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Abstract 

 
 

Background 

New biomarkers of risk may improve breast cancer risk prediction. We developed a 

computational pathology method to segment benign breast disease (BBD) whole slide images 

(WSIs) into epithelium, fibrous stroma, and fat. We applied our method to the BBD breast 

cancer nested case-control study within the Nurses’ Health Studies to assess whether 

computer-derived tissue composition or a morphometric signature was associated with 

subsequent risk of breast cancer. 

 

Methods 

Tissue segmentation and nuclei detection deep-learning networks were established and applied 

to 3795 WSIs from 293 cases who developed breast cancer and 1132 controls who did not. 

Percentages of each tissue region were calculated and 615 morphometric features were 

extracted. Elastic net regression was used to create a breast cancer morphometric signature. 

Associations between breast cancer risk factors and age-adjusted tissue composition among 

controls were assessed using analysis of covariance. Unconditional logistic regression, adjusting 

for the matching factors, BBD histological subtypes, parity, menopausal status, and BMI 

evaluated the relationship between tissue composition and breast cancer risk. 

 

Results 

Among controls, BBD subtypes, parity, and number of births were differentially associated with 

all three tissue regions (p<0.05); select regions were associated with childhood body size, BMI, 

age of menarche, and menopausal status (p<0.05). Higher proportion of epithelial tissue was 

associated with increased breast cancer risk (OR=1.39, 95% CI 0.91-2.14 comparing highest and 

lowest quartiles; p-trend<0.05). No morphometric signature was associated with breast cancer. 

 

Conclusion 

The amount of epithelial tissue may be incorporated into risk assessment models to improve 

breast cancer risk prediction. 
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Introduction 

 

Breast cancer is the most common cancer in women. One in eight women in the United 

States will develop breast cancer in her lifetime 
1
. Whilst early detection is imperative, 

identifying and lowering breast cancer risk may help reduce breast cancer morbidity and 

mortality. Breast cancer risk factors may be non-modifiable (e.g., genetics, dense breast tissue, 

and benign breast disease (BBD)) or modifiable (e.g., adiposity and alcohol consumption). 

Researchers continue to identify new biomarkers of risk 
2–7

 as well as update risk assessment 

models 
8–12

 to improve breast cancer risk prediction. 

 

Technological advances have enabled the engineering of deep-learning algorithms to 

analyze whole slide images (WSIs) for disease detection and diagnosis 
13–18

, including 

discriminating between breast cancer and benign breast tissue 
19–21

. Our group recently 

developed a novel deep-learning based computational pathology method to capture 

quantitative measures of breast terminal duct lobular unit (TDLU) involution 
22,23

, a purported 

biomarker of breast cancer. We reported that neither quantitative measures of TDLU involution 

derived by our technology nor traditional manual qualitative assessment by pathologists was 

associated with breast cancer among women diagnosed with BBD 
24

.  

 

In this manuscript, we engineered another deep-learning based computational 

pathology method to 1) segment BBD histopathological images into epithelial, fibrous stroma, 

and fat regions; 2) calculate the amount of each tissue region expressed as a percentage of 
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total tissue; and 3) extract morphometric features from each tissue region. We applied our 

method to the BBD breast cancer nested case-control study within the Nurses’ Health Study 

(NHS) and NHSII to evaluate whether computer-derived tissue composition or a morphometric 

signature in women diagnosed with BBD was associated with subsequent risk of breast cancer. 
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Materials and Methods 

 

Study population  

The Nurses’ Health Study (NHS) and NHSII were established in 1976 and 1989, with 

121,700 US female registered nurses aged 30-55 years and 116,429 nurses aged 25-42 years, 

respectively. NHS/NHSII participants first completed baseline questionnaires that provided a 

medical history as well as extensive information about demographic, lifestyle, reproductive, 

and dietary risk factors for breast cancer 
25

. In biennial follow-up questionnaires, participants 

provide updated information and report new diagnoses of BBD or breast cancer. Participants 

who reported a diagnosis of BBD were contacted for consent to retrieve pathology records and 

BBD lesion specimens for centralized pathology review 
4,26,27

. Participants who reported breast 

cancer were confirmed verbally by the participant, via medical record review, or via the cancer 

registry. Eligible women with biopsy-confirmed BBD were placed into two sub-studies within 

the NHS/NHSII—the BBD Incidence study 
28–31

 and/or the BBD breast cancer nested case-

control (NCC) study 
2–4,24,26,27,32–35

. Whole slide images (WSIs) from women in the BBD Incidence 

study were used in the development phase to engineer the deep-learning networks. The BBD 

NCC study was used in the application phase to determine if computer-derived tissue 

composition or morphometric features were associated with subsequent breast cancer.  

 

Development Phase: Engineering the tissue segmentation network 

Forty-eight hematoxylin and eosin (H&E) histopathological slides from the BBD 

Incidence study were selected and digitized at 40× magnification (Panoramic SCAN 150, 
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3DHISTECH Ltd, Budapest, Hungary). These 48 WSIs encompassed a wide variety of epithelial 

morphology from normal epithelium (i.e., TDLUs; n=6)) to non-malignant BBD lesions classified 

into three histopathological subtypes. The non-proliferative subtype was represented by cysts 

(n=5) and fibroadenoma (n=5). Proliferative without atypia subtype included intraductal 

papilloma (n=5), radial scars (n=5), adenosis (n=5), columnar cell change (n=4), and usual ductal 

hyperplasia (n=5). Proliferative with atypia lesions consisted of atypical ductal hyperplasia (n=2), 

atypical lobular hyperplasia (n=4), and flat epithelial atypia (n=2). For each WSI, four patches of 

2048 x 2048 pixels were selected with at least one patch containing the lesion. Each patch was 

first manually annotated by a researcher for epithelium, fibrous stroma, fat, and background, 

and later manually verified by a board-certified pathologist (Supplementary Figure 1). The 48 

WSIs were split into training and testing sets in a 3:1 ratio. Supplementary Figure 2A displays 

examples of patches used to train the network.  

 

To segment BBD images into background, epithelial (normal TDLUs, TDLUs exhibiting 

proliferative or metaplastic changes, and various BBD lesions), fibrous stroma (inter- and intra-

lobular), and fat regions, we engineered a custom 21-layer fully convolutional network inspired 

by VGG-Net 
36

 and U-Net 
37

 (Supplementary Table 1). This network operated at a magnification 

level of 2.5×, using the sliding window approach 
38

 with an input size of 128 x 128 pixels to 

perform segmentation. To ensure that the network focused on differentiating tissue types by 

texture and was indifferent to variations in staining, data augmentation in the form of color 

normalization, random color and intensity shifts and geometrical image transformations were 
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performed during training. Patches were flipped vertically and horizontally, transposed, and 

altered in hue, brightness, contrast, and saturation prior to every iteration. 

 

Training was completed in two steps, using an active learning process 
39

. The network 

was first trained using a complete training set consisting of over 35,000 patches. Uncertainty 

measure was computed for each training patch through pixel-wise margin sampling 
40

. The 

7,500 patches with the highest certainty and the 7,500 patches with the lowest certainty were 

then used to construct a smaller training set. This new 15,000 patch training set was used to 

retrain the network. This training methodology was utilized in order to prevent the inclusion of 

ambiguously annotated patches in the training set. The log-likelihood function was used as a 

loss measure. In order to mitigate class imbalance, each term of the loss function was 

normalized based on the distribution of the corresponding tissue type at a patch-by-patch level. 

Additionally, each class was weighted with empirically determined coefficients to achieve the 

best overall model performance based on the test set. The background weight was 0.7, 

epithelium weight was 0.9, fibrous stroma weight was 1.4, and fat weight was 1.1. Adaptive 

moment estimation optimization 
41

 with an initial learning rate of 10
-4

 and batch size of eight 

was used throughout training.  

 

Development Phase: Engineering the cell nuclei detection network 

One of the goals of this computational method was to extract morphometric features 

from tissue regions. Some of these morphometric features require additional information from 

cell nuclei. Thus, a nuclei detection network was also created using a set of 30 H&E breast 
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cancer WSIs from The Cancer Genome Atlas where cell nuclei had been previously annotated 
42

. 

Nuclei detection was performed using a fully convolutional U-Net architecture 
37

. Images were 

segmented into nucleus, nuclei membrane, and background, with the nuclei membrane label 

being established to ensure proper separation of overlapping nuclei. Any pixel labeled as nuclei 

membrane by the network was re-classified as part of the background before generating the 

final binary nuclei mask. This network segmented nuclei at 10× magnification and used the 

sliding window approach 
38

, with an input size of 144 x 144 pixels for segmentation. While no 

two-stage training scheme was employed with this model, the details of the color normalization, 

data augmentation, training, and loss function steps were similar to the tissue segmentation 

network. The two notable differences were that the log-likelihood loss function was not 

additionally weighted by class, and each training batch consisted of 32 patches rather than 

eight. See Supplementary Figure 2B for example patches used for training this network. All 

networks were developed using the Tensorflow 0.12.0 API for Python 2.7. The source code for 

our networks is available at https://github.com/avellal14/BBD_Pipeline. 

 

Development Phase: Statistical Analysis 

To evaluate the tissue segmentation network, precision, recall, and Dice similarity 

coefficient were calculated using the held-out test set (n=48). Dice similarity coefficient is the 

harmonic mean of precision (i.e., sensitivity) and recall (i.e., positive predictive value) and 

assesses how accurate the automated segmentation compares with ground truth on a pixel-

wise basis. The range for Dice similarity coefficient is from 0 to 1, with 1 indicating perfect 
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overlap. For nuclei detection, three-fold cross validation was used to obtain the precision, recall, 

and Dice similarity coefficient of the network.  

 

Application Phase: BBD NCC study participants 

The study protocol was approved by the institutional review boards of the Brigham and 

Women’s Hospital and Harvard T.H. Chan School of Public Health, and those of participating 

registries as required. The BBD NCC study consisted of 293 cases and 1132 controls (total 

n=1425). Cases reported a diagnosis of invasive breast cancer after the cohort baseline (through 

1998 for NHS, through 1999 for NHSII) and had previously reported a BBD diagnosis (either 

prior to study entry or after study baseline); were diagnosed with breast cancer a median of 

7.67 years after BBD diagnoses (interquartile range 4.33 to 11.75 years); and were excluded if 

the time between BBD and breast cancer diagnoses was less than six months or if there was 

evidence of invasive or in situ carcinoma during centralized histopathological review of the BBD 

lesion. Tumor estrogen receptor (ER) status was obtained from centralized review of breast 

tissue microarrays 
43

. If centralized review data was unavailable then ER status was retrieved 

from pathology reports. Controls were women diagnosed with BBD who did not develop breast 

cancer. Cases and controls were matched 1:4 on year of BBD diagnosis, age at breast cancer 

diagnosis (index date for controls), and years between BBD and breast cancer diagnosis (or 

index date). A total of 3795 slides were digitized at 20× (n=213) or 40× magnification (n=3582). 

Each woman contributed between one to four WSIs (median WSIs n=3).  
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 The histological type of the BBD lesion was determined by central pathology review. 

Participant body mass index (BMI), age at menarche, parity, age at first birth, breastfeeding 

history, and menopausal status were obtained from questionnaires of the participants closest 

to but prior to BBD biopsy. The average body sizes at ages 5 and 10 reported by using a nine-

level pictogram (Level 1 as leanest) 
34

. Birth index, a surrogate metric that reflects the timing 

and spacing of births, was calculated as previously described 
44

. A higher birth index indicates a 

higher number of births occurring at earlier ages.  

 

Application Phase: Applying our networks to WSIs from the BBD NCC study participants 

Figure 1 shows an overview of our BBD image analysis pipeline. For each WSI, binary 

tissue masks were generated using simple color thresholding at a magnification level of 0.25× 

(Figure 1B). After tissue-containing areas were located, each WSI was split into patches of size 

2048 x 2048 pixels. Each patch was extracted at a 10× magnification level, and tissue 

segmentation and nuclei detection were performed using the networks established in the 

development phase (Figure 1C). Each patch resulted as a segmentation map with each pixel 

classified as epithelium, fibrous stroma, fat, or background. 

 

Application Phase: Extracting percentages of each tissue region 

 Each tissue region was expressed as a percentage of the total amount of tissue analyzed 

for each woman. Pixels classified as epithelium, fibrous stroma, or fat were individually 

summed across patches from a single WSI, combined across WSIs pertaining to each woman, 

and divided by the total number of pixels detected across all tissue regions.  
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Application Phase: Extracting morphometric features 

Morphology, texture, and graph-based spatial features (i.e., computer-derived 

morphometric features; n=619) were extracted using the WSIs in conjunction with the 

automated tissue segmentation and nuclei detection results (Figure 1D). Since fat regions were 

mostly empty white spaces, fat and fibrous stroma regions were combined as stroma for 

feature extraction. For each tissue region, 25 morphological features summarized the areas, 

perimeters, spatial densities, and red green blue color distributions of detected nuclei; 161 

features summarized various geometric properties (e.g. eccentricity, convex area) and image 

moments 
45

; 113 Haralick texture
46

 and local binary pattern 
47

 features were calculated using 

the grayscale co-occurrence matrices. The 598 features detailed above were computed at the 

patch level and then aggregated across all patches belonging to a single WSI. At the WSI level, 

an additional 21 graph-based spatial features (i.e., Voronoi diagrams 
48

 and Delaunay 

triangulations 
49

) were computed directly to characterize the holistic spatial distribution of the 

epithelial regions.   

 

For women with more than one WSI, the value for each feature was further summarized 

using the median calculated across all her WSIs. Four features were subsequently excluded due 

to missing values—percentage area and the standard deviation of major axis length for both 

epithelial and stroma areas. Thus, a total of 615 features were analyzed in this study.  

 

Application Phase: Building a morphometric signature 
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The 1425 study participants were split into a training:test ratio of 60:40. The sampling 

package in R ensured the test set of 570 women (40%) was representative of the training set by 

selecting women based on outcome (case/control) and BBD histopathological subtypes. A 

morphometric signature associated with breast cancer was constructed using a training set of 

855 women (60%), 615 z-scored morphometric features, and elastic net regularized regression 

model with 1000 iterations and 10-fold cross validation (glmnet package in R 
50

). The 

morphometric signature was subjected to bootstrapping (1000 iterations) to obtain 95% 

confidence intervals for feature coefficient estimates. Features whose coefficients with 95% 

confidence intervals crossing zero were dropped from the signature. A signature score for each 

woman in the test set was computed by summing the products of the final selected features’ 

coefficients and z-scored values. 

 

Application Phase: Statistical Analysis 

 

Preliminary assessments using Wilcoxon rank sum test evaluated if there was any 

difference in amount of epithelial, fibrous stroma, and fat tissues between cases and controls. 

Kruskal-Wallis test was used to determine if each tissue region was different between 

case/control statuses, stratified by BBD histological subtypes. Significant Kruskal-Wallis tests 

were further evaluated using Dunn’s post hoc tests with Benjamini-Hochberg multiple testing 

method to obtain adjusted p-values (FSA R package 0.8.30 
51

). Only meaningful significant 

(adjusted p<0.05) comparisons within cases, controls, and between case and controls were 

reported.  
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The associations between breast cancer risk factors and tissue composition (natural log-

transformed) among controls were assessed using analysis of covariance (ANCOVA) adjusting 

for age at BBD biopsy (emmeans R package version 1.4.4 
52

).  Each tissue region was categorized 

into quartiles as defined by the distribution among controls. Unconditional logistic regression 

models accounting for the matching factors to estimate odd ratios (ORs) and 95% confidence 

intervals (CI) was used to determine the relationship between each tissue region (in quartiles) 

and breast cancer risk (Figure 1E). Unconditional logistic regression models were used because 

of incomplete matched case-control sets—lack of pathology records and/or slides for all 

selected cases and controls. Model 1 adjusted for matching factors (year of BBD biopsy, age at 

index date, time between BBD biopsy and index date); model 2 adjusted for matching factors 

and BBD histological subtypes; and model 3 adjusted for matching factors, BBD histological 

subtypes, parity, menopausal status, and BMI. Analyses were also conducted by stratifying the 

women according to BBD histological subtype, parity, menopausal status, or BMI. Polytomous 

logistic regression models assessed the association between each tissue region and risk of 

breast cancer defined by tumor ER expression.  

 

The morphometric signature scores were winsorized to 96% where scores below the 

second percentile were set to the score at the second percentile and scores above the 98th 

percentile were set to the score at the 98th percentile. The association of this score and breast 

cancer outcome in the held-out test set was similarly evaluated using unconditional logistic 
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regression models. The level of significance used for all statistical tests was p<0.05. All statistical 

analyses were performed using R.   
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Results 

 

Tissue segmentation and nuclei detection networks performance (development phase) 

The precision, recall, and Dice similarity coefficient of the tissue segmentation network 

were 0.79, 0.71, and 0.75 for epithelium; 0.83, 0.88, and 0.85 for fibrous stroma; 0.85, 0.67, and 

0.75 for fat; and 0.84, 0.92, and 0.88 for background. The cell nuclei detection network 

detected nuclei with a precision of 0.93, recall of 0.71, and Dice similarity coefficient of 0.81. An 

example of an original image, ground truth annotation, and automated segmentation or 

detection for each network is presented in Figure 2. 

 

BBD NCC study participants 

Table 1 displays the matching factors and BBD histopathological subtypes of the 293 

breast cancer cases and 1132 controls. The majority of the women were diagnosed with 

proliferative breast disease without atypia. The average age at breast cancer diagnosis among 

cases was 54.1±8.7 standard deviation (SD). Among the 293 cases, 185 tumors were ER-positive, 

51 were ER-negative, and 57 were unknown. 

 

Preliminary assessment of breast tissue composition 

 Crude Wilcoxon tests compared cases and controls within each tissue region (Figure 3A). 

Cases have significantly more epithelium (p<0.001) and suggestively more fibrous stroma 

(p=0.07) than controls. Controls have significantly more fat (p<0.001) than cases. When 

stratified by BBD histological subtypes, there were significant differences among cases or 
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controls, or between cases and controls for each tissue region (epithelium p<0.001, fibrous 

stroma p=0.02, fat p<0.001; Kruskal-Wallis tests). Dunn’s post-hoc analyses with Benjamini-

Hochberg multiple testing adjustment revealed that among cases, those with proliferative 

without atypia subtype had significantly more epithelium compared to those with non-

proliferative (adjusted p=0.03) or proliferative with atypia subtype (adjusted p=0.004; Figure 

3B). Among controls, those with non-proliferative subtype had significantly less epithelium than 

those with proliferative without atypia (adjusted p<0.001) or proliferative with atypia subtypes 

(adjusted p=0.009; Figure 3B). When comparing between cases and controls, cases with non-

proliferative or proliferative without atypia subtype have significantly more epithelium 

compared to controls (adjusted p=0.02 and 0.002, respectively; Figure 3B).  

 

 There was no pairwise difference in the amount of fibrous stroma among cases or 

controls, or between cases and controls within each BBD histological subtype in crude analyses 

(adjusted p>0.05 for all comparisons; Figure 3C). Cases with proliferative without atypia 

subtype have less fat than cases with non-proliferative (adjusted p=0.05) or proliferative with 

atypia subtypes (adjusted p=0.002; Figure 3D). Likewise, controls with proliferative without 

atypia subtype have less fat than controls with non-proliferative (adjusted p=0.001) or 

proliferative with atypia subtypes (adjusted p=0.09; Figure 3D). Within the proliferative without 

atypia subtype, cases have significantly less fat compared to controls (adjusted p<0.001; Figure 

3D). 

 

Age-adjusted tissue composition and breast cancer risk factors among controls 
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Table 2 displays the age-adjusted means (95% CI) and the ANCOVA p-values of the 

associations between BBD histological subtypes, body size, and reproductive breast cancer risk 

factors and the tissue composition among the controls. The relationship between BBD 

histological subtypes and percentages of epithelium and fat among controls remained 

significant in age-adjusted analyses (both p<0.001). In contrast to crude analyses, controls with 

proliferative subtypes have significantly more fibrous stroma compared to controls with non-

proliferative subtype after adjusting for age (p<0.001).  

 

Women with a larger childhood body size (Levels 1.5-2 and ≥2.5) had less fibrous stroma 

(p=0.048) but suggestively more fat (p=0.09) compared to women with body sizes of 1 or 1.5 to 

2 at ages 5-10 years. Breast tissues of women with BMI ≥30 at the time of BBD biopsy had lower 

amount of fibrous stroma (p<0.001) but higher amount of fat (p<0.001) compared to women 

with lower BMI.  

 

Parous women had more epithelium and fat, and less fibrous stroma compared to 

nulliparous women (all p<0.05; Table 2). When parous women were further subdivided, women 

who had ≥2 births (multiparous) had more epithelium and fat, and less fibrous stroma than 

women who had one birth (primiparous) or nulliparous women (p<0.05). When parous women 

were subdivided into women whose last birth was <20 years or ≥20 years prior to BBD diagnosis, 

women who had their last birth <20 years had more epithelium and fat compared to 

nulliparous women and women who had their last birth ≥20 years prior to BBD diagnosis 

(p<0.05). Post-menopausal women had less epithelium (p=0.001) and fibrous stroma (p=0.004) 
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compared to pre-menopausal women (Table 2). The age of menarche positively correlated with 

the amount of fibrous stroma (p=0.01). Age at first birth, birth index, and breastfeeding were 

not associated with breast tissue composition. 

 

Tissue composition and breast cancer risk 

A higher proportion of epithelium was significantly associated with subsequent breast 

cancer risk when accounting for matching factors (OR=1.53, 95% CI 1.04-2.27 comparing 

highest and lowest quartiles; p-trend=0.02). Upon additional adjustment for BBD subtype, 

parity, menopausal status, and BMI, the association modestly attenuated but remained 

significantly elevated (OR=1.39, 95% CI 0.91-2.14 comparing highest and lowest quartiles; p-

trend=0.047; Table 3). Neither the amount of fibrous stroma nor fat was associated with breast 

cancer risk in all three models (all p-trend>0.05; Table 3).  

 

Additional analyses were conducted, stratifying by BBD, parity, menopausal status, or 

BMI. Within the BBD proliferative without atypia subtype, women with epithelium in the fourth 

quartile had higher breast cancer risk compared to women in the first quartile (adjusted 

OR=1.92, 95% CI 1.11-3.40; p-trend=0.01; Supplementary Table 2). Polytomous logistic 

regression models assessed the association between tissue regions and breast cancer risk 

defined by tumor ER expression, and in general demonstrated no heterogeneity. Fat was 

associated with lower breast cancer risk among ER-positive women in the crude model 1 

(second versus first tertile: OR=0.62, 95% CI 0.42-0.92; third versus first tertile: OR=0.62, 95% CI 

0.41-0.95; p-trend=0.04; Supplementary Table 3).  
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To understand the substitution effects, further analyses were conducted using each 

tissue region as a continuous variable per 10% change and with two of the three tissue regions 

in the model (Supplementary Table 4). Similar to Table 3 where tissue regions were analyzed 

using quartiles, the association between epithelium as a continuous variable and breast cancer 

risk remained the strongest. Every 10% increase in the amount of epithelium was significantly 

associated with increased breast cancer risk in fully adjusted models, irrespective of whether it 

is substituted for fibrous stroma (adjusted OR=1.30, 95% CI 1.05-1.61) or fat tissue (adjusted 

OR=1.26, 95% CI 1.03-1.54; Supplementary Table 4).  

 

Morphometric signature associated with subsequent breast cancer risk 

The morphometric signature developed using elastic net regularized regression 

consisted of four features in the epithelium: the kurtosis of delaunay edge length (fourth 

moment of a graph-based feature which measures the spatial density (interconnectedness) of 

nuclei found in each epithelial region), the kurtosis of euler number (fourth moment of a 

topological feature which measures the number of holes in an epithelial region), mean 

perimeter of epithelial regions, and the minimum blue channel pixel value of nuclei found in 

epithelial regions. The area under the receiver operator curve (AUC ROC) of the model was 0.61 

(optimal λ = 0.08). When evaluated on the test set of 570 women, the AUC ROC was 0.51. Due 

to the poor AUC ROC of the test set, the association of the signature score with breast cancer 

was not further evaluated.  
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Discussion 

 

The identification of new biomarkers may improve breast cancer risk prediction. We 

developed a deep-learning based computational pathology method to segment BBD 

histopathological images into epithelial, fibrous stroma, and fat regions; calculate tissue 

composition; and extract morphometric features. We applied our method to the BBD breast 

cancer NCC study within the NHS/NHSII to determine the association of the tissue composition 

with breast cancer risk factors and breast cancer risk. Among controls, BBD subtypes, parity, 

and number of births were significantly associated with all three tissue regions; select tissue 

regions were associated with body size at ages 5-10 years, BMI, age of menarche, and 

menopausal status. Women whose breast tissues had higher percentages of epithelium had 

significantly increased risk of breast cancer compared to women with lower percentages, 

especially among women with proliferative without atypia subtype of BBD. We also extracted 

computer-derived morphometric features from each tissue region but were unable to construct 

a robust breast cancer morphometric signature. Our study showed that the percentage of 

epithelium may be utilized as a potential biomarker of breast cancer risk. 

 

BBD and breast cancer originate from TDLUs. The epithelium captured by our 

computational method was all-encompassing—normal TDLUs, TDLUs with proliferative or 

metaplastic changes, and various types of BBD lesions. Hence, our study was the first to 

demonstrate a direct quantitative relationship between the percentage of epithelium and 

subsequent breast cancer risk in women diagnosed with BBD. Our findings also supported the 
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long-held hypothesis that elevated cellular mass increases risk of cancer 
53

. Some lesion types 

within the proliferative without atypia subtype are highly cellular. For example, adenosis is 

characterized by increased number of enlarged lobules while radial scar is characterized by a 

central area of fibroelastotic change from which epithelial structures with or without associated 

hyperplasia or metaplasia radiate. This explained why when stratified by BBD subtype, the 

association of the percentage of epithelium and breast cancer risk remained significant among 

women within the proliferative without atypia of BBD.  

 

The associations of age-adjusted breast tissue composition and breast cancer risk 

factors among controls provided histopathological evidence to support epidemiological studies, 

mainly by demonstrating the link between breast tissue cellularity and cancer risk 
53

. Our work 

suggests that risk factors have different influences on the percentages of epithelium and 

fibrous stroma. Gertig et al. evaluated the proportion of epithelium and fibrous stroma in 300 

BBD women who did not develop breast cancer 
54

. We and Gertig et al. showed that breast 

tissues associated with the non-proliferative subtype of BBD were less cellular (i.e., lower 

epithelium and fibrous stroma but higher fat percentages) than proliferative with or without 

atypia subtypes, thus partly explaining why women with the non-proliferative subtype have 

lower breast cancer risk compared to proliferative subtypes 
33,55–58

.  

 

Adiposity during childhood or in young adults is inversely associated with breast cancer 

risk 
59–61

. Body adiposity is correlated with the amount of fat tissue in the breast when 

evaluated using percentage mammographic density (i.e., proportion of dense (epithelium and 
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fibrous stroma) to non-dense tissues (fat)) 
62,63

. As such, percentage mammographic density is 

also inversely associated with breast cancer risk. In 153 normal breast tissue samples obtained 

via core-biopsy, Gabrielson et al. observed significant inverse associations of BMI with 

percentages of epithelium and stroma 
64

. However, our study and the study by Gertig et al 
54

 

were conducted using more participants and only observed a significant inverse association 

between BMI and proportion of stroma. Nevertheless, these three studies provided histologic 

evidence to partially explain the differential breast cancer risk by adiposity—breast tissues of 

women with a larger childhood body size or younger women with BMI ≥30 have lower overall 

cellularity (i.e., epithelium and fibrous stroma) and thus are less dense compared to women 

with a leaner childhood body size or women with lower BMI, respectively.   

 

Parity had the strongest influence on breast tissue composition among the reproductive 

risk factors investigated in our study. Gertig et al. and Gabrielson et al. observed more 

epithelium and less fibrous stroma in parous women compared to nulliparous women 
54,64

. Our 

observation of higher percentages of epithelium and fat, and lower fibrous stroma percentages 

in multiparous women who had a live birth within the last 20 years was similar to other studies 

that observed less TDLU involution in parous versus nulliparous women 
24,65

; supported 

epidemiological reports of increased breast cancer risk in parous women who had a live birth 

within the last 5 to 24 years compared to nulliparous women 
66

; and highlighted the extensive 

stroma remodeling in mammary glands during pregnancy to accommodate expanding 

epithelium 
67

. The correlation between age of menarche and proportion of stroma reported by 

us and others 
54,64

 is in line with higher percent breast density in young women who had later 
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ages of menarche 
68

. The null associations between age of first birth and length of 

breastfeeding with breast tissue composition agreed with Gertig et al. 
54

 while Gabrielson et al. 

64
 found an association between percentage of epithelium and length of breastfeeding (β=0.03± 

0.01, p=0.02), but not percentage of stroma (β=0.43±0.26, p=0.10). Using a different 

computational pathology method that specifically measures normal TDLUs, we also did not find 

an association between length of breastfeeding and TDLU involution 
24

. Older women have less 

dense breasts than younger women, with the greatest change in density occurring during the 

menopause years 
69

. Indeed, we and Gertig et al. 
54

 reported that post-menopausal women had 

less epithelium and fibrous stroma compared to pre-menopausal women. However, this was 

not observed by Gabrielson et al. 
64

, possibly due to low power.  

 

Computer-derived morphometric signatures have shown potential as prognostic or 

diagnostic biomarkers 
15,16,70

. We did not identify a breast cancer morphometric signature from 

BBD WSIs. Morphometric feature data are typically noisy. In an effort to reduce signal noise, we 

attempted unsuccessfully to create a breast cancer signature within each BBD histopathological 

subtype due to low power. There were more features than the number of samples. Extracting 

and combining morphometric features from different types of epithelium may have excessively 

diluted meaningful signals. Using the median metric 
15

, a common method of aggregating 

morphometric features across all WSIs, may not optimal for this dataset. There is no gold 

standard method for feature aggregation and this remains an active area of research by medical 

image analysis groups. Future work can include improving methods for morphometric feature 
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aggregation or create specific breast cancer morphometric signatures for each type of BBD 

lesion.  

 

The strengths of our study include the application of a computer pathology method to 

assess breast tissue composition in a large nested case–control study with rich data on breast 

cancer risk factors 
3,4,26,27,32,34

. BBD samples underwent centralized pathology review and breast 

cancer cases were confirmed through review of medical records. Some limitations of our study 

include being underpowered to evaluate the association of breast composition and ER negative 

breast cancer, breast cancer molecular subtypes 
71,72

, or mammographic density 
73,74

 as 

mammogram data were only available for 105 women (7.8%) in this study. Our findings were 

also limited to White women, the predominant race of the NHS/NHSII participants. 

Dysfunctional epithelial-stroma interactions in the breast have been implicated in breast 

carcinogenesis 
75

, however, our current study was not designed to investigate epithelium-

stroma interactions.  

 

In conclusion, we found that BBD histopathological subtypes, anthropometric, and 

selective reproductive risk factors were associated with breast tissue composition. Higher 

percentages of epithelium were associated with increased risk of breast cancer, specifically 

among women with the proliferative without atypia subtype of BBD. No morphometric 

signature was associated with subsequent breast cancer. Future work can include incorporation 

of the percentage of epithelium into risk assessment models as well as explore end-to-end deep 

learning breast cancer prediction models.  
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Table 1. Benign breast disease (BBD) nested case-control study participants. 

 

Cases, n (%) Controls, n (%) 

n 293 1132 

Age at BBD biopsy   

<40 years    75 (25.6)    251 (22.2)  

40-49 years   131 (44.7)    438 (38.7)  

50-59 years    61 (20.8)    293 (25.9)  

≥60 years    26 ( 8.9)    150 (13.3)  

Year of BBD biopsy   

Before 1970    30 (10.2)     55 (4.9)  

1970 to 1979    77 (26.3)    226 (20.0)  

1980 to 1989   129 (44.0)    501 (44.3)  

After 1989    57 (19.4)    350 (30.9)  

Age at breast cancer diagnosis/index date   

<45 years    41 (14.0)    206 (18.2)  

45-54 years   110 (37.5)    371 (32.8)  

≥55 years   142 (48.5)    555 (49.0)  

Years between BBD biopsy and breast cancer diagnosis/index date   

0.5 to 4.9 years    90 (30.7)    532 (47.0)  

5.0 to 9.9 years   103 (35.2)    286 (25.3)  

10.0 to 14.9 years    54 (18.4)    173 (15.3)  

≥15.0 years    46 (15.7)    141 (12.4)  

BBD histological subtype   

Non-proliferative    63 (21.50)    331 (29.2)  

Proliferative without atypia   148 (50.5)    645 (57.0)  

Atypical hyperplasia    82 (28.0)    156 (13.8)  
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Table 2. Tissue composition (%) and breast cancer risk factors among 1132 controls. Data 

presented for age are means (95% confidence interval). Data for other variables are presented 

as age-adjusted means (95% confidence interval); age was adjusted as a continuous variable.  

n Epithelium (%) Fibrous stroma (%) Fat (%) 

Age at BBD biopsy     

<40 years 251 9.2 (8.5,10.0) 76.0 (74.3,77.7) 7.8 (6.9,8.8) 

40-49 years 438 7.8 (7.3,8.3) 72.0 (70.8,73.2) 13.2 (12.0,14.4) 

50-59 years 293 6.1 (5.7,6.6) 69.1 (67.7,70.5) 17.5 (15.6,19.6) 

≥60 years 150 5.0 (4.5,5.6) 63.5 (61.7,65.4) 23.9 (20.4,28.0) 

p-value  <0.001 <0.001 <0.001 

BBD histological subtype     

Non-proliferative 331 5.7 (5.3,6.1) 68.3 (67.0,69.7) 16.2 (14.6,18.0) 

Proliferative without atypia 645 7.8 (7.5,8.2) 71.8 (70.9,72.8) 12.5 (11.6,13.5) 

Atypical hyperplasia 156 8.0 (7.2,8.8) 72.8 (70.8,74.8) 13.3 (11.4,15.6) 

p-value  <0.001 <0.001 <0.001 

Body size at ages 5-10 years     

Level 1 322 7.5 (7.0,8.0) 72.0 (70.6,73.4) 12.5 (11.2,14.0) 

Level 1.5 to 2 290 7.1 (6.6,7.7) 71.8 (70.4,73.3) 12.8 (11.4,14.3) 

Level ≥2.5 367 7.0 (6.5,7.5) 69.9 (68.6,71.2) 14.6 (13.2,16.2) 

p-value  0.42 0.048 0.09 

Body mass index (kg/m
2
)     

<25 641 7.1 (6.8,7.5) 72.6 (71.6,73.6) 12.3 (11.4,13.3) 

25 to <30 303 7.3 (6.7,7.8) 70.7 (69.3,72.1) 13.5 (12.1,15.0) 

≥30 173 7.2 (6.5,7.9) 65.5 (63.8,67.2) 19.8 (17.1,22.8) 

p-value  0.91 <0.001 <0.001 

Age of menarche     

≤12 years 532 7.0 (6.6,7.4) 70.0 (68.9,71.0) 14.6 (13.5,15.9) 

13 years 335 7.2 (6.7,7.7) 71.1 (69.7,72.5) 12.5 (11.3,13.9) 

≥14 years 260 7.4 (6.9,8.1) 72.8 (71.2,74.4) 13.0 (11.6,14.7) 

p-value  0.50 0.01 0.05 

Parity     

Nulliparous 107 5.2 (4.6,5.9) 73.8 (71.3,76.4) 9.7 (8.1,11.7) 

Parous 1020 7.4 (7.1,7.7) 70.6 (69.8,71.4) 14.2 (13.3,15.0) 

p-value  <0.001 0.02 <0.001 

Number of births     

Nulliparous 107 5.8 (5.1,6.7) 75.8 (73.2,78.5) 8.1 (6.7,9.9) 

Primiparous (1 birth) 97 7.0 (6.1,8.1) 73.4 (70.8,76.2) 12.6 (10.3,15.5) 

Multiparous (≥2 births) 923 7.3 (7.0,7.7) 70.1 (69.3,71.0) 14.6 (13.7,15.6) 

p-value  0.005 <0.001 <0.001 

Time between last birth and BBD biopsy     

0 years (i.e., nulliparous) 107 5.2 (4.6,5.9) 73.7 (71.2,76.3) 9.8 (8.1,11.8) 

<20 years (among parous women) 578 7.6 (7.1,8.0) 70.4 (69.2,71.5) 15.1 (13.8,16.5) 

≥20 years (among parous women) 409 7.0 (6.5,7.5) 70.3 (68.8,71.8) 14.3 (12.8,16.1) 

p-value  <0.001 0.04 <0.001 

Age at first birth among parous women     

<25 years 563 7.1 (6.8,7.5) 70.5 (69.4,71.5) 14.8 (13.8,15.8) 

25 to 29 years 359 7.7 (7.2,8.2) 69.6 (68.3,70.9) 14.4 (13.2,15.7) 

≥30 years 101 7.1 (6.3,8.1) 72.8 (70.3,75.4) 12.8 (10.9,15.0) 

p-value  0.19 0.08 0.27 

Birth index among parous women     
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≤30 229 7.4 (6.8,8.1) 72.0 (70.3,73.8) 13.3 (11.9,14.9) 

31 to 59 281 7.7 (7.2,8.3) 71.5 (70.0,72.9) 13.8 (12.6,15.2) 

≥60 231 7.8 (7.2,8.6) 70.9 (69.2,72.6) 13.5 (12.1,15.0) 

p-value  0.65 0.67 0.85 

Breastfeeding among parous women     

Never 409 7.1 (6.7,7.5) 70.2 (69.0,71.4) 15.3 (14.1,16.5) 

<6 months 209 7.3 (6.7,8.0) 70.9 (69.2,72.6) 15.4 (13.8,17.2) 

≥6 months 305 7.5 (7.0,8.1) 70.4 (69.0,71.8) 13.5 (12.3,14.8) 

p-value  0.47 0.79 0.09 

Menopausal Status     

Pre 679 7.8 (7.3,8.2) 72.4 (71.2,73.5) 13.2 (12.0,14.4) 

Post 365 6.3 (5.7,6.9) 68.8 (67.2,70.6) 13.7 (11.9,15.7) 

p-value  0.001 0.004 0.71 
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Table 3. The association between tissue composition and breast cancer risk was evaluated 

using unconditional logistic regression models to estimate odd ratios (ORs) and 95% confidence 

intervals (CI). 

 Quartile 1 Quartile 2 Quartile 3 Quartile 4 p-trend 

Epithelium      

Cases/Controls, n 56/283 65/283 68/283 104/283  

Quartile cutoff, % <4.8 ≥4.8 to <7.5 ≥7.5 to <11.2 ≥11.2  

Model 1 Ref 1.12 (0.76,1.67) 1.12 (0.75,1.67) 1.53 (1.04,2.27) 0.02 

Model 2 Ref 0.95 (0.63,1.43) 0.92 (0.61,1.39) 1.36 (0.91,2.03) 0.06 

Model 3 Ref 0.95 (0.61,1.49) 0.95 (0.61,1.49) 1.39 (0.91,2.14) 0.047 

Fibrous stroma      

Cases/Controls, n 62/283 67/283 78/283 86/283  

Quartile cutoff, % <64.5 ≥64.5 to <73.5 ≥73.5 to <81.3 ≥81.3  

Model 1 Ref 0.98 (0.66,1.45) 1.07 (0.73,1.57) 1.20 (0.81,1.76) 0.33 

Model 2 Ref 0.87 (0.58,1.30) 0.96 (0.65,1.42) 1.07 (0.72,1.59) 0.65 

Model 3 Ref 0.78 (0.51,1.20) 0.86 (0.56,1.31) 0.93 (0.61,1.41) 0.85 

Fat      

Cases/Controls, n 102/283 80/283 49/283 62/283  

Quartile cutoff, % <8.7 ≥8.7 to <16.7 ≥16.7 to <27.0 ≥27.0  

Model 1 Ref 0.81 (0.57,1.15) 0.55 (0.36,0.81) 0.75 (0.50,1.12) 0.11 

Model 2 Ref 0.81 (0.56,1.15) 0.55 (0.36,0.82) 0.83 (0.55,1.25) 0.27 

Model 3 Ref 0.83 (0.58,1.21) 0.56 (0.36,0.85) 0.93 (0.59,1.45) 0.52 

Each tissue region was categorized into quartiles as defined by the distribution among the controls. Model 1 

adjusted for matching factors. Model 2 adjusted for matching factors and BBD histological subtypes. Model 3 

adjusted for matching factors, BBD histological subtypes, parity, menopausal status, and BMI. The median value for 

each quartile was included as a continuous variable in the unconditional logistic regression for Model 1, 2, and 3, 

to obtain the p-trend value (Wald test). 
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Figure Legends 

 

Figure 1. Overview of our BBD image analysis pipeline. (A) A whole slide image (WSI). (B) Image 

processing to extract tissue-containing areas of the WSI. (C) Applying our tissue segmentation and nuclei 

detection networks created in the development phase to a WSI to obtain a segmentation map. (D) From 

the segmentation map, computer-derived morphometric features were extracted. Percentages of tissue 

regions were also computed from the map. Morphometric data were summarized from all WSIs 

belonging to the same woman. (E) Identifying if morphometric features are associated with breast 

cancer.  

 

Figure 2. An example of an original image, ground truth, and automated segmentation or detection 

for each deep-learning network. (A) For tissue segmentation, white represents background, green 

represents fibrous stroma, red is epithelium, and purple is fat. (B) For cell nuclei detection, white 

represents background, red is nucleus, and cyan is nuclei membrane border. The final output produces a 

binary mask which considers nucleus membrane pixels to be part of the background.  

 

Figure 3. Boxplots display the amount of each tissue region (%) among cases and controls (A), and 

when stratified by benign breast disease (BBD) histological subtypes (B, C, D). * denotes p<0.05 and ** 

denotes p<0.001.  

 

Supplementary Figure 1. A schematic diagram showing how four patches were selected on a whole 

slide image for manual annotation. The dark areas of the whole slide image correspond to areas of the 

slide that do not contain tissue and were thus not scanned by the scanner.  

 

Supplementary Figure 2. Example patches used to train the tissue segmentation and nuclei detection 

networks. The top row in each section display the original patches, the bottom row contains the 

corresponding manually annotated ground truths. Images display a broad spectrum of staining colors 

and intensities. (A) Examples of tissue segmentation training patches from the Nurses’ Health Studies 

benign breast disease incidence study. In our ground truth annotations, white represents background, 

green represents fibrous stroma, red is epithelium, and purple is fat. (B) Examples of nuclei detection 

training patches from invasive breast cancer cases from The Cancer Genome Atlas. In the ground truth 

annotations, white represents background, red is nucleus, and cyan is nuclei membrane border. 
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