geographical patch (defined by i). 176

Qgi (t+ 1) = Qgi (t)(1 − Ωg − κg) + Egi (t)Γg +Agi (t)γ
g (6)

• HOSPITALIZED (H): a person using general hospital services (not specific 177

emergency services). 178

– Reached from: 179

∗ Sick state (E) at a rate δ. 180

∗ Quarantine state (Q) at a rate κ. 181

– Eq. (7) defines the total population in state H and handles the transition 182

from one instant of time (defined by t) to the next for each age stratum 183

(defined by g) and for each geographical patch (defined by i). 184

Hg
i (t+ 1) = Hg

i (t)(1 − φg − µg − εg) + Egi (t)δg +Qgi (t)κ
g (7)

• ICU (U): a person using emergency hospital services of the Intensive Care Unit. 185

– Reached from the hospitalized state (H) at a rate ε. 186

– Eq. (8) defines the total population in state U and handles the transition 187

from one instant of time (defined by t) to the next for each age stratum 188

(defined by g) and for each geographical patch (defined by i). 189

Ugi (t+ 1) = Ugi (t)(1 − ωg − θg) +Hg
i (t)εg (8)

• POST-ICU (P): a person making use of general hospital services spending time 190

while recovering from ICU services. 191

– Reached from ICU state (U) at a rate ω. 192

– Eq. (9) defines the total population in state P and handles the transition 193

from one instant of time (defined by t) to the next for each age stratum 194

(defined by g) and for each geographical patch (defined by i). 195

P gi (t+ 1) = P gi (t)(1 − ψg) + Ugi (t)ωg (9)

• RECOVERED (R): a person immune to COVID-19 after having overcome the 196

illness. 197
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– Possible final status of all persons who have been infected with COVID-19. 198

– Reached from: 199

∗ Post ICU state (P) at a rate ψ. 200

∗ Quarantine state (Q) at a rate Ω. 201

∗ Asymptomatic state (A) at a rate ξ. 202

∗ Sick state (E) at a rate τ . 203

∗ Hospitalized state (H) at a rate Φ. 204

– Eq. (10) defines the total population in state R and handles the transition 205

from one instant of time (defined by t) to the next for each age stratum 206

(defined by g) and for each geographical patch (defined by i). 207

Rgi (t+ 1) = Egi (t)τg +Hg
i (t)φg + P gi (t)ψg +Qgi (t)Ω

g +Agi (t)ξ
g (10)

• Deceased (F): a person who died from COVID-19 causes. 208

– Possible final status of all persons who have been infected with COVID-19. 209

– Reached from: 210

∗ Sick state (E) at a rate of λ. 211

∗ Hospitalized state (H) at a rate µ. 212

∗ ICU state (U) at a rate θ. 213

– Eq. (11) defines the total population in state F and handles the transition 214

from one instant of time (defined by t) to the next for each age stratum 215

(defined by g) and for each geographical patch (defined by i). 216

F gi (t+ 1) = Egi (t)λg +Hg
i (t)µg + Ugi (t)ωg (11)

The rate αgi (t) with which the population of the region i and the age group g 217

transitions from the state susceptible (S) to non-contagious infection (I) is defined in 218

Eq. (12). The value M c
ij(t) represents the mobility matrices for each of the c economical 219

activities detected in a cluster formed by up to W different categories. Since 220

governments are able to apply restrictions to certain economic activities represented by 221

a cluster, there is a correction factor bc(t) with a value between 1 and 0 that represents 222

to what extent activity c is allowed. When all matrices are sum up, a global movement 223

matrix is obtained, assuming each person belongs to one cluster only for each instant of 224

time. Eq. (12) is also affected by the probability that the agents get infected by the 225

pathogen according to its geographical patch i and age group g, represented as P gi (t). 226

αgi (t) =
W∑
c=1

N∑
j=1

(
M c
ij(t) · bc(t)

)
P gj (t) (12)

The probability of being infected in the region i, represented as P gi (t), is calculated 227

through the number of people in the Asymptomatic state A(t). It is defined in Eq. (13). 228

P gi (t) = 1 − (1 − βA)
wg

i (13)

where wgi is the average number of contacts made by a person with asymptomatic 229

people during one day; defined in Eq. (14). 230

wgi = zg · kg(t) · f
(
neffi
si

) Ng∑
h=1

Cgh
Agi (t)N

h
i(

nhi
)eff (14)
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where neffi is the effective population in the age group g and patch i, Cgh is the 231

contact matrix that captures the average percentage of contacts between age groups as 232

defined in [25], kg(t) is the average number contacts by age, Nh
i is the total population 233

of the age group g and patch i, s is the area of the patch i, the function f(·) captures 234

the influence of the population density and z is a normalization factor calculated as in 235

Eq. (15). 236

zg =
Ng∑N

i=1 f(
neff
i

si
)(ngi )

eff
(15)

where Ng is the population of the age group g and (ngi )
eff and neffi are defined, 237

respectively in Eq. (16) and Eq. (17) 238

(ngi )
eff =

∑
j

Mg
ij (16)

neffi =
∑
g

∑
j

Mg
ij (17)

The effect of the population density is captured by [25,41] as in Eq. (18). 239

f(x) = 2 − e−ξx (18)

To assess the confinement of the population and the safe-distance restrictions at an 240

instant t the following guidelines have been followed. First, the mobility matrix Mg(t) 241

is modified to adequate the number of people moving between regions within a day with 242

the specific restriction policies at that moment. Second, part of the population in 243

Susceptible state (S) is transferred to Confined state (C) and vice versa depending on 244

the increasing or decreasing movement restrictions. Finally, the average number of 245

contacts kg(t) is also modified. This setup accurately models most early situations in 246

European countries such as Spain or Italy, where they have experienced hard lock-downs. 247

Let us define p(t) as the mobility restriction parameter, therefore the average number of 248

contacts, kg(t) and the mobility matrix are affected as in Eq. (19) and Eq. (20). 249

kg(t) = p(t)kgno-restriction(t) (19)

Mg(t) = p(t)Mg
no-restriction(t) (20)

Results & Discussion 250

In this section, we present the results of having applied our epidemiological model to 251

the Spanish population taking as the starting date the first outbreaks of COVID-19 on 252

February 20, 2020. In this paper, we present the results of two different scenarios in 253

order to compare the importance of the restriction policies. Table 1 shows the 254

parameters used in the epidemiological model for both scenarios. Each of them has been 255

obtained through a genetic algorithm based on Artificial Intelligence (except some 256

parameters which have been extracted directly from the state of the art), which has 257

explored multiple options until reaching an adjustment to the historical data with a 258

minimum mean square error. However, the ranges of values among which the algorithm 259

could vary have been defined by hand within the realistic possibilities of each of the 260

parameters, using the daily reports of the Spanish Ministry of Health [42]. We have 261

considered that the disruption of COVID-19 in Spain has had a direct relationship with 262

the number of asymptomatic infected people, as expressed in one of the lines of research 263
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Table 1. Parameters of the model. All of them have been computed based on an
iterative Artificial Intelligence algorithm except for those marked with a ”*” since they
have been extracted from several recent works.

Age group 0-14 15-64 65-120

Percentage of transition from Asymptomatic to Sick 30% 75% 75%
Percentage of transition from Asymptomatic to Recovered 70% 25% 25%
Transition time from Asymptomatic to Sick 4.5 4.5 4.5
Transition time from Asymptomatic to Recovered infection 8.5 8.5 8.5
Percentage of transition from Sick to Deceased 0.0% 0.5% 3.0%
Percentage of transition from Sick to Hospitalized 2.0% 3.6% 11.7%
Percentage of transition from Sick to Recovered 98.0% 95.9% 85.3%
Transition time from Sick to Deceased 11 11 11
Transition time from Sick to Hospitalized 6 6 6
Transition time from Sick to Recovered 11 11 11
Percentage of transition from Quarantine to Sick 30% 75% 75%
Percentage of transition from Quarantine to Recovered 70% 25% 25%
Transition time from Quarantine to Sick 4.5 4.5 4.5
Transition time from Quarantine to Recovered 8.5 8.5 8.5
Percentage of transition from Hospitalised to Deceased 0.0% 3.0% 15.0%
Percentage of transition from Hospitalised to Recovered 99% 95% 82%
Percentage of transition from Hospitalised to ICU 1.0% 2.0% 3.5%
Transition time from Hospitalised to Deceased 5 5 5
Transition time from Hospitalised to Recovered 10 10 10
Transition time from Hospitalised to ICU 2 2 2
Percentage of transition from ICU to Deceased 2% 20% 30%
Percentage of transition from ICU to post-ICU 98% 80% 70%
Transition time from ICU to Deceased 3 3 3
Transition time from ICU to post-ICU* [45] 10 10 10
Transition time from post-ICU to Recovered 5 5 5
Infectivity of asymptomatics 3.75% 3.75% 3.75%
kg - Average number of contacts by age* [40] 11.8 13.3 6.6

that best fits the reality [43,44]. In our case, we have decided to simplify the model to 264

the point that it only considers infections due to contact with asymptomatic people. 265

Reality is not so far from this assumption since patients who present symptoms tend to 266

self-reclusion in their homes and their infectivity is irrelevant to the analysis of society 267

as a whole. On the other hand, there is no database of the mobility of people when 268

their life has suffered an eventuality such as contracting an illness. Historical 269

information up to 14 May 2020, was used as a training dataset to adjust the epidemic 270

model to real values. Historical information up to 31 May 2020, was used as a 271

validation dataset to assess how accurate the model was. Predictions have been 272

computed until 26 October 2020 to understand to what extent there may be an upsurge 273

of COVID-19 infections in Spain. 274

In Spain, the ministerial authorities have provided information on the evolution of 275

the coronavirus at Autonomous Community level. Spain is divided into a total of 19 276

Autonomous Communities in which the evolution of the disease has been different. 277

They began to officially count the cases as of February 29. The number of detected 278

cases was introduced in our epidemiological model, giving results incompatible with the 279

reality of the following months. COVID-19 report from the Department of 280

Epidemiology of the Imperial College in London [46] was taken into consideration, 281
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Table 2. Initial asymptomatic people in each autonomous region The number
of asymptomatic people has been obtained as a function of the first data registered by
the Spanish Ministry of Health.

Autonomous region Asymptomatic

Andalućıa 107
Aragón 65
Asturias, Principado de 33
Balears, Illes 23
Canarias 13
Cantabria 16
Castilla y León 230
Castilla - La Mancha 590
Cataluña 450
Comunitat Valenciana 78
Extremadura 130
Galicia 50
Madrid, Comunidad de 830
Murcia, Región de 12
Navarra, Comunidad Foral de 49
Páıs Vasco 83
Rioja, La 20
Ceuta 1
Melilla 2

which determined that on a global level, the number of undetected cases could be up to 282

2/3 higher. Multiplying this rate by the official values we obtained the result shown in 283

Table 2, which allowed a realistic adjustment of the epidemiological model. 284

The scenarios presented in this document use the same epidemiological parameters 285

shown in Table 1. The difference lies in the restriction of mobility, in the advice given to 286

citizens and in the individual responsibility of people at the different stages of the 287

epidemic. Our epidemiological model considers the movement of asymptomatic people 288

as one of the main vectors of the disease. However, movement can be less dangerous if 289

several circumstances relax the risk, such as the use of masks [47]. In Table 3 we show 290

the values used in each of the scenarios as a percentage in which mobility is maintained. 291

However, people who move safely (maintain a safe distance and/or wear a mask) are 292

considered to be not in danger of contagion. Therefore, the percentages affected both 293

mobility and average contacts per person kg. The differences between the two scenarios 294

appear from May onwards. In scenario 1, the Spanish population regains the right to 295

move freely within the national territory, however, it is not aware of the possibility of 296

contagion. So from 21 June, the day on which Spain revokes its state of emergency, the 297

population practically lives a normal life similar to that before the COVID-19. In 298

scenario 2, the population maintains a very high level of hygiene and awareness, and 299

although it is legal to move freely from 21 June, they do so with moderation and 300

conscience. The government has a lot to contribute to these policies, as it can encourage 301

this awareness and promote the use of masks. We are aware that these events are 302

impossible to measure, but we find the results of the underlying idea very interesting. 303

Figs. 3 and 4 show the aggregated quantitative results at the national level for the 304

two different scenarios. In the first scenario, it can be seen that the number of cases is 305

rising again because the population has not taken the necessary preventive measures 306

and has caused a new peak of contagion. In the second scenario, people who were 307

infected were aware of the risk and although the dangerous mobility is up to 30%, there 308
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Table 3. Mobility restrictions These values depend on the measures taken by the
Spanish government, from the moment the alarm state started, until the end of the
forecast.

Starting day Scenario2 Scenario 1

20-Feb 100% 100%
10-Mar 75% 75%
14-Mar 32% 32%
28-Mar 28% 28%
12-Apr 30% 30%
07-May 50% 30%
14-May 50% 30%
21-Jun 75% 30%

is no upsurge, probably leading to the disappearance of the virus after some time. 309

Particularly noteworthy is that the absolute number of cases in the resurgence scenario 310

reaches approximately the same severity as the first peak. However, no preventive 311

measures have been simulated at the time of the outbreak, and yet the peak is reduced. 312

This interesting result may be because that cluster immunity has been achieved. 313

Nevertheless, the cost in human lives is very high, doubling the number of deaths. 314

Conclusion 315

In this paper, we have presented an epidemiological model based on Microscopic Markov 316

chains that are fed with geolocalized population information and demographic data. It is 317

a tool that has emerged from the irruption of the COVID-19 in the world and that aims 318

to serve as an extra element for prediction and decision making by competent bodies. 319

Our system has the capacity to determine the economic activities of the population 320

based on their movements, so intelligent containment measures can be applied. 321

It can be seen how the influence on the age of the subjects is very relevant. People 322

in the 65-120 age group often need medical services, while those infected at other ages 323

tend to recover without using them. The infectivity of asymptomatic people is an issue 324

that is still not sufficiently known. Our algorithm has determined that each person 325

infects an average of 3.75% of the people they contact. This number is close to the 326

proposed values in the state of the art which vary from 3% to even 10%. 327

The measures adopted by private companies, which favored teleworking as much as 328

possible, have also been taken into account, as well as the measures of some regional 329

governments to provide the population with masks, which reduce the infectivity of sick 330

people and which have been modeled as a reduction in their movement. We consider 331

these measures to be very favorable to people’s health. They will help to ensure that 332

the epidemic does not spread easily and that the economy does not suffer such 333

devastating effects. 334

Given the results, it seems clear that the Spanish population is at risk of suffering a 335

resurgence at the end of the summer. Hygiene measures and social distance should be a 336

priority for all people. Strict confinement is a possibility until a vaccine is found, except 337

that it damages the economy in a very harmful way, and more so in the case of Spain 338

whose GDP depends largely on tourism in summer. Therefore, reaching a compromise 339

should be the priority of the competent authorities. Herd immunity is still far from 340

being a reality, so it is unfeasible to lead a normal life without expecting a new collapse 341

of health services. Giving clear information to the population about the risks of 342

coronavirus is a determining factor in avoiding many infections, as well as providing 343
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Figure 3. Scenario 1. Mobility restricted up to 30% of movements and later released up to 75%. From
left to right, up to down, first graph shows accumulated number of people who recovered after contracting COVID-19,
second graph shows accumulated number of people who deceased by COVID-19, third graph shows instantaneous number
of people making use of health services and fourth graph shows instantaneous asymptomatic people.
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Figure 4. Scenario 2. Mobility restricted up to 30% of movements and contained during the following
250 days. From left to right, up to down, first graph shows accumulated number of people who recovered after
contracting COVID-19, second graph shows accumulated number of people who deceased by COVID-19, third graph
shows instantaneous number of people making use of health services and fourth graph shows instantaneous asymptomatic
people.
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masks and disinfecting meeting spaces. The individual responsibility of an informed 344

society may be sufficient to achieve herd immunity gently, or in its absence, to achieve 345

vaccination, in both cases without collapsing health systems or destroying the economy. 346
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scales and recurrent mobility patterns on the unfolding of epidemics. Journal of
Statistical Mechanics: Theory and Experiment. 2020 Feb 21;2020(2):024006.

19. COVID C, Team R. Severe outcomes among patients with coronavirus disease
2019 (COVID-19)—United States, February 12–March 16, 2020. MMWR Morb
Mortal Wkly Rep. 2020;69(12):343-6.
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