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Abstract 

Understanding the interrelationships of clinical manifestations of Alzheimer’s disease (AD) and 
functional connectivity (FC) as the disease progresses is necessary for use of FC as a potential 
neuroimaging biomarker. Degradation of resting-state networks in AD has been observed when FC is 
estimated over the entire scan, however, the temporal dynamics of these networks are less studied. We 
implemented a novel approach to investigate the modular structure of static (sFC) and time-varying 
(tvFC) connectivity along the AD spectrum in a two-sample Discovery/Validation design (n=80 and 81, 
respectively). Cortical FC networks were estimated across 4 diagnostic groups (cognitively normal, 
subjective cognitive decline, mild cognitive impairment, and AD) for whole scan (sFC) and with sliding 
window correlation (tvFC). Modularity quality (across a range of spatial scales) did not differ in either 
sFC or tvFC. For tvFC, group differences in temporal stability within and between multiple resting state 
networks were observed; however, these differences were not consistent between samples. Correlation 
analyses identified a relationship between global cognition and temporal stability of the ventral 
attention network, which was reproduced in both samples. While the ventral attention system has been 
predominantly studied in task-evoked designs, the relationship between its intrinsic dynamics at-rest 
and general cognition along the AD spectrum highlights its relevance regarding clinical manifestation of 
the disease.  
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1 Introduction 

The pathological progression of Alzheimer’s disease (AD) is marked by abnormal aggregation of amyloid 
and tau proteins, neurodegeneration as measured by volumetric reduction in gray matter on magnetic 
resonance imaging (MRI), cognitive dysfunction, and alterations in brain networks in resting-state and 
task-based functional MRI (fMRI) (Dennis and Thompson, 2014). Neuroimaging methods such as high-
resolution structural MRI have been shown to be valuable disease predictors prior to onset of any 
cognitive deficits (Jack and Holtzman, 2013, Jack et al., 2013). While structural MRI has been extensively 
utilized for AD diagnosis in the clinic, fMRI has yet to achieve such utility. Functional MRI studies have 
aimed to stratify disease groups (de Vos et al., 2018) and to identify relationships between brain 
function and measures of cognition, blood-based and cerebrospinal fluid biomarkers (Veitch et al., 
2019), and genetic risk factors (Quevenco et al., 2017). Recently, numerous studies have focused on 
linking changes in behavior and/or clinical status to alterations in patterns of structural and functional 
brain connectivity (Douw et al., 2019, Stam, 2014), including in AD (Tijms et al., 2013). 

Connectivity data obtained from fMRI has been commonly analyzed with seed-based, independent 
component analysis (ICA) (Córdova-Palomera et al., 2017, Fu et al., 2019), and/or graph theory methods 
(Contreras et al., 2019, Dennis and Thompson, 2014). Graph theory involves the construction of a matrix 
representation of connectivity across the whole brain, usually defining contiguous nonoverlapping 
regions/nodes and quantifying their pairwise relationships as a metric of statistical 
dependence/association (typically Pearson correlation). This functional connectivity (FC) matrix can be 
subdivided into coherent functional systems or resting-state networks (RSNs) (Yeo et al., 2011, Power et 
al., 2011). Graph measures indexing functional integration and segregation can be computed from 
groupwise or individual FC matrices and statistically compared across clinical groups or related to 
behavioral/cognitive outcomes of interest. Studies that employ graph theory on FC in AD have shown an 
overall decline in the internal coherence of RSNs (particularly the default mode network (Dai et al., 
2019)), a reduction in separation between RSNs (Contreras et al., 2019), and alterations in various global 
network properties, such as modularity (Dai et al., 2019, Pereira et al., 2016). 

Modularity, also referred to as community structure, is a data-driven approach for clustering nodes of a 
network into groups of densely interconnected regions, or communities (Sporns and Betzel, 2016). 
While this is a powerful tool for studying networks, detecting network communities poses a challenging 
optimization problem that requires multiple iterations to achieve comprehensive sampling of partitions 
across multiple spatial scales (Fortunato and Barthélemy, 2007). Alterations in community structure 
have been reported in AD, showing higher modularity Q values in apolipoprotein E (APOE) ε4 carriers 
(Wang et al., 2015) (single community scale and one iteration), higher FC-structural connectivity 
coupling in the default mode network in AD (Dai et al., 2019) (single community scale and a single 
community partition from 1000 interations), and loss of segregation between default mode and 
frontoparietal RSNs (Contreras et al., 2019) (multi-scale community structure with 10,000 partitions 
summarized into a co-assignment matrix). Despite methodological differences in the application of 
modularity among these reports, they suggest a common pattern of specific disturbances of FC 
community structure in AD during resting-state fMRI.  

In recent years it has been noted that, within a scan session, significant temporal fluctuations in 
functional connectivity can occur (Lurie et al., 2020, Hutchison et al., 2013), and that these fluctuations 
contain information that is lost when FC is estimated over the entire scan duration (static FC; sFC). Time-
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varying functional connectivity (tvFC) aims to capture those temporal fluctuations through estimation of 
connectivity across discrete or partially overlapping windows (Abrol et al., 2017, Shakil et al., 2016, Allen 
et al., 2014). To date, tvFC applications in AD have relied predominantly on ICA-derived FC matrices, 
which have shown a reduction in internetwork connectivity in AD (Schumacher et al., 2019) and healthy 
aging (Tian et al., 2018). Additionally, tvFC of the interaction between dorsal attention and default mode 
networks has been related to cognitive reserve/function in individuals with amnestic mild cognitive 
impairment (MCI) (Franzmeier et al., 2017), and application of tvFC in machine learning has shown 
promise in disease classification (de Vos et al., 2018). However, no investigations have examined the 
tvFC stability of RSN networks in AD. Here, we investigate the community structure of tvFC of RSN 
networks in a novel approach that aims to identify group differences and relationships that are stable 
across free parameters in modularity. We also define a measure of temporal stability in tvFC, which 
describes fluctuations in community structure over time. 

2 Materials and methods 

2.1 Sample characteristics 

Data were collected as part of the Indiana Memory and Aging Study (IMAS) and from participants 
enrolled in the Indiana Alzheimer’s Disease Research Center (IADRC) at Indiana University School of 
Medicine. Informed consent was obtained from all participants or their representatives, and all 
procedures were approved by the Indiana University Institutional Review Board in accordance with the 
Belmont Report. Valid datasets from 161 participants were included in the study, consisting of 55 
cognitively normal (CN; 68.24 ± 8.97 years old), 47 with subjective cognitive decline (SCD; 69.23 ± 10.80 
years old), 35 with MCI (72.54 ± 7.31 years old), and 24 with AD (66.42 ± 11.26 years old). A subset of 
these data was included as part of a previous publication (Contreras et al., 2019). Prior to any analysis of 
the data, the dataset was randomly split into equally sized Discovery (n=80) and Validation (n=81) 
samples. Additionally, for group comparisons, the authors responsible for analysis were blinded to 
diagnostic group status of the participants and instead provided with neutrally coded group labels. 
Demographic characteristics and diagnostic group distributions for both samples are presented in Table 
1. Demographic differences were assessed with an analysis of variance (ANOVA) or Χ2-test, where 
appropriate.  

2.2 Image acquisition 

All participants were scanned on a Siemens 3T Prisma Scanner with a 64-channel head coil (Siemens, 
Erlangen, Germany). A high-resolution, T1-weighted, whole-brain magnetization prepared rapid gradient 

Table 1. Sample Demographics 
 Sample 
 Discovery Validation 
Age (years) 69.4 ± 8.9 69.0 ± 10.5 
Education (years) 16.3 ± 2.4 16.1 ± 2.7 
Sex (M/F) 24/56 30/51 
Diagnostic Group (CN/SCD/MCI/AD) 29/19/21/11 26/28/14/13 
Data are shown as mean ± standard deviation. There were no significant differences between 
samples. M: Male; F: Female; CN: Cognitively Normal; SCD: Subjective Cognitive Decline; MCI: Mild 
Cognitive Impairment; AD: Alzheimer’s disease. 
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echo (MP-RAGE) volume was first acquired with parameters optimized for the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI; http://adni.loni.usc.edu): 220 sagittal slices, GRAPPA acceleration factor 
of 2, voxel size 1.1 x 1.1 x 1.2 mm3, 5 min 12 sec duration. Resting-state functional MRI (rs-fMRI) data 
were acquired with a gradient-echo echo-planar imaging sequence with a multi-band factor of 3, scan 
time of 10 min 7 sec, and temporal resolution (TR) of 1.2 sec, resulting in 500 timepoints. Other relevant 
parameters were TE=29 ms, flip angle 65°, 2.5 x 2.5 x 2.5 mm3 voxel size, and 54 interleaved axial slices. 
During the scan, participants were instructed to remain still with eyes closed and to think of nothing in 
particular. Prior to rs-fMRI acquisition, two spin-echo echo-planar imaging (12 sec each, TR=1.56 sec, 
TE=49.8 ms, flip angle 90°) were acquired with reverse phase encoding directions, to be used for 
creating field maps for geometric distortion correction (see Supplementary Methods).  

2.3 Image preprocessing 

Data were processed with a pipeline developed in-house, implemented in Matlab (MathWorks, version 
2019a; Natick, MA), and utilizing the Oxford Centre for Functional MRI of the Brain (FMRIB) Software 
Library (FSL version 6.0.1) (Jenkinson et al., 2012), Analysis of Functional NeuroImages (AFNI; 
afni.nimh.nih.gov), and ANTS (http://stnava.github.io/ANTs/) packages. This pipeline was developed and 
optimized for the Siemens scanner data acquired at Indiana University School of Medicine based on and 
following the evidence and recommendations in Satterthwaite et al. (2013), Parkes et al. (2018), and 
Lindquist et al. (2019). A brief overview of preprocessing steps is provided below. For details refer to the 
Supplementary Methods. 

All processing was carried out in each participant’s native space. T1 volumes were denoised (Coupé et 
al., 2008), bias field corrected (FSL), and skull stripped (ANTS). rs-fMRI data were first distortion 
corrected (FSL topup), motion corrected (mcflirt), and normalized to a 4D mean of 1000. Nuisance 
regressors were removed from the data with use of ICA-AROMA (Pruim et al., 2015), aCompCor 
(Muschelli et al., 2014), and global signal regression. Data were then demeaned, detrended, and 
bandpass filtered (0.009-0.08 Hz). Finally, 18 timepoints (~22 sec) were removed from the beginning and 
end of the scan to remove edge artifacts introduced by bandpass filtering. Relative frame displacement 
output by mcflirt was used as an index of in-scanner motion. 

2.4 Network analysis 

Figure 1 illustrates a diagram of the workflow from regional time series to modularity outcomes. 

2.4.1 Parcellation preparation and connectivity matrix construction 

For each participant, after preprocessing, the final dataset consisted of 464 timepoints. For network 
construction the Schaefer et al. (2018) cortical parcellations at two scales (200 and 300 regions/nodes) 
were used. Time series for each node were obtained from the average of all voxel time courses within 
that node. For sFC (the term static here refers to the assumption that FC is constant over scan duration 
(Lurie et. al., 2020)), the full time series were cross-correlated to obtain a node-by-node matrix of 
Pearson correlations (Figure1 A-B). All sFC matrices were Fisher z-scored prior to analysis. The tvFC 
matrices were generated with a sliding window correlation approach (Figure1 A, C). This involves taking 
partially overlapping segments of the time series in order to estimate FC dynamics. Parameters of 
interest were a 56-timepoint window size (~67 sec; previously reported as adequate duration for FC 
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estimation (Hutchison et al., 2013, Shirer et al., 2011)), step size of 14 time points (resulting in 75% 
overlap of adjacent windows), and a taper shape of window size/3 (Zalesky et al., 2014). The impact on 
findings of choosing longer windows (~111 sec) was also investigated. 

2.4.2 Modularity 

Both sFC and tvFC matrices were analyzed with the Louvain community detection algorithm 
implemented in Matlab as part of the Brain Connectivity Toolbox (Rubinov and Sporns, 2010, Blondel et 
al., 2008), which aims to detect communities by maximizing a global modularity measure (Q-metric) 

𝑄𝑄𝑊𝑊 =  
1
𝑙𝑙𝑊𝑊
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(Newman and Girvan 2004, Rubinov and Sporns 2010), adapted here for weighted undirected networks. 
To capture significant modular organization at multiple spatial scales (Jeub et al., 2018, Fortunato and 
Hric, 2016), we varied a partition resolution parameter γ (gamma) over a wide range, from 0.1 to 4, in 
steps of 0.1 (Figure 1C, E). Due to the stochastic nature of the algorithm, 1000 independent runs of 
modularity maximization were performed at γ value. From these 1000 runs, the single community 
partition with the maximal value of the Q-metric was retained. If multiple equally ‘good’ partitions were 
identified, the one with the highest frequency across all the runs was selected. 

Figure 1. Network construction and modularity workflow. (A) Time series for all nodes were correlated 
to generate (B) a sFC matrix, on which modularity was performed to obtain (C) a set of partitions across 
the γ (gamma) parameter range. Sliding window was used to compute (D) tvFC matrices for partially 
overlapping time frames. (E) Modularity on each window generated a set community partitions, which 
were then used to compute (F) co-assignment over time at each γ. Pairwise nodal co-assignment values 
were then averaged with and between canonical resting state network (RSN) blocks. VIS: Visual; SM: 
Somatomotor; DA: Dorsal Attention; VA: Ventral Attention; LM: Limbic; FP: Frontoparietal; DMN: 
Default Mode Network. 
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To maintain interpretability of the partitions obtained from modularity maximization and limit the 
influence of single node communities, a maximum γ value defining the upper bound of the γ range was 
determined for subsequent analyses. For sFC this was chosen as the highest γ at which the average 
number of single node communities across the sample was less than 1. The same approach was 
employed in tvFC, where the average was determined over all windows and all participants in the 
sample. Therefore, the final γ range was set within sample from 1 to the upper limit in steps of 0.1, and 
all analyses utilized partitions within this range. 

2.4.5 Network outcomes 

There is mounting evidence that the community structure of brain networks is organized on multiple 
spatial scales (Sporns and Betzel, 2016, Betzel and Bassett, 2017). Previous clinical research which 
utilized Louvain modularity has either investigated a single or a small set of community scales. Here, to 
avoid an arbitrary selection of scale, a finely sampled range of the γ resolution parameter was assessed 
with a data driven selection of an upper bound for interpretable partitions. However, this yields a large 
set of partitions for each subject, so to identify stable variations in network outcomes, area under the 
curve (AUC) over the γ range was computed for outcomes of interest (sFC: Q-metric and number of 
communities; tvFC: mean and standard deviation of Q-metric across windows and temporal stability), 
using the trapezoidal rule as implement in the Matlab trapz function. If the shape of the outcome versus 
γ curve is not drastically different (e.g., linear versus exponential), AUC can serve as a useful composite 
measure, thus avoiding the need for selection of a specific scale or performing a large number of 
statistical tests, which introduces a multiple comparisons problem (Fornito et al., 2016).  

2.4.5.1 tvFC RSN temporal stability  

Here temporal stability is defined as a measure that captures the variability in community structure over 
time (windows). Operationally, temporal stability was computed as the number of times two nodes 
were assigned to the same community across windows, divided by the total number of windows (co-
assignment). Aggregating over all node pairs, this forms a co-assignment (CA) matrix for each γ value 
(Figure 1 F, left). High CA values indicate that nodes remained mostly within the same community over 
time, while low values indicate that nodes we often assigned to different communities. A single 
temporal stability matrix was then computed by computing all pairwise nodal AUCs of CA. At this stage 
mass univariate testing would require (N2/2)-N tests (where N is the number of nodes, here either 200 
or 300). To reduce dimensionality of the data and improve interpretability of results, RSN-averaged 
temporal stability values were computed within and between bilateral RSNs (Figure 1 F, right). This 
yields a 7x7 RSN network matrix (28 unique network blocks, 7 within network and 21 between network 
interaction blocks), which describes over the duration of the scan, how likely it is that nodes within a 
RSN or between a pair of RSNs will be assigned to the same community. It is expected that within RSN 
blocks will have higher temporal stability compared to between RSN blocks. 

2.5 Neurocognitive assessments 

All participants underwent a clinical and neuropsychological battery as part of the Uniform Dataset 
(Weintraub et al., 2018). Data from the following assessments is reported here: Montreal Cognitive 
Assessment (MoCA; total score) (Nasreddine et al., 2005), Rey Auditory Verbal Learning Test (RAVLT, 
immediate and delayed) (Weintraub et al., 2018), Craft Story (immediate and delayed) (Craft et al., 
1996), Benson Complex Figure (Possin et al., 2011), Trail-Making Test (Reed and Reed, 1997), and Digit 
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Span Test (forward and backward) (Weintraub et al., 2018). All scores were adjusted by regressing out 
age, sex, and education (multiple linear regression in Matlab), and subsequently z-scored relative to an 
independent sample of controls as done in previous work (Contreras et al., 2019). Finally, the scores 
were grouped and averaged within three domains: (1) Global Cognition (MoCA), (2) Memory (RAVLT 
immediate and delayed, Craft Story immediate and delayed, Benson Complex Figure recall), (3) 
Attention Processing and Speed (Digit Span forward and backward, Trail A time). 

2.6 Statistics 

All statistics were carried out in Matlab. Demographic comparisons among diagnostic groups were 
carried out with an analysis of variance (ANOVA) or Χ2-test and follow-up t-tests, where appropriate. 
Group comparisons were carried out blinded to true diagnostic groups, with differences in modularity 
outcomes (sFC: AUCs of Q-metric and number of communities; tvFC: AUCs of means and standard 
deviations (across windows) of Q-metric) assessed with a permutation analysis of covariance (ANCOVA), 
with age, sex, and education as nuisance covariates. Temporal stability differences were probed with a 
permutation ANCOVA, independently for both samples and both cortical parcellation scales (28 tests per 
sample and parcellation). Permutations involved randomly shuffling group assignments 10,000 times to 
generate a null distribution of F-values, from which a permutation p-value was computed. Post-hoc 
comparisons were carried out via pairwise t-tests. Multiple comparisons in the were subject to a 5% 
False Discovery Rate (FDR) adjustment when appropriate. 

Correlation analyses of modularity outcomes (Q-metric measures and number of communities) and 
cognitive domains were carried out within sample, unblinded, and across all groups, using Spearman’s 
partial correlation (adjusted for age, sex, and education). For temporal stability, correlations were 
investigated independently for each cognitive domain, where all 28 network blocks in the discovery 
sample (for both the 200 and 300 node parcellations) were tested at an uncorrected threshold of 
p<0.05. Significant relationships that emerged in both parcellations of the Discovery sample, were 
tested for reproducibility in the Validation sample. Multiple comparisons in the Validation sample were 
subject to a 5% False Discovery Rate (FDR) adjustment when appropriate. 

2.7 Supplementary analyses 

The following analyses were carried out after the completion of the above-mentioned comparisons in 
order to aid interpretation of the main findings. 

2.7.1 Younger versus older AD  

AD participants from the Discovery and Validation samples were combined and split into two subgroups 
based on median age at the time of the scan. The sFC and tvFC outcome comparisons were carried out 
at both parcellations to assess possible differences in AD subgroups due to age.  

2.7.2 Impact of splitting the dataset  

We investigated whether the group differences and their lack of reproducibility between samples 
reported here were influenced by the random split of the dataset into the Discovery and Validation 
samples. Modularity outcome variables for sFC (AUCs of Q-metric and number of communities) and tvFC 
(AUCs of the means and standard deviations of the Q-metric across windows) from both samples were 
pooled together and re-split 500 times, with group comparisons repeated for each split. The proportion 
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of times (out of 500) that a result was consistent with the original split served as an indicator of 
robustness, with values close to 1 indicating outcomes consistent with the original split. In the case of 
RSN temporal stability, data were reported for each network block as the number of times (out of 500 
random splits) an ANCOVA main effect of group was found in both Discovery and Validation samples, at 
p<0.05 uncorrected, within each parcellation scale. 

3 Results 

3.1 Sample characteristics 

Table 2 shows demographic comparisons among diagnostic groups within the Discovery and Validation 
samples. Overall, the groups were well matched within each sample, with only the Discovery sample 
showing a significant difference in sex distribution (Χ2=8.78, p<0.05). Supplementary Figure 1 displays a 
more detailed distribution of the demographic variables, demonstrating that the sex difference in the 
Discovery sample is driven by greater proportions of females in the CN and AD groups. Examination of 
adjusted z-scores for the three cognitive domains of interest (Global Cognition, Memory, and Attention 

Table 2. Sample Characteristics 
Discovery Sample 

 CN SCD MCI AD Stats 
N 29 19 21 11  
Age (years) 69.9±7.8 68.4±9.3 70.8±7.8 66.6±12.9 n.s. 
Education (years) 16.5±2.4 16.5±2.4 16.3±2.5 15.3±2 n.s. 
Sex (M/F) 4/25 8/11 10/11 2/9 p<0.05 
MoCA (z-score) -0.2±1.3ǂ§ -0.4±0.9ǂ§ -2.3±1*^§ -6.3±2*^ǂ p<0.05E-15 

Memory (z-score) -0.2±0.7ǂ§ -0.2±0.5ǂ§ -2.1±0.9*^ -2.7±1.7*^ p<0.05E-9 
Attention and Processing 
Speed (z-score) -0.1±0.6 0.1±0.5 -0.3±0.7 -0.1±1.1 n.s. 

Mean Frame Displacement 0.20±0.09 0.21±0.10 0.23±0.12 0.29±0.23 n.s. 
Validation Sample 

 CN SCD MCI AD Stats 
N 26 28 14 13  
Age (years) 66.4±9.9 69.8±11.8 75.1±5.8 66.2±10.2 n.s. 
Education (years) 16.4±2.3 16.5±2.7 15.4±2.8 15.5±3.2 n.s. 
Sex (M/F) 5/21 11/17 8/6 6/7 n.s. 
MoCA (z-score) 0.1±1ǂ§ -0.6±1.2ǂ§ -2±1.5*^§ -5.5±2.7*^ǂ p<0.05E-12 
Memory (z-score) -0.1±0.8ǂ§ -0.3±0.8ǂ§ -1.5±0.7*^§ -3.1±0.5*^ǂ p<0.05E-7 
Attention and Processing 
Speed (z-score) -0.3±0.5 -0.0±0.6 -0.35±0.7 -0.2±0.5 n.s. 

Mean Frame Displacement 0.20±0.08 0.21±0.10 0.23±0.12 0.29±0.23 n.s. 
Data are shown as mean ± standard deviation. P-values represent significance for a one-way analysis 
of variance or Χ2-test where appropriate. For distributions of sex see Supplementary Figure 1. CN: 
Cognitively Normal; SCD: Subjective Cognitive Decline; MCI: Mild Cognitive Impairment; AD: 
Alzheimer’s disease; n.s.: non-significant; MoCA: Montreal Cognitive Assessment; M: Male; F: Female. 
The following denote significant pairwise difference in post-hoc t-tests: * significantly different from 
CN; ^ significantly different from SCD; ǂ significantly different from MCI; § significantly different from 
AD. 
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and Processing Speed) showed a significant decline with increasing diagnosis severity for Global 
Cognition and Memory. In-scanner motion did not significantly differ between groups (one-way ANOVA, 
p>0.05), nor was it correlated with any modularity outcome variables (static FC:  AUC of Q metric or 
number of communities; tvFC: AUC of mean or standard deviation of Q metric or mean AUC of CA across 
all network blocks; p>0.05). 

3.2 Group comparisons of modularity 

Modularity and correlation results (subsequent section) are reported for the 200 node parcellation and 
~1 min window. Results from the 300 node parcellation and longer window length, which were generally 
in agreement with the main results, are provided in supplementary figures. For sFC, the upper γ value 
that had on average < 1 single-node community was similar for both samples and parcellation scales 
(Discovery sample: γ=2.7 and 2.8 for the Schaefer 200 and 300 node networks, respectively; Validation 
sample: 2.8 and 2.3). Q-metric and number of communities versus γ curves were qualitatively similar 
(Figure 2), with their AUC values not significantly different between groups in either sample (all p>0.05, 
age, sex, and education adjusted permutation ANCOVA; 10,000 permutations). Consistent results were 
observed in the finer, 300 node parcellation for both samples (Supplementary Figure 2A-B). 

The average number of single-node communities across all subjects and windows for tvFC were similar 
to those of sFC (Discovery sample: γ=2.6 and 2.6; Validation sample: γ=2.6 and 2.2, for 200 and 300 node 
parcellations, respectively). Mean and standard deviation of Q-metric versus γ curves were qualitatively 
similar (Figure 3), with their AUC values not significantly different between groups in the Discovery 
sample (all p>0.05, age, sex, and education adjusted permutation ANCOVA; 10,000 permutations), while 
the Validation sample showed trend-level differences between groups for both AUC of means and 
standard deviations of the Q-metric (age, sex, and education adjusted ANCOVA with 10,000 
permutations, p=0.067 and p=0.07). Consistent results were observed in the finer, 300 node parcellation 
for both samples, where the trend-level main effect of group persisted in the Validation sample 
(p=0.074 and p=0.069) (Supplementary Figure 2C-D). Exploratory follow-up t-tests revealed that the 
trend-level effect of group in the Validation sample was driven largely by MCI versus AD for AUC of 
means and SCD versus AD for AUC of standard deviations of Q-metric.  

As expected, CA was on average greater within RSN networks compared to between, with CA versus γ 
curves qualitatively similar (Supplementary Figure 3). Whole network averaged temporal stability (AUC 

Figure 2. Static Functional Connectivity (sFC) modularity outcomes did not differ between diagnostic 
groups. Modularity (A) Q-metric and (B) number of communities versus gamma (γ) resolution curves 
are shown for the Discovery (Left) and Validation (Right) samples for each metric. Data are plotted as 
mean (solid lines) ± standard deviation (shaded fill) by group. CN: Cognitively Normal; SCD: 
Subjective Cognitive Decline; MCI: Mild Cognitive Impairment; AD: Alzheimer’s disease. 
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of CA versus γ curves) moderately, but not perfectly correlated with sFC outcomes (Q metric: 
Spearman’s rho = 0.49 and 0.43 in the Discovery sample and 0.59 and 0.58 in the Validation sample, for 
the 200 and 300 node parcellations, respectively; number of communities: Spearman’s rho = -0.55 and -
0.40 in the Discovery sample, and -0.58 and -0.40 in the Validation sample, for the 200 and 300 node 
parcellations), which suggests that the preservation of temporal information in tvFC metrics may offer 
additional information over sFC modularity metrics. Nodal group averages of temporal stability between 
groups (Figure 4, Supplementary Figures 4 and 5) qualitatively show that high temporal stability regions 
in CN are reduced along AD severity in the Discovery sample (e.g., occipital cortex; Figure 4A), while low 
temporal stability regions show an increase (sensory/motor cortices; Figure 4A). To separate the 
contribution of within and between RSN network connections, network edges were stratified as either 
connections within a RSN or as connecting different RSNs and their respective nodal averages were 
computed (Figure 4B-C). Nodal averages for the Validation sample (Supplementary Figure 4) were less 
pronounced between groups for the full network (Supplementary Figure 4A); however, there was a 
qualitative increase in between network RSN temporal stability with increasing severity of diagnosis. 
Data from the 300 node parcellation networks (Supplementary Figure 5) were similar to that of 200 
node networks.  

To reduce the number of multiple comparisons, statistical group differences in temporal stability were 
carried out on RSN block-averaged data (7 within-network and 21 between-network interactions). 
Several network blocks in both samples showed significant uncorrected differences (one-way 
permutation ANCOVA, uncorrected p<0.05; Figure 5B), however, there were no overlapping significant 
blocks between the two samples and no blocks survived FDR adjustment for the 28 tests within each 
sample. The main effect of group was observed in two blocks in the Discovery sample (Visual (VIS)-
Somatomotor (SM) and SM-Ventral Attention (VA), Figure 5A), for which exploratory post-hoc tests 
revealed that AD had lower temporal stability compared to CN and SCD (p<0.05) for the VIS-SM 
interaction block, while for the SM-VA block, AD had higher temporal stability compared to the other 
three groups (p<0.05). Five blocks showed differences in the Validation sample (SM, Frontoparietal (FP), 
and interaction blocks of FP and SM, Limbic, and Default Mode networks, Figure 5C). Exploratory post-
hoc tests showed that temporal stability was (1) higher in the SM network in MCI compared to SCD and 
AD, (2) lower in the SM-FP interaction block in MCI compared to SCD, (3) higher in the FP-Limbic 

Figure 3. Time-varying Functional Connectivity (tvFC) modularity outcomes did not differ between 
diagnostic groups. Modularity Q-metric (A) means and (B) standard deviations (st.dev.) versus 
gamma (γ) resolution curves are shown for the Discovery (Left) and Validation (Right) samples for 
each metric. Data are plotted as mean (solid lines) ± standard deviation (shaded fill) by group. CN: 
Cognitively Normal; SCD: Subjective Cognitive Decline; MCI: Mild Cognitive Impairment; AD: 
Alzheimer’s disease. 
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Figure 4. Temporal stability of each node averaging over (A) all connections of that node, (B) only the 
within resting state network (RSN) connections, and (C) only the between RSN connections for each 
node in the Discovery sample 200 node networks. Data from the Validation sample are shown in 
Supplementary Figure 4 for the 200 node parcellation and 300 node network data for both samples 
are shown in Supplementary Figure 5. CN: Cognitively Normal; SCD: Subjective Cognitive Decline; 
MCI: Mild Cognitive Impairment; AD: Alzheimer’s disease. 

Figure 5. Group differences in resting state network blocks in the (A) Discovery and (C) Validation 
samples. (B) Permutation analysis of covariance (age, sex, and education adjusted) main effects of 
group within and between resting state networks at uncorrected p<0.05. None of the blocks were 
significant in both samples and none survived false discovery rate adjustment for the 28 network 
blocks tested. CN: Cognitively Normal; SCD: Subjective Cognitive Decline; MCI: Mild Cognitive 
Impairment; AD: Alzheimer’s disease. 
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interaction block in MCI compared to SCD and AD, (4) higher in the FP network in MCI compared to SCD 
and AD, and (5) higher in the FP-Default Mode interaction block in MCI compared to SCD and AD (Figure 
5C; all p<0.05). Results from the 300 node parcellation networks were largely similar to those in Figure 
5, with exception of VA-Limbic interaction block showing uncorrected significance in the Discovery 
sample and lack of significance in the VIS-SM interaction block (Discovery sample) and Limbic-FP 
interaction block (Validation sample) (Supplementary Figure 6). Finally, because there is no consensus 
on the window length parameter in tvFC, a longer (~111 second) window was also employed. Both Q-
metric and temporal stability results were similar for the longer window (Supplementary Figure 7). 

3.3 Relationships to cognition 

For the three cognitive domains of interest (general cognition, memory, and attention and processing 
speed) relationships with temporal stability were first investigated across all four diagnostic groups 
within all RSN blocks in the Discovery sample and any significant relationships were subsequently 
assessed in the Validation sample. Partial Spearman’s rho values (adjusted for age, sex, and education) 
are reported for all 28 RSN blocks for each of the three domains in Supplementary Figure 8. Of all 
investigated relationships, general cognition significantly correlated with temporal stability of the VA 
network (partial Spearman’s rho 0.31, p=0.011; Figure 6A), memory correlated with the VIS-Default 
mode interaction block (partial Spearman’s rho -0.27, p=0.032), and attention and processing speed 
correlated with Limbic-FP interaction block (partial Spearman’s rho 0.26, p=0.033). These same results 
were obtained in the 300 node parcellation networks (partial Spearman’s rho 0.32, -0.28, and 0.24, 
respectively, all p<0.05; Supplementary Figure 8). When these three relationships were assessed for 
reproducibility in the Validation sample, only the positive association of general cognition with temporal 
stability of the VA network was reproduced in the 200 node (partial Spearman’s rho 0.34, pFDR<0.05, 
corrected for three tests performed in the Validation sample; Figure 6B) and 300 node (partial 
Spearman’s rho 0.44, pFDR<0.05, Supplementary Figure 9A-B) parcellation networks. This relationship 
was also found with a longer window size (~111 seconds) in tvFC estimation (Supplementary Figure 9C-
D: 200 node parcellation, partial Spearman’s rho 0.29 and 0.33, and Supplementary Figure 9E-F: 300 
node parcellation, partial Spearman’s rho 0.31 and 0.28, for Discovery and Validation samples, 
respectively. All p<0.05).  

Subsequently, cognitive domains were correlated with network outcomes within each of the diagnostic 
groups in the combined dataset. For sFC networks, only the AUC of number of communities significantly 
correlated with attention and processing speed domain in the SCD group for the 200 node parcellation 
(partial Spearman’s rho -0.34, p<0.05 uncorrected), however this relationship was not present in the 300 
node parcellation. For tvFC, attention and processing speed significantly correlated with mean and 
standard deviation of the average Q-metric over windows in the SCD group for the 200 node 
parcellation (partial Spearman’s rho 0.46 and -0.33, p<0.05, respectively), as well as with standard 
deviation of the average Q-metric over windows in the MCI group (partial Spearman’s rho 0.51, p<0.05). 
None of these relationships reproduced in the 300 node parcellation network modularity outcomes.  

Of the correlations that met uncorrected significance in the 200 node parcellation, two survived FDR 
adjustment in the 300 node parcellation data. Temporal stability correlated with: (1) general cognition in 
the CN group in the SM-VA interaction block (partial Spearman’s rho -0.39 and -0.40, p=0.006 and 
pFDR<0.05, for 200 (Figure 7A) and 300 (Supplementary Figure10A) node parcellation data, respectively) 
and (2) attention and processing speed in the MCI group in the VIS-VA interaction block (partial 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2020.09.02.20186999doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.02.20186999


Spearman’s rho 0.43 and 0.50, p=0.022 and pFDR<0.05, for 200 (Figure 7B) and 300 (Supplementary 
Figure 10B) node parcellation data, respectively).  

Figure 6. Relationship of general cognition and temporal stability of the ventral attention resting 
state network. Individual points represent individual participants from either the (A) Discovery or (B) 
Validation samples, colored by diagnostic group. CN: Cognitively Normal; SCD: Subjective Cognitive 
Decline; MCI: Mild Cognitive Impairment; AD: Alzheimer’s disease. rho: Partial Spearman’s rho (age, 
sex, and education adjusted). * denotes FDR-significant correlation in the Validation sample.  

Figure 7. Significant within diagnostic group relationships between cognitive scores and temporal 
stability. (A) In the cognitively normal (CN) group, general cognition was negatively correlated with 
temporal stability of the Somatomotor and Ventral attention network interaction block. (B) In the 
mild cognitive impairment (MCI) group, attention and processing speed positively correlated with 
temporal stability of the Visual and Ventral Attention network interaction block. Data are shown for 
the 200 node parcellation data; 300 node parcellation data are shown in Supplementary Figure 10. 
Significance was determined as p<0.05 (uncorrected) partial Spearman’s correlation (age, sex, and 
education adjusted) in 200 node data that was reproduced at pFDR<0.05 in the 300 node data. 
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3.4 Supplementary Analyses 

3.4.1 Younger versus older AD comparisons  

The median age of all AD participants used to separate the younger and older AD (yAD and oAD, 
respectively) was 65.5 years. Neither years of education nor sex differed between the two AD groups. 
Among modularity outcomes in sFC (AUC of modularity Q-metric and number of communities), the Q-
metric was significantly lower (t-test, p<0.05) in oAD (11.74 ± 1.48) than in yAD (12.96 ± 0.99) in the 200 
node but not the 300 node parcellation networks (Figure 8A). No significant differences were found for 
tvFC in the mean or standard deviation of the average Q-metric over windows. Temporal stability of 
community structure was significantly higher in the yAD group (independent samples t-test, pFDR<0.05) 
only in the 200 node parcellation networks for the VIS network block, the SM-Limbic interaction block, 
and the VA-Limbic interaction block (Figure C-D). 

3.4.2 Impact of Splitting the Dataset  

Repeated splits of the dataset into two samples produced results in line with those reported above. 
Supplementary Table 1 shows the reproducibility of findings obtained from the ‘original’ split of the 
dataset expressed as a ratio (# of replicated results/500 total splits). Additionally, the consensus 
between samples (# of times the two samples produced the same result/500) is shown. For temporal 
stability, in both parcellations the FP network block had the highest reproducibility of significance (0.026 
and 0.076, for the 200 and 300 node parcellations, respectively), however these values were still 
extremely low. Across both samples and parcellations the fraction of significant outcomes of the FP 
network block was 0.018 (9/500 random splits; Supplementary Figure 11). 

4 Discussion 

In recent years, functional neuroimaging has been increasingly utilized to study the consequences of AD 
in vivo, resulting in new insights into location and extent of functional disruptions in the brain. The 
application of network science has allowed analysis of fMRI data as a system (network) of individual 
elements (brain regions) and their interactions (correlation of blood-oxygen-level-dependent signal). In 

Figure 8. Differences in modularity outcomes in younger (yAD) compared to older Alzheimer’s 
disease (oAD) participants for the 200 node parcellation networks. (A) Area under the curve (AUC) of 
the modularity Q-metric from static functional connectivity (sFC). (B-D) Temporal stability 
differences of time-varying functional connectivity in the Visual network (B), Somatomotor-Limbic 
interaction block (C), and Ventral Attention-Limbic interaction block. A-D were significantly different 
between groups (independent samples t-tests (A) p<0.05 and (B-D) pFDR<0.05 corrected for the 28 
network blocks). 
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this study, we focused on the temporal dynamics of brain function in AD by examining the stability of 
community structure, at rest, in a sample of four groups that span the AD severity continuum. In a 
robust, two-sample (Discovery and Validation) design, we identified a reproducible relationship of 
temporal stability within the ventral attention network and overall general cognition measured by the 
MoCA. Lower stability, measured as a weakened propensity of ventral attention network regions to 
associate within the same network community across time, was significantly associated with lower 
levels of performance. We found no persistent/reproducible differences in commonly reported 
modularity outcomes (Q-metric, its mean and standard deviation over time, or the number of 
communities). 

Prior applications of modularity analyses vary with respect to the algorithm used to cluster the data. The 
two most often seen approaches utilize either the Louvain algorithm (Blondel et al., 2008, Rubinov and 
Sporns, 2010, Contreras et al., 2019, Brier et al., 2014, Onoda and Yamaguchi, 2013) or k-means 
clustering (Ma et al., 2020, Schumacher et al., 2019). When investigating the community structure of sFC 
networks (computed via average over total scan duration), we did not find any group differences when 
using the area under the curve (AUC) of Q-metric or number of communities over the γ resolution range. 
Other studies that utilized the Louvain algorithm have shown a relationship of the Q-metric with age for 
a predefined community partition (Brier et al., 2014), for a single γ value (Onoda and Yamaguchi, 2013), 
and for multiscale modularity outcomes (Contreras et al., 2019) over the full γ range. To our knowledge, 
no studies have utilized AUC to assess modularity differences that are consistent over a range of γ 
values. AUC can be a robust outcome measure for metrics that are dependent on free parameters (i.e., 
the γ resolution parameter in modularity), as it can capture behavior over a range of parameter values 
and reduce the number of statistical comparisons. The absence of group differences in AUC of the Q 
metric and number of partitions reported here highlights the importance of methods that sample a 
range of free parameters. Selection of a single or a few values can produce outcomes that are 
algorithm/scale dependent, while composite measures such as AUC provide a generalizable framework 
that can be applied across datasets. 

Either during performance of a task or at rest, blood-oxygen-level-dependent signal is always 
fluctuating, in part due to moment-to-moment changes in neuronal activity. It is now generally accepted 
that these temporal dynamics are meaningful for our understanding of brain function (Hutchison et al., 
2013, Allen et al., 2014). Studies have shown that brain FC fluctuates between segregated and 
integrated states (Fukushima et al., 2017), that tvFC is related to cognition (Cohen, 2018, Kucyi et 
al.,2018), and that variance in tvFC may be genetically influenced (Barber et al., 2021). Time-varying FC 
is often quantified via a sliding window approach, where partially overlapping segments of data are used 
to study temporal changes in outcomes of interest. In AD, this method has shown that patient groups 
spend more time in a connectivity state characterized by weak correlations (Fu et al., 2019, Schumacher 
et al., 2019). These studies utilized a k-means clustering procedure to identify these states and did not 
directly probe the modular structure of those networks. Here we used the Louvain algorithm to assess 
variability in modularity (AUC of the Q-metric), similar to the approach utilized in Hilger et al. (2020). We 
found no difference in average or standard deviation of the Q-metric across diagnostic groups. Visual 
inspection of the curves in Figure 3 shows the group averages overlapping one another over the full γ 
range, indicating that the lack of difference is not due to AUC computation.   

Hilger et al. (2020) referred to temporal stability as the variance in the modularity Q-metric. Here we 
used Co-Assignment (CA) (Jeub et al., 2018) as an index of temporal stability, similar to Contreras et al. 
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(2019), in which CA was computed from partitions across spatial scales to investigate coherence and 
coupling of RSNs in static FC. We computed the AUC of CA over time (across all sliding windows) to 
investigate stability of community assignments within and between cortical RSNs. For 28 unique cortical 
RSN blocks (7 within network and 21 interaction blocks), commonly implicated networks emerged when 
group comparisons were carried out (Figure 5, Supplementary Figure 6, and Supplementary Figure 7 for 
longer window size), such as default mode and frontoparietal involving systems (Hohenfeld et al., 2018). 
However, our findings did not replicate in our two-sample design and none of the differences survived 
FDR-adjustment for the 28 network blocks.  

We assessed whether the random split of the dataset into Discovery and Validations samples influenced 
our outcomes by performing an additional 500 random splits and repeating all statistical comparisons on 
the outcome metrics. Results from this analysis demonstrated a high degree of consensus with the 
original dataset split (Supplementary Table 1 and Supplementary Figure 11), which indicates that the 
absence of reproducibility of group differences (or lack thereof) in our study is not a chance occurrence. 
It has been shown that FC differs as a function of age of onset of AD (Pini et al., 2020); therefore, in 
order to assess whether our findings are influenced by a heterogeneous AD sample we performed a 
median split on the AD patient group based on age at time of scan and compared older and younger 
patients. The median age was 65.5 years, which is consistent with generally accepted criteria for 
classification of early and late onset Alzheimer’s disease. Our results showed that younger AD patients 
had higher Q-metric AUC (sFC) as well as higher temporal stability of visual, somatomotor-limbic, and 
ventral attention-limbic network interaction blocks. These observed differences did not overlap with any 
findings among our diagnostic groups, and while they are in themselves intriguing, they must be further 
addressed in larger samples before any definitive interpretations can be made.  

Correlation analysis of RSN temporal stability and neuropsychological domains (global cognition, 
memory, and attention processing and speed) showed a single robust and reproducible relationship of 
global cognition and the ventral attention network. This relationship was seen across the two window 
sizes, at both parcellation scales, and in both Discovery and Validation samples (Figure 6). The ventral 
attention network is active during orientation to salient targets (Fox et al., 2006, Yeo et al., 2011). It has 
been shown to activate during a short-term memory task in AD in a manner that did not significantly 
differ from controls (Kurth et al., 2019), and an ICA-derived ventral attention network was shown to be 
preserved in AD (Li et al., 2012). The temporoparietal junction, a key node in the ventral attention 
network, has been shown to have altered connectivity to the posterior cingulate cortex in AD patients 
with poor orientation for time performance, relative to AD patients with good performance (Yamashita 
et al., 2019). Our index of global cognition was derived from the total Montreal Cognitive Assessment 
score, which captures several cognitive domains, such as memory, attention, executive function, 
language, and reasoning, which require attention and orientation to stimuli. Therefore, it is plausible 
that lower stability of the ventral attention system contributes toward observed deficits in global 
cognition. 

There are important methodological considerations and limitations to be considered in the 
interpretation of the presented findings. First, data preprocessing strategies can impact the final FC 
estimates. The strategy employed here is one that is well suited for dynamic FC analyses and has been 
shown to produce reliable network estimates (Parkes et al., 2018). How the brain is parsed and in turn 
how regions are grouped can have an impact on the data. We chose the Schaefer parcellation as a 
functionally relevant subdivision of the cortex, the regions of which are discretely group into the RSNs 
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reported by Yeo and colleagues. Alternative strategies could involve use other available parcellation, 
testing each node pair (this poses a large multiple comparison problem), or testing the whole cortex 
average (very limited spatial specificity). Additionally, tvFC and modularity require free parameter 
choices, such as choice of window size, number of modularity iterations, and resolution parameter 
range. We aimed to address these issues by choosing a shorter and longer window size, running a high 
number of iterations (1,000) of modularity, and utilizing area under the curve across a range of the 
resolution parameters. It is possible that fluctuations in tvFC are related to sampling variability in fMRI 
data; however, we do not believe this to be the case here, as a longer (~1min and ~2min) window was 
utilized with a taper function 1/3rd the window size. Another limitation of these data is a relatively short 
acquisition duration of fMRI data (~10 min). It is now generally accepted that longer acquisitions are 
better for more robust estimates of FC, however, this is difficult to achieve in clinical data, particularly in 
elderly and patient populations. Finally, splitting the dataset resulted in moderate sample sizes (~80 
participants per sample). While larger samples are always preferred in order to conduct sufficiently 
powered analyses, we believe the validation opportunity provided by the two-sample strategy is more 
advantageous for identification of robust findings. 

In conclusion, we investigated modular structure of static and time-varying FC in a sample of four groups 
along the AD continuum. We report a robust relationship between global cognitive performance 
measured by MoCA and temporal stability of the ventral attention network. While FC-based metrics are 
not yet capable of serving as disease biomarkers in AD, time-varying FC investigations of resting-state 
fMRI data may offer unique insight into the neurobiological consequences of AD as well as inform 
clinical interventions as well as biomarker and treatment development, specifically when evaluating 
their impact on cognition through stability of attentional systems. 
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