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Abstract 14 

The lower-airway microbiome may influence the pathogenesis of lung disease. 15 

Bronchopulmonary dysplasia (BPD) is a serious morbidity associated with preterm 16 

birth that may be influenced by lower-airway microbial or metabolic alterations. This 17 

study used16S rRNA gene sequencing, metabolomic analyses, and the Kyoto 18 

Encyclopedia of Genes and Genomes (KEGG) database to investigate the 19 

lower-airway microbiome and metabolome in a cohort of preterm infants with mild, 20 

moderate, or severe BPD or no BPD. Differences in the diversity and composition of 21 

the infants’ lower airway microbiota, as well as metabolic status, were initially 22 

observed, but became less pronounced at 7 days of life. Decreased diversity of the 23 

lower-airway microbiome, increased abundance of Stenotrophomonas, and increased 24 

level of sn-glycerol 3-phosphoethanolamine were associated with increased BPD 25 

severity, and have potential as predictive biomarkers for BPD. Stenotrophomonas may 26 

contribute to the development of BPD and influence the composition of the 27 

lower-airway microbiome through its metabolite, sn-glycerol 3-phosphoethanolamine. 28 

These findings provide novel insights into the lower-airway microbiome and its role 29 

in BPD.  30 
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1. Introduction 61 

Bronchopulmonary dysplasia (BPD) is a serious morbidity associated with 62 

preterm birth that affects an estimated 50% of infants born at < 28 weeks of gestation 63 

[1]. Infants with BPD have an increased risk of mortality during the first year. Those 64 

who survive may suffer long-term pulmonary impairment and abnormal 65 

neurodevelopment, which can result in substantial healthcare resource utilization and 66 

cost [2]. Risk factors for BPD include, but are not limited to, gestational age at birth, 67 

impaired growth for gestational age, low infant birth weight, infectious exposures, 68 

barotrauma, oxygen exposure, and environmental cigarette smoke [3].  69 

Evidence from epidemiological data, clinical data, and animal models indicate a 70 

key role for the microbiome in lung disease [4-6], and indicate that the lower-airway 71 

microbiome is altered in multiple respiratory disorders [7, 8]. Some reports show that 72 

the lower-airway microbiome is present at birth, and microbial dysbiosis may be 73 

associated with BPD [9, 10]. However, by now the related research is rare and the 74 

present results differ from each other, so it needs further research. What’s more, the 75 

mechanisms by which the microbiome alterations lead to BPD have never been 76 

addressed. Gut microbiota is associated with a variety of human diseases through 77 

metabolites [11]. We hypothesized that lower-airway microbial metabolism plays a 78 

role in the pathogenesis of BPD. 79 

In this prospective observational cohort study, tracheal aspirates (TA) were 80 

collected during mechanical ventilation of infants to investigate 1) the lower-airway 81 

microbiome at birth (Day 1) and on Day 7 after birth; 2) the lower-airway 82 

metabolomic signatures at birth and on Day 7 after birth; and 3) the relationship 83 

between differential metabolites and specific bacteria among infants with severe BPD, 84 

moderate BPD, mild BPD, and no BPD. 85 

 86 

2. Methods 87 

This prospective observational cohort study was conducted at the Neonatal 88 

Intensive Care Unit of the Children’s Hospital of Chongqing Medical University 89 

between October 2017 and July 2018. The Institutional Review Board of Chongqing 90 
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Medical University approved the protocol. Informed consent was received from the 91 

parents or guardians of all participants. The study was performed in accordance with 92 

approved guidelines. 93 

2.1 Patient population and clinical data collection 94 

Infants born at <34 weeks gestation that underwent endotracheal intubation and 95 

mechanical ventilation in the first 24�h of life and remained intubated until at least 96 

Day 7 after birth were included in this study. Exclusion criteria were: 1) clinical 97 

evidence of congenital heart disease (except patent ductus arteriosus [PDA], patent 98 

foramen ovale [PFO] or atrial septal defect [ASD] < 1cm, or ventricular septal defect 99 

[VSD] < 2mm if known prior to enrollment); 2) lethal congenital abnormality; 3) 100 

congenital sepsis; 4) evidence of pulmonary hypoplasia; or 5) futile cases (anticipated 101 

death prior to hospital discharge) [10].  102 

Infants were divided into four groups stratified by the diagnosis and severity of 103 

BPD: severe BPD, moderate BPD, mild BPD, and no BPD. BPD was diagnosed 104 

based on the need for supplemental oxygen at 28 days of age [12, 13]. BPD status and 105 

severity was assessed at 36 weeks postmenstrual age according to the National 106 

Institutes of Health workshop definition [13]. Late onset sepsis was defined as a 107 

positive blood culture after 72 h of life. 108 

Clinical data were collected from a review of electronic medical records at study 109 

enrollment and during hospitalization. Information on maternal history, delivery, and 110 

clinical assessments was recorded.  111 

2.2 Sample collection 112 

Tracheal aspirates (TA) were collected during mechanical ventilation at birth 113 

(Day 1) and on Day 7 after birth according to a previously published protocol [13-15]. 114 

Briefly, 0.5�ml of sterile isotonic saline was instilled into the infants’ endotracheal 115 

tubes. Infants were manually ventilated through their endotracheal tube for three 116 

breaths using a bag-mask, and fluid was suctioned into a sterile mucus trap [14]. 117 

Samples were divided into 2 aliquots for extraction of bacterial DNA or metabolomics 118 

research and frozen at -80℃ until further processing. 119 
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2.3 Isolation of microbial DNA, creation of 16S V4 amplicon library, and DNA 120 

sequencing 121 

Microbial genomic DNA from each sample was isolated and purified. The V4 122 

region of the 16S rRNA gene from the microbial DNA was amplified using a 123 

polymerase chain reaction (PCR) with unique bar coded primers to create an 124 

“amplicon library” [16]. The library was sequenced using the Illumina MiSeq 125 

platform and subsequently quantified (KAPA Library Quantification Kit KK4824), 126 

according to the manufacturer's instructions.  127 

2.4 Profiling of 16S rRNA gene sequencing data 128 

Raw sequences were processed with the Quantitative Insights into Microbial 129 

Ecology (QIIME) 1.8.0 pipeline1.The concat function was used to combine reads into 130 

tags according to an overlapping relationship. Reads from each sample were separated 131 

with barcodes, and low quality reads were removed. Processed tags were clustered at 132 

97% similarity into operational taxonomic units (OTUs). Taxonomy was assigned to 133 

OTUs by matching to the Greengenes database (Release 13.8)2. Alpha diversity 134 

analyses (Shannon index) and beta diversity analyses (principal coordinate analysis 135 

[PCoA]) were performed. 136 

2.4 Metabolomics analysis based on UHPLC-Q-TOF/MS 137 

TA samples were analyzed using an ultra-high-performance liquid 138 

chromatography (UHPLC) system (1290 Infinity LC, Agilent Technologies) coupled 139 

to a quadrupole time-of-flight mass spectrometer (AB Sciex TripleTOF 6600) at 140 

Shanghai Applied Protein Technology Co., Ltd.  141 

Samples were thawed at 4°C and 100 μL aliquots were mixed with 400 μL of 142 

cold methanol/acetonitrile (1:1, v/v) to remove the protein. After centrifuging for 15 143 

min (14000g, 4 °C), the supernatant was dried in a vacuum centrifuge. For liquid 144 

chromatography-mass spectrometry (LC-MS), samples were dissolved in 100 μL 145 

acetonitrile/water (1:1, v/v). Pooled quality control (QC) samples were used to 146 

monitor the stability and repeatability of instrument analysis. The QC samples were 147 

inserted regularly and analyzed in every 5 samples.  148 

Raw LS electrospray ionization (ESI) MS data were converted into m/z format 149 
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and analyzed for non-linear retention time (RT) alignment, peak detection, and 150 

filtration. 151 

2.5 Profiling of metabolomics data 152 

Processed data were normalized to total peak intensity, imported into SIMCA-P 153 

(version 14.1, Umetrics, Umea, Sweden), and analyzed using Pareto-scaled principal 154 

component analysis (PCA) and orthogonal partial least-squares discriminant analysis 155 

(OPLS-DA). The variable importance in the projection (VIP) value for each variable 156 

in the OPLS-DA model was calculated to indicate its contribution to the classification.  157 

One-way ANOVA was used to determine the significance of each metabolite with a 158 

VIP value >1. P< 0.05 were considered statistically significant. Discriminatory 159 

metabolites within the data set were visualized as heat maps, which were generated 160 

using a hierarchical clustering algorithm. Molecules associated with significant 161 

changes were searched against the Kyoto Encyclopedia of Genes and Genomes 162 

(KEGG) database (http://www.genome.jp/kegg/pathway.html). 163 

2.6 Statistical analysis  164 

Statistical analysis was performed using SPSS version 22.0 for Windows (SPSS 165 

Inc., USA). Normally distributed data are expressed as mean ± SD; non-normally 166 

distributed data are expressed as median and interquartile range (IQR). Between 167 

group differences were analyzed with Fisher’s Exact test for categorical variables and 168 

Kruskal-Wallis test for continuous variables after subsampling. Pairwise comparison 169 

was performed with White´s non-parametric t-test. Correlations between 170 

microbiome–related metabolites and bacterial species were evaluated using Pearson’s 171 

correlation coefficient. P <0.05 was considered statistically significant. 172 

 173 

3.0 Results 174 

3.1 Demographic and clinical characteristics of the enrolled patients 175 

 This study included 30 premature infants divided into 4 groups, including 10 176 

infants with severe BPD, 5 infants with moderate BPD, 10 infants with mild BPD, 177 

and 5 infants with no BPD. The demographic and clinical characteristics of the 178 

included infants are shown in Table 1. There were no significant differences in the 179 
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demographic and clinical characteristics between the groups, except for number of 180 

hours of mechanical ventilation and number of days of antibiotics.  181 

3.2 Diversity and composition of the lower-airway microbiome 182 

The Shannon index was significantly lower at birth (Day 1) (P=0.0019; Figure 183 

1a) and on Day 7 after birth (P=0.016; Figure 1b) in infants with BPD compared to 184 

no BPD. The difference was more pronounced on Day 1 and was negatively 185 

correlated with the severity of BPD. Principal coordinates analysis (PCoA) showed a 186 

significant difference in the bacterial composition of the lower-airway microbiome at 187 

birth (Day 1) between the four groups (Figure 1c), and a less distinct difference on 188 

Day 7 after birth (Figure 1d). 189 

At the phylum level, Proteobacteria was dominant in the lower-airway 190 

microbiome of all infants at birth (Day 1) (Figure 1e) and on Day 7 after birth 191 

(Figure 1f), and there were no significant differences in the composition of the 192 

lower-airway microbiome between the four groups. At the genus level, the 193 

composition of the lower-airway microbiome was significantly different between 194 

groups at birth (Day 1). Stenotrophomonas was more abundant in infants with BPD 195 

compared to no BPD, and abundance was positively correlated with the severity of 196 

disease (P < 0.05) (Figure 2a). Findings on Day 7 after birth were similar, but not 197 

statistically significant (P=0.064) (Figure 2b). 198 

3.3 Metabolomic analysis of tracheal aspirates (TA) 199 

TAs were subjected to LC/MS analysis in positive ion mode (ES+) and negative 200 

ion mode (ES-).  201 

Principle component analysis (PCA) was performed to reduce dimensionality in 202 

the dataset (Figure 3a, b). Hierarchical clustering heat maps visualized patterns in 203 

molecular data across groups (Figure 3c-f). There were significant differences in 63 204 

metabolites, including 23 in ES- and 40 in ES+ (Figure 3c,d ), between the four 205 

groups at birth (Day 1), and 29 metabolites, including 11 in ES- and 18 in ES+, on 206 

Day 7 after birth (Figure 3e-f). Among these metabolites, sn-glycerol 207 

3-phosphoethanolamine was positively correlated with BPD severity at birth (Day 1) 208 

(Figure 4), but not on Day 7 after birth.  209 
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3.4 Correlation between the lower-airway microbiome and metabolites  210 

Pearson’s correlation coefficient was used to explore the functional correlation 211 

between the changes in the lower-airway microbiome and differences in metabolites 212 

across the four groups at birth (Day 1) (Figure 5). There was a significant positive 213 

correlation between the abundance of Stenotrophomonas and sn-glycerol 214 

3-phosphoethanolamine levels (r=0.45) (P<0.05). 215 

 216 

Discussion 217 

Studies investigating the correlation between BPD and the lower-airway 218 

microbiome in infants are scarce, and there remains an unmet clinical need to describe 219 

the lower-airway microbial communities and lower-airway metabolomic signatures in 220 

patients with BPD. Findings will allow the identification of microbial biomarkers for 221 

early detection of BPD and further understanding of the pathophysiology of BPD.  222 

The present study used16S rRNA gene sequencing, metabolomic analyses, and 223 

the KEGG database in attempt to fill these evidence gaps. Results showed that 224 

multiple bacterial taxa can be identified in the respiratory secretions of intubated 225 

premature infants, even at birth and prior to surfactant administration. The diversity 226 

and composition of the lower-airway microbiome in infants with and without BPD 227 

varied at birth, but the differences became less pronounced on Day 7 of life. 228 

Consistent with a previous report, our study showed lower diversity in the 229 

lower-airway microbiome of infants that developed BPD [14]. Our results also 230 

revealed that alpha diversity of lower-airway communities was negatively correlated 231 

with BPD severity. At the phylum level, there were no significant differences in the 232 

composition of the lower-airway microbiome in infants with and without BPD or 233 

according to BDP severity. Proteobacteria was the most abundant microbe in all 234 

infants. These data align with one previous report, [14], but differ from another, which 235 

found that Staphylococcus and Ureaplasma were the most dominate lower-airway 236 

microbes in infants in their institution [10]. These disparate findings may be due to 237 

different environments, which likely influenced the composition of the lower-airway 238 

microbiome. At the genus level, Stenotrophomonas was significantly more abundant 239 
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in infants with BPD compared to no BPD, and the abundance of Stenotrophomonas 240 

was positively correlated with BPD severity. These findings suggest that decreased 241 

diversity of the lower-airway microbiome and increased abundance of 242 

Stenotrophomonas in the lower-airway microbial community of intubated premature 243 

infants have potential as microbial biomarkers for early detection of BPD. 244 

Stenotrophomonas is a nosocomial opportunistic pathogen of the 245 

Xanthomonadaceae family [17]. Stenotrophomonas isolated from the environment or 246 

in the clinical setting exhibits resistance to antibiotics and stress and forms biofilms 247 

on various surfaces, including the abiotic surfaces of catheters and prosthetic devices 248 

[18, 19]. Stenotrophomonas colonizes the lungs of patients with cystic fibrosis and 249 

those who are immunocompromised, and may represent a marker of chronic lung 250 

disease [18, 20-22]. Stenotrophomonas can influence the spatial organization and thus 251 

the function and composition of complex microbiomes [23, 24]. Data from the present 252 

study suggest a role for Stenotrophomonas in the pathogenesis of BPD in intubated 253 

premature infants. 254 

As the composition of the lower-airway microbiome in preterm infants varied 255 

with the presence or absence of BPD and with BPD severity, we characterized the 256 

lower-airway metabolome in these infants. Findings showed significant differences 257 

between infants in 63 metabolites at birth (Day 1) and 29 metabolites on Day 7 of life, 258 

implying that metabolite variation paralleled that of the lower-airway microbiome. 259 

Among these metabolites, sn-glycerol 3-phosphoethanolamine was 260 

positively correlated with BPD severity, identifying it as a potential metabolic 261 

biomarker for early detection of BPD. The KEGG database showed that sn-glycerol 262 

3-phosphoethanolamine has a role in glycerophospholipid metabolism. 263 

Glycerophospholipid has structural functions in bacteria, facilitates bacterial 264 

adaptation to environmental conditions, and is involved in bacteria–host interactions 265 

[28]. Glycerophospholipid is also associated with the pathophysiology of chronic 266 

obstructive pulmonary disease (COPD) [29]. These findings suggest that sn-glycerol 267 

3-phosphoethanolamine may affect lower-airway microbiome composition and 268 

respiratory health in preterm infants. Our findings also identified a significant positive 269 
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correlation between the abundance of Stenotrophomonas and sn-glycerol 270 

3-phosphoethanolamine levels, an association that was confirmed with the KEGG 271 

database. This indicates that Stenotrophomonas may be abundant in the lower-airway 272 

microbiome of infants with BPD and responsible for the production of sn-glycerol 273 

3-phosphoethanolamine, which may act as a pathogenic signal in these patients. 274 

To the author’s knowledge, this prospective study is the first to identify a 275 

microbiome-metabolome signature in preterm infants with BPD. However, this study 276 

had several limitations. First, the sample size was small. Second, the data did not 277 

provide evidence that the lower-airway microbiome directly contributed to BPD. 278 

Although it will be challenging to determine a causal relationship between the 279 

lower-airway microbiome, metabolites and BPD development, further investigations 280 

are warranted.  281 

 In summary, there were significant differences in the diversity and composition 282 

of the lower-airway microbiome and metabolome in preterm infants with severe, 283 

moderate, or mild BPD or no BPD; the differences were more pronounced at birth 284 

(Day 1) than on Day 7 of life. Decreased diversity of the lower-airway microbiome, 285 

increased abundance of Stenotrophomonas, and increased level of sn-glycerol 286 

3-phosphoethanolamine were positively associated with BPD severity, and have 287 

potential as predictive biomarkers for BPD. Stenotrophomonas may contribute to the 288 

development of BPD and influence the composition of the lower-airway microbiome 289 

through its metabolite, sn-glycerol 3-phosphoethanolamine. These findings provide 290 

novel insights into the lower-airway microbiome and its functions in BPD. 291 
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Table 1 Demographic and clinical characteristics of the included patients 

 Severe BPD 

group (n=10) 

moderate BPD 

group (n=5) 

mild BPD group 

(n=10) 

control group  

(n=5 ) 

P 

value 

Gestational Age 

(mean ± SD) 

30.46±2.18 32.54±1.35 31.76±1.54 31.57±0.61 0.138 

Birth weight (g) 

(mean ± SD) 

1396.6±373.00 1530.0±363.67 1574±211.72 1640±139.10 0.421 

1�min 

Apgar(mean ± 

SD) 

5.44±3.05 5.00±4.06 5.4±2.71 7.00±2.24 0.720 

5�min Apgar 

(median) 

8(8-9) 8(7-9) 8.5(5-10) 9(8-9) 0.819 

10�min Apgar 

(median) 

9(8-9) 8(8-9) 9(8-10) 10(9-10) 0.148 

Male Gender n 

(%) 

5(50%) 4(80%) 4(40%) 1(20%) 0.274 

Han population, n 

(%) 

10(100%) 4(80%) 10(100%) 5(100%) 0.160 

Cesarean delivery, 

n (%) 

5(50%) 5(100%) 8(80%) 5(100%) 0.069 

Antenatal steroids, 

n(%) 

7(70%) 2(40%) 7(70%) 3(60%) 0.664 

 

Rupture of 

membranes> 18 

hours, n (%) 

1(10%) 1(20%) 1(10%) 1(20%) 0.902 

Intrauterine 

growth restriction, 

n (%) 

1(10%) 1(20%) 0(0%) 0(0%) 0.444 

Treatment with 

surfactant, n (%) 

7(30%) 2(40%) 8(80%) 3(60%) 0.466 

Mechanical 

Ventilation hours 

(median) 

608 222 265 144 0.003 

Oxygen days 6(0-36) 11(7-23) 14.5(12-20) 11(9-18) 0.720 

Antibiotic days 

(median)  

39 16 23 14 0.011 

Pneumonia, n (%) 10(100%) 5(100%) 9(90%) 5(100%) 0.558 

Pulmonary 

hemorrhage, n (%) 

5(50%) 2(40%) 3(30%) 0(0%) 0.272 

Late onset sepsis, 

n (%) 

5(50%) 0(0%) 5(50%) 1(20%) 0.170 

Necrotizing 0(0%) 0(0%) 1(10%) 0(0%) 0.558 
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enterocolitis≥ 

stage 2, n (%) 

 

 

Figure 1 Diversity and composition of the lower-airway microbiome  

(a) Shannon index at birth (Day 1); (b) Shannon index on Day 7 after birth (a greater 

Shannon index is indicative of higher microbial diversity); (c) Principal coordinate 

analysis (PCoA) of microbial communities at birth (Day 1) (d) PCoA of microbial 

communities on Day 7 after birth (samples located close to each other have similar 

microbial compositions, samples at distant locations have distinct microbial 

compositions); (e-f) Relative abundance of bacterial phyla (birth [Day 1], e; 7 days 

after birth, f) . (g-h) Relative abundance of bacterial genera (birth [Day 1], g; 7 days 
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after birth, h). (A, severe BPD [n=10]; B, moderate BPD [n=5]; C, mild BPD [n=10]; 

D, no BPD [n=5]). 

 

 

 

Figure 2 Abundance of Stenotrophomonas 

(a) The abundance of Stenotrophomonas at birth (Day 1), P < 0.05; (b) the abundance 

of Stenotrophomonas on Day 7 after birth, P=0.064. (A, severe BPD [n=10]; B, 

moderate BPD [n=5]; C, mild BPD [n=10]; D, no BPD [n=5]). 
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Figure 3:  Metabolic profiles  

(a-b) Principal Component Analysis (PCA) based on the metabolic profiles in sputum 

samples (birth [Day 1], a; 7 days after birth, b); (c-f) Hierarchical clustering heat maps 

showing patterns in molecular data across groups. The relative amounts of the 86 

compounds were transformed into Z scores (birth [Day 1] ES-, c; ES+, d; 7 days after 

birth ES-, e, ES+, f). (A, severe BPD [n=10]; B, moderate BPD [n=5]; C, mild BPD 

[n=10]; D, no BPD [n=5]). ES+: positive ion mode, ES-: negative ion mode) 
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Figure 4:  sn-Glycerol 3-phosphoethanolamine level at birth (Day 1)  

*:P＜0.05. 

 

 
Figure 5:  Scatter plot of the association between abundance of 
Stenotrophomonas and sn-glycerol 3-phosphoethanolamine level  
r=0.45, P<0.05. 
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