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Abstract 

Recent studies have shown perturbed gut microbiota associated with gouty arthritis, a metabolic 

disease in which an imbalance between uric acid production and excretion leads to the deposition 

of uric acid crystals in joints. To mechanistically investigate altered microbiota metabolism in gout 

disease, 16S rRNA gene amplicon sequence data from stool samples of gout patients and healthy 

controls were computationally analyzed through bacterial community metabolic modeling. 

Patient-specific models were used to cluster samples according to their metabolic capabilities and 

to generate statistically significant partitioning of the samples into a Bacteroides-dominated, high 

gout cluster and a Faecalibacterium-elevated, low gout cluster. The high gout cluster samples were 

predicted to allow elevated synthesis of the amino acids D-alanine and L-alanine and byproducts 

of branched-chain amino acid catabolism, while the low gout cluster samples allowed higher 

production of butyrate, the sulfur-containing amino acids L-cysteine and L-methionine and the L-

cysteine catabolic product H2S. The models predicted an important role for metabolite 

crossfeeding, including the exchange of acetate, D-lactate and succinate from Bacteroides to 

Faecalibacterium to allow higher butyrate production differences than would be expected based 

on taxa abundances in the two clusters. The surprising result that the high gout cluster could 

underproduce H2S despite having a higher abundance of H2S-synthesizing bacteria was 

rationalized by reduced L-cysteine production from Faecalibacterium in this cluster. Model 

predictions were not substantially altered by constraining uptake rates with different in silico diets, 

suggesting that sulfur-containing amino acid metabolism generally and H2S more specifically 

could be novel gout disease markers. 

Keyword: gout, gut microbiota, bacterial communities, metabolic modeling, machine learning 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.20187013doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.02.20187013


3 
 

 

Importance 

Uric acid is produced in the human body from purine compounds contained in meat, poultry, and 

seafood. Gouty arthritic is a metabolic disease in which elevated levels of uric acid in the blood 

result in crystal formation, deposition in joints and chronic inflammation. Approximately 10 

million people in the United States suffer from gout disease, and more than 2 million people take 

medications to lower blood uric acid levels. Recent experimental studies have shown that the 

human gut microbiota are perturbed in gout disease, suggesting that altered microbiota metabolism 

may result from gout development and/or treatment. Building on these experimental results, this 

study used computational metabolic modeling to investigate altered microbiota metabolism 

associated with gout disease. Patient-specific models were constructed and analyzed to predict 

microbiota-synthesized metabolites underproduced in gout patient versus healthy patients. The 

methodology identified butyrate, a well-known metabolite for promoting gut health, sulfur-

containing amino acids and hydrogen sulfide, a metabolite known to promote inflammation, as 

possible metabolic markers of gout disease  
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Introduction 

The human gut microbiota play essential roles in digestion of plant polysaccharides (1, 2), 

synthesis of essential and health-promoting metabolites (3, 4), development of host immune 

response (5) and maintenance of colonization resistance to pathogens (6). The relative abundances 

of the diverse bacterial taxa that comprise the microbiota can be determined from stool samples 

through the application of 16S rRNA gene amplicon sequencing (7-9). As 16S sequencing has 

become increasingly routine, we have learned that numerous disease processes are correlated with 

disruptions of gut microbiota composition, also termed dysbiosis (10-12). Microbiota-associated 

diseases range from direct ailments of the gut such as inflammatory bowel disease (13) and 

Clostridioides difficile infection (14), to general metabolic diseases such as diabetes  (15) and 

obesity (16), to systemic aliments such as cardiovascular disease (17), and even to neurological 

disorders such as depression (18) and Parkinson’s disease (19). While studies that correlate 

changes in microbiota abundances to disease development have revolutionized our understanding 

of human disease, such compositional-based analyses often provide little information about the 

underlying mechanisms by which the microbiota may drive and/or respond to disease processes.  

 Gouty arthritis is a metabolic disease related to the inability of the human host to properly 

regulate uric acid, a primary metabolite of purine metabolism (20-22). As the uric acid 

concentration in blood serum exceeds ~400 mol/L (termed hyperuricemia; (23, 24)), susceptible 

individuals may begin to suffer gout symptoms including painful inflammation due to the 

deposition of uric acid crystals in joints (25, 26). Therapeutic treatments include drugs such as 

Allopurinol and Febuxostat that reduce host uric acid synthesis, Krystexxa that increases the 

breakdown of uric acid to urea, Probenecid and Lesinurad which increase uric acid excretion, and 

a broad array of anti-inflammatory compounds (27, 28). Several recent studies in humans (29-31) 
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and murine models (32-35) correlated changes in gut microbiota composition to the presence of 

gout disease, suggesting that microbiota properties could be used to monitor disease development, 

progression and recovery. Several of these 16S-based studies have been combined with gene 

catalog (36) and metabolomic (29) analyses to better understand the metabolic changes that 

accompanied compositional dysbiosis. While they provided new insights into the association 

between gout disease and altered gut microbiota, these studies were inherently limited in their 

ability to quantify the functional differences between the gut communities of gout patients versus 

healthy controls. 

 This in silico computational study was based on the hypothesis that altered gut microbiota 

were the result rather than the cause of gout disease, as a causative role has not been demonstrated 

to date. Indeed, uric acid in mainly produced in the liver by nucleic acid catabolism and only about 

20% of uric acid production occurs from digestion of purine-rich foods (32-35). Furthermore, only 

about 30% of host generated uric acid is secreted into and excreted out of the intestine, with the 

remainder is excreted through the kidneys (35, 37). Although altered uric acid metabolism in the 

gut microbiota of gout patients has been demonstrated (36), such perturbations are unlikely to be 

the major cause of  elevated uric acid levels in the blood. Consequently, this study examined the 

possibility of using predicted gut microbiota properties as clinically-relevant signatures of gout 

disease rather than as treatable disease drivers.  

 Consistent with this hypothesis, 16S abundance data derived from patient stool samples 

(36) were used to build sample-specific computational models for identifying microbiota-

synthesized metabolites that may be under- or overproduced in gout patients compared to healthy 

controls. The 16S dataset, which included bacterial taxa abundances for 41 gout patients and 42 

healthy controls, was processed using a metagenomics modeling pipeline (mgPipe; (38)) to 
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construct community metabolic models that spanned 50 taxa (48 genera and 2 families). The 

computational models were simulated using three in silico diets, and the resulting simulation data 

was subjected to machine learning and statistical analyses to correlate metabolic function and 

patient type, extract information about metabolite synthesis capabilities at the community and 

individual taxa levels, predict intra-taxa metabolite crossfeeding relationships and explore the 

impact of dietary nutrient levels on community metabolism. 

Results 

Samples clustered by metabolic capability were associated with gouty and healthy patients 

Prior to metabolic modeling, the 16S-derived abundance data were analyzed directly to identify 

community compositional features associated with gouty and healthy sample. Data analysis was 

limited to samples in which the modeled taxa accounted for at least 90% of the unnormalized 

abundances (39/41 gouty samples, 39/42 healthy samples; see Materials and Methods). Among 

the 25 most abundant taxa across the 78 sample, the abundances of six taxa were significantly 

different (Wilcoxon rank-sum test, FDR < 0.05) between the 39 gouty and 39 healthy samples. 

Notably, Faecalibacterium was significantly elevated (FDR = 3x10-4) in the healthy samples 

(average abundance 0.144) compared to the gouty samples (average abundance 0.063; Fig. S1A). 

Five taxa including three butyrate producers (Faecalibacterium, Coprococcus, Roseburia) were 

most negatively correlated with the blood uric acid concentration across the 78 samples (Fig. S1B). 

Faecalibacterium was most positively correlated to three butyrate producers (Coprococcus, 

Roseburia, Subdoligranulum) and Akkermansia as measured by the proportionality coefficient 

(Fig. S1C). A principal component plot of the taxa abundances showed no clear delineation of 

gouty versus healthy samples (Fig. S1D). Taken together, these results support the conclusion in 
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the original experimental study (36) that depletion of Faecalibacterium and other butyrate 

producers was associated with gout development.  

 Using an in silico European diet (Table S2), the net maximal production rates (NMPCs) 

predicted for 409 exchanged metabolites across the 78 samples were clustered to investigate if 

model-predicted metabolic capabilities were associated with sample type. Clustering was 

performed within MATLAB using the kmeans method with the optimal number of three clusters 

(see Materials and Methods) and generated a silhouette value of 0.30 

[doi:10.1016/j.ins.2015.06.039]. The three clusters produced a group of 26 samples dominated by 

Bacteroides (average abundance 0.75), a group of 44 samples with elevated Faecalibacterium 

(average abundance 0.15), and a small group of 8 samples with elevated Prevotella (average 

abundance 0.45; Fig. 1A). The Bacteroides-dominated cluster contained a disproportionately 

larger number of gouty samples (22/26) compared to the Faecalibacterium-elevated cluster (11/44, 

p < 10-5) and the entire sample set (39/78, p = 0.002; Fig. 1B). Similarly, the Faecalibacterium-

elevated cluster contained a disproportionate large number of healthy samples (33/44) compared 

to the entire sample set (39/78, p = 0.008). In terms of classification capability (doi: 10.9735/2229-

3981), the Bacteroides-dominated cluster offered high precision with positive predictive value 

(PPV) = 0.85 but modest sensitivity with true positive rate (TPR) = 0.56. A principal component 

plot of the model-predicted NMPCs showed the Prevotella-elevated cluster samples as outliers 

and clearly identified the Bacteroides-dominated cluster samples as disproportionally gouty. 

Interestingly, gout patients have been reported to have elevated abundances of Prevotella 

intermedia in the oral microbiota (39). Taken together, these results suggested that elevated 

Bacteroides abundance may result from the gout disease process. 
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Metabolic modeling predicted differential synthesis of amino acids and fermentation products in 

gouty and healthy samples 

Due to the small number of samples contained in the Prevotella-elevated cluster, further statistical 

analyses were focused on the Bacteroides-dominated cluster (also called the high gout cluster) and 

the Faecalibacterium-elevated cluster (also called the low gout cluster). A rank sum test (FDR < 

0.05), which assesses differences in median values, was performed to identify metabolites with the 

potential to be differentially produced in the high and low gout clusters. To reduce the 106 

metabolites identified to a more manageable number, each metabolite also was required to have 

an average production rate of >10 mmol/day in at least one cluster and to exhibit at least 10% 

difference between the average production rates in the two clusters. These thresholds ensured that 

the differential metabolites would have relatively high average production that differed between 

the two clusters. The resulting set of 42 differentially produced metabolites covered a wide range 

of metabolic pathways and included the amino acids D-alanine, L-alanine, L-cysteine, L-histidine, 

L-isoleucine, L-methionine and L-tyrosine as well as common products of gut microbiota 

fermentation such as butyrate, H2, H2S, isobutyrate, isocaproate, isovalerate and L-lactate (Figure 

S2, Table S6). Interestingly, hypoxanthine was the only the metabolite directly involved in purine 

metabolism that had the potential to be differentially produced between the two clusters, 

supporting the hypothesis that the gut microbiota were not the main drivers of gout disease. Similar 

predictions were obtained when the samples were partitioned directly according to their clinical 

status (Table S6), suggesting that sample clustering according to metabolite production capabilities 

captured the dominant metabolic features differentiating gouty and healthy samples. 

 Further computational analyses were performed on the seven differentially produced amino 

acids along with six additional amino acids that shared metabolic pathways with these seven amino 
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acids and the eight differentially expressed fermentation products along with seven additional 

byproducts commonly produced by the gut microbiota. The high gout cluster was predicted to have 

significantly elevated capabilities for production of alanine, H2 and three products of branched-

chain amino acid catabolism (isobutyrate from valine, isocaproate and isovalerate from leucine; 

Figure 2). By contrast, the low gout cluster was characterized by the potential for significantly 

elevated production of butyrate, L-lactate, the sulfur-containing amino acids L-cysteine and L-

methionine, the L-cysteine catabolic product H2S, L-isoleucine and its catabolic product 3-methyl-

2-oxovaleric acid, L-histidine and L-tyrosine. Model predictions of elevated alanine and reduced 

butyrate metabolism in gout patients compared to healthy controls were consistent with gene 

catalog and metabolomic studies (29, 31, 36). 

 To further investigate the metabolite production capabilities of the gout- and health-

associated gut communities, the contributions of individual taxa to the maximal synthesis of the 

differentially produced amino acids and fermentation byproducts were computed. Bacteroides was 

responsible for enhanced D-alanine, L-alanine and L-histidine production in the high gout cluster 

samples (Fig. 3), which were characterized by high Bacteroides abundances. The production of L-

isoleucine and L-tyrosine, two amino acids not secreted by the Bacteroides metabolic model, were 

elevated in the low gout cluster due to increased synthesis by more abundant butyrate-producing 

taxa (Faecalibacterium, Lachnospiraceae, Roseburia, Coprococcus) as well as Megamonas. 

Interestingly, Bacteroides was predicted to have similar L-cysteine and reduced L-methionine 

synthesis capabilities in the high gout cluster despite these samples having relatively high 

Bacteroides abundances. This metabolic behavior resulted in significantly reduced total 

production of L-methionine and L-cysteine, which were also synthesized by Faecalibacterium and 

other butyrate producers, in the high gout cluster. These predictions suggested a possible role for 
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sulfur-containing amino acids in the perturbed microbiota of gout patients. Synthesis of the six 

non-differentially produced amino acids was similar between the two clusters because elevated 

synthesis by Bacteroides in the high gout cluster was balanced with increased synthesis by butyrate 

producers and Megamonas in the low gout cluster (Fig. S3). 

 Similar analyses for differentially produced fermentation byproducts revealed that the 

potential for significantly elevated synthesis of H2, isobutyrate, isocaproate, and isovalerate in the 

high gout cluster was attributable to Bacteroides (Fig. 4). Byproducts not secreted by Bacteroides 

such as 3-methyl-2-oxovaleric acid, butyrate and L-lactate were predicted to have the potential for 

significantly elevated production in the low gout cluster due to increased synthesis by more 

abundant taxa. For example, butyrate was synthesized at higher rates by Faecalibacterium, 

Roseburia, Coprococcus and Subdoligranulum in the low gout cluster. In addition to the 

recognized importance of microbiota-derived butyrate for gut health (40, 41) and its previous 

implication as gout protective (36), these model predictions suggested that butyrate-producing taxa 

may contribute to the synthesis of other metabolites possibly involved in gut microbiota dysbiosis. 

For example, L-cysteine was predicted to have the potential for significantly elevated production 

in the low gout cluster due to enhanced synthesis by Faecalibacterium and other butyrate 

producers (Fig. 3). Since H2S is a common byproduct of cysteine degradation (42, 43), the ability 

of butyrate producers to synthesize L-cysteine could be related to the potential for elevated H2S 

production in the low gout cluster. These predictions along with previous studies showing H2S as 

a possible inducer of inflammation (44, 45) suggested a possible role for H2S specifically and 

sulfur-containing amino acids more generally in the perturbed microbiota of gout patients. As 

observed with amino acids, maximal production of the seven non-differentially produced 

byproducts was similar between the two clusters with elevated synthesis by Bacteroides in the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.20187013doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.02.20187013


11 
 

high gout cluster being balanced with increased synthesis by butyrate producers and Megamonas 

in the low gout cluster (Fig. S4). 

Metabolite crossfeeding supports differential amino acid and fermentation byproduct synthesis in 

gouty and healthy samples 

The previous model-based analyses identified butyrate and hydrogen sulfide as putative markers 

of gout disease. To investigate interactions between taxa that supported maximal production of 

these two metabolites, crossfeeding relationships were identified by finding metabolites which 

were both secreted by at least one taxa and uptaken by at least one other taxa above a defined 

threshold (5 mmol/day to focus on the largest contributors). Consistent with being more abundant 

in the low gout cluster, the five taxa mainly responsible for butyrate production were predicted to 

synthesize more butyrate in these sample communities (Fig. 4). However, butyrate production was 

higher than would be expected based on abundance differences between the two clusters. For 

example, Faecalibacterium was 230% more abundant in the low gout cluster (Fig. S1) yet 

synthesized 550% more butyrate. Faecalibacterium was predicted to achieve such elevated 

butyrate production by exploiting the availability of metabolites secreted from other taxa, most 

notably acetate, CO2, D-lactate and succinate from Bacteroides (Figure 5). Similarly, Roseburia 

utilized acetate and D-lactate from Bacteroides and Subdoligranulum utilized D-alanine from 

Lachnospiraceae. Very different crossfeeding relationships were predicted for maximal 

production of other fermentation byproducts. For example, Bacteroides exploited the availability 

of secreted L-alanine and format to achieve elevated D-lactate synthesis in the high gout cluster 

(Fig. S5). These results demonstrated the inherent metabolic flexibility of gut bacterial 

communities and suggested that taxa crossfeeding relationships could be highly context dependent.  
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 Unlike butyrate, H2S was predicted to be synthesized almost exclusively by a single taxa, 

Bacteroides. Although Bacteroides was 60% more abundant in the high gout cluster than the low 

gout cluster (Fig. 1), the maximal H2S production rate was 120% higher in the low gout cluster 

(Fig. 2). Because H2S is a product of cysteine degradation (46, 47) and maximal production of L-

cysteine was elevated in the low gout cluster (Fig. 2), we hypothesized that L-cysteine crossfeeding 

was mainly responsible for differential H2S production between the two clusters. When H2S 

production was maximized, L-cysteine synthesis by Faecalibacterium was predicted to be 525% 

higher in the low gout cluster (Fig. 6), which matched the higher Faecalibacterium abundance in 

this cluster (Fig. 1). Elevated L-cysteine synthesis resulted in a 50% increase in H2S production 

by Bacteroides, which also preferentially utilized available D-lactate and L-lactate in the low gout 

cluster. Interestingly, D-alanine crossfeeding supporting maximal H2S production was predicted 

to differ dramatically between the clustered samples with Bacteroides consuming the metabolite 

in the high gout cluster and secreting the metabolite in the low gout cluster. Faecalibacterium was 

predicted to achieve maximal L-cysteine synthesis through acetate and D-lactate crossfeeding (Fig. 

S6). Collectively, these results demonstrated that complex relationships may exist between taxa 

and their metabolic products due to crossfeeding interactions that can be quantified with the type 

of metabolic modeling approach used in this study. 

Different in silico diets generated subtle changes in community metabolism 

Previous simulations were performed by constraining community nutrient uptake rates according 

to an average EU diet. Diet is known to be strongly associated with gout disease, with high 

consumption of purine-rich foods such as meat, poultry and seafoods more likely to result in 

hyperuricemia and eventual gout development (48-50). To investigate the possible effects of 

dietary nutrients on microbiota metabolism, two other in silico diets were simulated (Table S2). 
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Compared to the EU diet (EUD), the high protein diet (HPD) provided less total energy (1,792 vs. 

2,372 kcal) with a lower proportion of energy coming from carbohydrates (37.4% vs. 41.2%) but 

a larger proportion coming from protein (28.7% vs. 11.9%) in the form of amino acids. By contrast, 

the high fiber diet (HFD) provided slightly more energy (2,436 kcal) with a larger contribution 

from carbohydrates (45.5%) and from protein (16.5%). 

 When model-processed abundance data generated with the HPD were clustered, three 

clusters (silhouette value 0.30) contained the same samples as when clustering was performed with 

the EU diet (Fig. S7A,B). However, when a rank sum test was performed to find metabolites with 

the potential to be differentially produced between the high gout clusters or the low gout clusters 

obtained with the two diets, 17 metabolites were identified including H2S and two metabolites 

associated with purine metabolism (guanosine, guanine; Fig. S7C). Otherwise, the two diets 

generated very similar clustered production of amino acids degradation and fermentation 

byproducts (Fig. S8). Collectively, these predictions suggested that in silico community 

metabolism was not strongly affected by changes in nutrient availability resulting from the 

simulated HPD.  

 Subtle changes in community metabolism were predicted when the EUD and HFD were 

compared. When partitioned with three clusters (silhouette value 0.29), the two diets generated 

different sample clustering with the high gout cluster increased from 26 to 31 samples and the low 

gout cluster decreased from 44 samples to 41 samples (Fig. 7A). The number of gouty samples in 

these two clusters also changed (Fig. 7B), but the Bacteroides-dominated cluster remained 

disproportionally gouty (23/31) compared to the Faecalibacterium-elevated cluster (12/41, p < 10-

3) and the entire sample set (39/78, p = 0.03). As compared to EU diet, the Bacteroides-dominated 

cluster generated from the HFD had reduced precision with PPV = 0.74 but a slight increase 
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sensitivity with TPR = 0.59. A rank sum test performed to find metabolites with the potential to 

be differentially produced between the high gout clusters or the low gout clusters of the two diets 

identified 10 metabolites, including three metabolites associated with plant polysaccharide 

degradation (D-galactose, D-glucose, D-maltose) and the glycolytic intermediate glycerol 3-

phosphate (Fig. 7C). Interestingly, H2S was no longer differentially produced even though the 

HFD contained 84% more L-cysteine than the EUD as nutrient constraints. Although not 

statistically significant, the HFD produced slightly elevated maximal production of L-cysteine, L-

histidine, L-isoleucine, 3-methyl-2-oxovaleric acid and L-lactate and slightly reduced maximal 

production of L-phenylalanine, H2, isobutyrate and isocaproate (Fig. S9). These predictions 

suggested subtle enhancements in sulfur-containing amino acid metabolism for the HFD and 

branched-chain amino acid catabolism for the EUD.  

 To further explore how dietary nutrients affected maximal H2S production, crossfeeding 

relationships were identified for the three high gout clusters and for the three low gout clusters 

generated from the different diets. When the low gout clusters were compared, the HPD was 

predicted to generate the most H2S due to elevated synthesis by Bacteroides (Fig. S10). Although 

the HPD contained the most dietary amino acids, the L-cysteine uptake rate by Bacteroides was 

not substantially different between the three diets. By contrast, the HPD generated only slightly 

higher H2S production than the HFD in the high gout clusters (Fig. 8). Interestingly, crossfeeding 

of L-cysteine from Faecalibacterium to Bacteroides was elevated for the HFD. These predictions 

suggested that H2S production was partially attributable to reactions associated with sulfur 

metabolism (51) other than L-cysteine degradation. The models predicted substantially reduced L-

cysteine crossfeeding and H2S production in the high gout clusters compared to the low gout 
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clusters across all three diets, reinforcing a possible role for cysteine catabolism and H2S 

production in the gout-perturbed microbiota. 

Discussion 

Gouty arthritis is a chronic inflammatory joint disease that results from imbalanced purine 

metabolism in the human host. Recent findings that the gut microbiota are perturbed by gout 

disease (30, 32-36) motivated this in silico modeling study aimed at identifying putative metabolic 

features associated with gout development. To this end, bacterial community metabolic models 

were constructed for 39 gout patients and 39 healthy controls using taxa abundance data generated 

from stool samples via 16S rRNA gene amplicon sequencing (36). Model simulations predicted 

the maximal possible production rates of 409 secreted metabolites for each of the 78 samples. By 

performing clustering analysis on these model-predicted metabolic capabilities, the samples were 

partitioned into a Bacteroides-dominated cluster with a disproportionate large number of gouty 

samples, a Faecalibacterium-elevated cluster with a disproportionate large number of healthy 

samples, and a Prevotella-dominated cluster with only six samples. Consistent with the original 

experimental study (36), these predictions suggested that elevated Bacteroides and reduced 

Faecalibacterium abundances were signatures of gout disease. 

 To gain mechanistic insights into gut metabolic features associated with gout, secreted 

metabolites with significantly different maximal synthesis rates in the Bacteroides-dominated, 

high gout cluster and the Faecalibacterium-elevated, low gout cluster were identified for a 

simulated EU diet. Interestingly, hypoxanthine was the only identified metabolite associated 

directly with purine metabolism. Of the four purine bases (adenine, guanine, hypoxanthine, 

xanthine), foods rich in hypoxanthine such as animal and fish meats have been reported to be more 

strongly associated with gout development (50). This uric acid precursor was elevated in the low 
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gout cluster, suggesting higher rather than lower synthesis capabilities for uric acid, which was not 

secreted by the metabolic models. By contrast, the low gout cluster was predicted to have elevated 

synthesis of many metabolites, most notably gut health promoting butyrate and several metabolites 

associated with sulfur-containing amino acid metabolism including the L-cysteine degradation 

product H2S. Although altered uric acid metabolism in the gut microbiota of gout patients has been 

demonstrated (36), the in silico model predictions suggested that such perturbations are unlikely 

to be the major cause of  elevated uric acid levels in the blood and that altered gut microbiota were 

the result rather than the cause of gout disease. 

 Detailed analyses of individual taxa contributions to the maximal synthesis of differentially 

produced amino acids predicted a tradeoff between Bacteroides and butyrate producers such as 

Faecalibacterium, Roseburia, Subdoligranulum and Coprococcus. D-Alanine and L-alanine 

elevated in the high gout cluster were synthesized primarily by Bacteroides, while amino acids 

elevated in the low gout cluster were not secreted by Bacteroides (L-isoleucine, L-tyrosine) or 

synthesis was more dependent on butyrate producers (L-cysteine, L-histidine, L-methionine). 

Enhanced alanine metabolism in gut communities of gout patients has been proposed previously 

based on gene catalog (36) and metabolomics (29) analyses. Model predictions associated with L-

cysteine and L-methionine were novel and particularly interesting since Bacteroides was more 

abundant in the high gout cluster yet was predicted to have lower maximal synthesis rates of these 

two sulfur-containing amino acids.  

 Similar analyses performed for maximal synthesis of common fermentation byproducts 

predicted elevated synthesis of isobutyrate, isocarpoate and isovalerate in the high gout cluster 

resulting from branched-chain amino acid catabolism. The low gout cluster was predicted to have 

elevated maximal production of the short-chain fatty acid butyrate, L-lactate and H2S, a common 
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end product of L-cysteine catabolism. The ability of bacterial communities contained in the low 

gout cluster to generate higher butyrate levels was related to higher abundances of butyrate 

producers in these samples as well as the crossfeeding of metabolites such as acetate, D-alanine, 

D-lactate and succinate to the butyrate producers. Butyrate has been widely identified as a gut 

health promoting metabolite (40, 41), and its reduced production by the gut microbiota has been 

associated with gout disease in several other studies (31, 36). Unlike some previous studies, the in 

silico models did not predict that propionate (31, 36) would be reduced or that acetate would be 

elevated (29) in the gut communities of gout patients. Therefore, the computational predictions 

support the hypothesis that butyrate is the key short-chain fatty acid associated with gout 

development and that loss of butyrate producers may an important feature of gout-altered gut 

microbiota. 

Reduced maximal H2S production by Bacteroides in the high gout cluster was consistent 

with the prediction of lower total L-cysteine synthesis in this cluster. By contrast, the low gout 

cluster had elevated maximal H2S production due to substantially increased L-cysteine 

crossfeeding from Faecalibacterium to Bacteroides. While Bacteroides is not typically viewed as 

an important genus for H2S production (46), many Bacteroides strains process the necessary 

enzymes for cysteine-to-H2S conversion (52, 53). H2S has been proposed to have both anti-

inflammatory and proinflammatory effects on the human host depending on a number of 

increasingly understood factors (54-56), including whether H2S is synthesized endogenously by 

mucosal epithelial cells or derived from the gut microbiota (43, 57). More specifically, H2S 

synthesized by the gut microbiota through cysteine degradation has been proposed to promote gut 

health at relatively low concentrations (47). Since most cysteine-to-H2S conversion in the gut is 

performed by the microbiota (47), these results suggested that tight regulation of this metabolic 
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process may be necessary to avoid deleterious effects associated with elevated H2S concentrations. 

More generally, the in silico predictions revealed an interesting gut community behavior where 

synthesis of a potentially inflammatory metabolite (e.g. H2S) may be supported by a health-

promoting taxa (e.g. Faecalibacterium) crossfeeding a metabolite (e.g. L-cysteine) to a disease-

promoting taxa (e.g. Bacteroides). Collectively, these results suggest that cysteine-to-H2S 

conversion by the gut microbiota may represent a novel metabolic signature of gout disease. 

Because consumption of high-purine containing foods such as meat, poultry and fish is a 

known correlative to gout disease (48-50), in silico high protein and high fiber diets were simulated 

and compared to the average EU diet. The high protein diet (HPD) allowed higher amino acid and 

lower carbohydrate uptake rates and therefore was expected to generate substantially different 

predictions than the EU diet (EUD). This hypothesis proved to be largely false, although H2S 

continued to be elevated in the low gut cluster with the HPD. Similar results were obtained when 

the high fiber diet (HFD) was compared to the EUD, with the exception that sample clustering was 

altered between the two diets. These inconclusive results may have been attributable to limitations 

of the in silico approach in which sample community compositions were fixed while dietary 

nutrients were varied, while in reality different diets would be expected to alter microbiota 

composition. A more consistent analysis could be performed by having 16S-derived abundance 

data for both gout patients and healthy controls over a range of known diets. Despite this limitation, 

one consistent prediction across all three diets was elevated H2S in the low gout clusters. Therefore, 

these results again supported enhanced cysteine-to-H2S conversion as a novel metabolic signature 

of gout disease. 

Materials and Methods 

Patient Data 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.20187013doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.02.20187013


19 
 

Gut microbiota composition data were obtained from a published study (36) in which stool samples 

from 83 patients were subjected to 16S rRNA gene amplicon library sequencing. The study 

included 41 gout patients as determined by clinical symptoms and elevated blood uric acid levels 

and 42 healthy controls. The patients ranged in age from 27 to 75 years (average 49.1 years) and 

contained 41% females. For each patient sample, 16S-derived relative bacterial abundances were 

provided at different taxonomic levels that included 15 phyla, 28 classes, 38 orders, 71 families 

and 129 genera.  Extensive clinical metadata, including the blood uric acid concentration, also 

were provided for each sample (Table S1). 

Community Metabolic Modeling 

Community metabolic models were restricted to 50 taxonomic groups to limit the computational 

effort associated with model building, simulation and analysis while ensuring adequate coverage 

of the 16S OTU read data. The models accounted for the 48 most abundant genera across the 83 

samples subject to the requirement that each genus could be modeled using genome-scale 

metabolic reconstructions available in the Virtual Metabolic Human (VMH) resource ((58); 

www.vmh.life). Combined reads for Escherichia/Shigella were equally split between the two 

genera. Because unidentified Lachnospiraceae and Ruminococcaceae accounted for 4.9% and 

1.1% of total reads, respectively, these two families were included in the models and combined 

with unmodelable genera (Lachnobacterium, Anaerosporobacter, Parasporobacterium, Hespellia 

and Robinsoniella for Lachnospiraceae; Oscillibacter, Anaerofilum, Acetivibrio, 

Acetanaerobacterium, Sporobacter and Hydrogenoanaerobacterium for Ruminococcaceae). This 

procedure resulted in 50 modeled taxa that accounted for an average of 97.0% of total OTU reads 

across the 83 samples (Table S1). 
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For each sample, the OTUs associated with each taxon were summed and then normalized 

to unity by dividing by the sum of OTUs. These normalized taxa abundances were used to 

construct sample-specific community metabolic models. The function createPanModels within the 

metagenomics pipeline (mgPipe; (38)) of the MATLAB Constraint-Based Reconstruction and 

Analysis (COBRA) Toolbox (59) was used to construct genus- and family-level models from the 

818 strain models available in the VMH database. According to function documentation available 

on the COBRA website, the function createPanModels combined all reactions for strains belonging 

to the taxon of interest and attempted to remove futile cycles that may result from the combined 

reactions by making certain reactions irreversible. Because the 16S data did not provide resolution 

at the species and strain levels, the community metabolic models were unable to account for 

differences in community composition and function below the genus level.  Despite this limitation, 

the results showed that the pan-genome metabolic models used for community modeling allowed 

substantial differentiation of samples according to their functional capabilities. 

The function initMgPipe was used to construct a community metabolic model for each of 

the 83 patient samples. Model construction required specification of taxa abundances for each 

sample and maximum uptake rates of dietary nutrients, which were specified according to EU 

average, high protein and high fiber diets downloaded from the VMH resource (Table S2). The 

community models contained an average of 38,570 reactions (minimum 22,099; maximum 

57,820). All models contained the same constraints for the maximum nutrient uptake rates 

specified for the chosen diet, while each model had different constraints imposed for the sample 

taxa abundances. 

Following the model building process, mgPipe automatically performed flux variability 

analysis (FVA) for each model with respect to each of the 409 metabolites assumed to be 
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exchanged between the microbiota and the lumen and fecal compartments. FVA calculations were 

performed with the COBRA code fastFVA using the CPLEX linear program solver to either 

maximize/minimize the production of the metabolite or to maximize/minimize the uptake of the 

metabolite subject to the additional constraint that the community biomass flux remained in the 

range 0.4-1.0 mmol/day (60). The FVA results were used to compute the net maximal production 

capability (NMPC; (60)) of each metabolite by each model. Each NMPC value was calculated as 

the difference between the objective functions of two computed FVA solutions, the first which 

maximized metabolite production/secretion into the fecal compartment and the second which 

minimized metabolite uptake from the lumen compartment. An NMPC value represents the 

sample-specific potential for community production of a single metabolite given the applied 

nutrient uptake and biomass flux constraints. The mgPipe framework (38) is based on analysis of 

metabolite-specific NMPCs across samples to assess the capabilities of modeled communities to 

differentially produce metabolites. Due to nature of the FVA calculations, the NMPCs do not 

imply that maximal production of multiple metabolites may be achieved simultaneously. In this 

study, each NMPC was calculated and analyzed independently for each modeled sample. 

Furthermore, NMPCs were calculated for the three different diet to assess the possible impact of 

nutrient levels on community metabolism (Tables S3-S5). 

Unfortunately, mgPipe did not offer the capability to directly extract the metabolite 

synthesis capabilities of each modeled taxa. This information was important to understand which 

taxa were contributing to metabolite synthesis and the intra-taxa crossfeeding relationships which 

supported maximal production of a particular metabolite. Therefore, specialized MATLAB scripts 

were written to utilize available Microbiome Modeling Toolbox functions (e.g. 

adaptVMHDietToAGORA, guidedSim, useDiet) to perform FVA with respect to selected 
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metabolites and to extract taxa-level secretion and uptake fluxes for relevant metabolites. The 

complete metabolic modeling workflow can be viewed as complementary to more established 

metagenomic analysis techniques such as Phylogenetic Investigation of Communities by 

Reconstruction of Unobserved States (PICRUSt; (61)) by quantifying community interactions 

such as nutrient competition, metabolite crossfeeding and product synthesis. 

Data analysis 

Patient data consisted of normalized taxa abundances and model-predicted data consisted of diet-

dependent NMPCs, both of which could be connected to associated metadata on a sample-by-

sample basis (Table S1). Data analysis was limited to samples in which the modeled taxa accounted 

for at least 90% of the unnormalized abundances (39/41 gouty samples, 39/42 healthy samples) to 

achieve adequate representation of the original 16S gene amplicon data. Both normalized taxa 

abundances and model-predicted NMPCs were subjected to unsupervised machine learning 

techniques including clustering and principal component analysis (PCA) to extract putative 

relationships between partitioned samples and patient gout status. Rather than apply supervised 

learning to samples partitioned on their known clinical status (i.e. gouty, healthy), unsupervised 

learning was performed to determine if samples clustered by taxa abundances or NMPCs could be 

associated with gout status. This approach was applied under the hypothesis that clustering could 

partially unravel the complex gout disease etiology and reveal at least one cluster with statistically 

high levels of gouty or healthy samples. 

Clustering was performed using the MATLAB function kmeans with the squared 

Euclidean distance metric, the k-means++ algorithm for cluster center initialization (62) and 1,000 

replicates. When clustering was applied to NMPC data generated from the average EU diet, an 

optimal number of three clusters was determined using the MATLAB function evalclusters with 
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the kmeans clustering method, the silhouette evaluation criterion (63), the sum of absolute 

difference as the distance measure and 100 replicates. To facilitate subsequent comparisons, three 

clusters also were used for the high protein and high fiber diets and for clustering of abundance 

data. For each in silico diet tested, the clustering method proved robust in that the same clustered 

samples were consistently returned despite the randomness of cluster initialization and the 

existence of local minima (64).   

PCA was performed directly on normalized taxa abundances and model-predicted NMPC 

data rather than on data preprocessed with sample dissimilarity measures such as the Bray–Curtis 

(65) or UniFrac (66) metrics. This approach was deemed appropriate since PCA was used for 

preliminary data visualization and not quantitative data analysis. Statistical significance of 

associations between categorial variables (e.g. gouty/healthy) across sample groups were assessed 

using Fisher’s exact test (67).  Correlations between taxa based on their abundances across samples 

were calculated using the proportionality coefficient (68), which accounts for the effects of data 

normalization. Statistically significant differences between NMPCs across samples were assessed 

using the Wilcoxon rank-sum test (69). The resulting p-values were used to calculate the false-

positive discovery rate (FDR) for each metabolite using the MATLAB function mafdr with the 

Benjamini-Hochberg method (70). 
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Tables 

Table 1. Summary of patient metadata from (36). 

 Gouty Healthy Total 

Patients 41 42 83 

Age (years) 49.4 48.7 49.1 

Female/Male 17/24 17/25 34/49 

Body Mass Index 

(kg/m2) 

23.1 23.2 23.2 

Blood Uric Acid 

(mol/L) 

496 242 368 

Urea Nitrogen 

(mmol/L) 

7.78 4.48 6.11 

Blood Glucose 

(mmol/L) 

5.76 5.17 5.46 
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Figure Legends 

1. Clustering of model-processed 16S abundance data obtained with an average EU diet. 

(A) Average abundances of taxa which averaged at least 5% across at least one cluster. (B) 

Number of gouty, healthy and total samples in each cluster. Cluster 1 contained a 

disproportionate large number of gouty samples compared to cluster 2 (p < 10-5) and the entire 

dataset (p = 0.002). Cluster 2 contained a disproportionate large number of healthy samples 

compared to cluster 3 (p = 0.01) and the entire dataset (p = 0.008). (C) Principal component 

plot of the model-processed abundance data with gouty and healthy patient samples labeled by 

their associated clusters. 

2. Maximal amino acid and fermentation byproduct synthesis capabilities in the high and 

low gout clusters from an average EU diet. (A) Classes of amino acids sharing common 

metabolic pathways and containing at least one amino acid differentially produced between 

the high and low gout clusters. (B) Common metabolic byproducts of carbohydrate 

fermentation and amino acid catabolism. Metabolite abbreviations are taken from the VMH 

database (www.vmh.life).  

3. Individual taxa contributions to maximal synthesis of amino acids differentially 

produced between the high and low gout clusters from an average EU diet. The amino 

acids shown from top left to bottom right are L-alanine, L-cysteine, L-histidine, L-isoleucine, 

L-methionine and L-tyrosine. D-alanine has been omitted for brevity. For each amino acid, the 

top five taxa are shown in the order of their total production across the two clusters. 

4. Individual taxa contributions to maximal synthesis of fermentation byproducts 

differentially produced between the high and low gout clusters from an average EU diet. 

The byproducts shown from top left to bottom right are 3-methyl-2-oxovaleric acid, butyrate, 
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hydrogen, hydrogen sulfide, isobutyrate, isocaproate, isovalerate and L-lactate. For each 

byproduct, the top five taxa are shown in the order of their total production across the two 

clusters. 

5. Individual taxa synthesis and uptake of crossfed metabolites for maximal butyrate 

production from an average EU diet. The metabolites shown from top left to bottom right 

are butyrate, acetate, D-alanine, carbon dioxide, D-lactate and succinate. Each metabolite 

shown had at least one taxa which satisfied a minimal bound on the metabolite secretion rate 

and the metabolite uptake rate. For each metabolite, the top five taxa were ordered by the sum 

of the absolute values of their uptake and secretion rates across the two clusters. 

6. Individual taxa synthesis and uptake of crossfed metabolites for maximal H2S production 

from an average EU diet. The metabolites shown from top left to bottom right are hydrogen 

sulfide, D-alanine, L-alanine, L-cysteine, D-lactate and L-lactate. Each crossfed metabolite 

shown had at least one taxa which satisfied minimal bounds on the metabolite secretion and 

uptake rates. For each metabolite, the top five taxa were ordered by the sum of the absolute 

values of their uptake and secretion rates across the two clusters. 

7. Sample clustering and differentially produced metabolites between average EU and high 

fiber diets. (A) Total samples shared between the three clusters obtained with the average EU 

diet and the three clusters obtained the high fiber diet. (B) Gouty samples shared between the 

three clusters obtained with the average EU diet and the three clusters obtained the high fiber 

diet. (C) Significant differences in maximal metabolite production rates were determined by 

applying the Wilcoxon rank sum test (FDR < 0.05) to each metabolite across all samples in the 

two high gout clusters and the two low gout clusters. In addition to being statistically different, 

each metabolite shown had an average production rate >10 mmol/day in at least one of the 
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compared clusters and average maximal production rates that differed between the compared 

clusters by at least 10%. Metabolite abbreviations are taken from the VMH database 

(www.vmh.life). 

8. Individual taxa synthesis and uptake of crossfed metabolites for maximal H2S production 

in high gout clusters generated from average European, high protein and high fiber diets. 

The metabolites shown from top left to bottom right are hydrogen sulfide, D-alanine, L-

alanine, L-cysteine, D-lactate and succinate. Each crossfed metabolite shown had at least one 

taxa which satisfied minimal bounds on the maximal metabolite secretion and uptake rates for 

at least one diet. For each metabolite, the top five taxa are ordered by the sum of the absolute 

values of their uptake and secretion rates across the three diets. 
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Figures 

 

Figure 1. Clustering of model-processed 16S abundance data with an average EU diet. 

 

Figure 2. Maximal amino acid and fermentation byproduct synthesis capabilities in the high 

and low gout clusters from an average EU diet.  
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Figure 3. Individual taxa contributions to maximal synthesis of amino acids differentially 

produced between the high and low gout clusters from an average EU diet. 

 

Figure 4. Individual taxa contributions to maximal synthesis of fermentation byproducts 

differentially produced between the high and low gout clusters from an average EU diet. 
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Figure 5. Individual taxa synthesis and uptake of crossfed metabolites for maximal butyrate 

production from an average EU diet. 

 

Figure 6. Individual taxa synthesis and uptake of crossfed metabolites for maximal H2S 

production from an average EU diet. 
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Figure 7. Sample clustering and differentially produced metabolites between average EU 

and high fiber diets. 

 

Figure 8. Individual taxa synthesis and uptake of crossfed metabolites for maximal H2S 

production in high gout clusters generated from average European, high protein and high 

fiber diets.  
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Supplementary Information 

 

Figure S1. Analysis of normalized 16S-derived abundance data for samples in which the 

modeled taxa accounted for at least 90% of the unnormalized abundances. (A) Taxa which 

were significantly (FDR < 0.05) more abundant in one sample type versus the other sample type 

among the 25 most abundant taxa across the 78 samples used. (B) Taxa most highly correlated 

with the blood uric acid concentration. (C) Taxa with the highest proportionality to  

Faecalibacterium. (D) Principal component plot of the16S-derived abundance data showing gouty 

and healthy patient samples. 
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Figure S2. Differentially produced metabolites between the high and low gout clusters with 

an average EU diet. Significant differences in maximal metabolite production rates were 

determined by applying the Wilcoxon rank sum test (FDR < 0.05) to each metabolite across all 

samples in the two clusters. In addition to being statistically different, each metabolite shown had 

an average production rate > 10 mmol/day in at least one cluster and average production rates that 

differed between the clusters by at least 10%. Metabolite abbreviations are taken from the VMH 

database (www.vmh.life). Full metabolite names, their associated metabolic pathways and 

numeric values for their average production rates in each cluster are given in Table S6. 
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Figure S3. Individual taxa contributions to maximal synthesis of selected non-differentially 

produced amino acids in the high and low gout clusters with an average EU diet. The amino 

acids shown from top left to bottom right are L-aspartate, L-glutamate, L-leucine, L-phenylalanine, 

L-tryptophan and L-valine. For each amino acid, the top five taxa are shown in the order of their 

total production across the two clusters. 
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Figure S4. Individual taxa contributions to maximal synthesis of selected non-differentially 

produced  fermentation byproducts in the high and low gout clusters with an average EU 

diet. The byproducts shown from top left to bottom right are acetate, carbon dioxide, ethanol, 

formate, D-lactate, propionate and succinate. For each byproduct, the top five taxa are shown in 

the order of their total production across the two clusters. 

 

Figure S5. Individual taxa synthesis and uptake of crossfed metabolites for maximal D-

lactate production from an average EU diet. The metabolites shown from top left to bottom 

right are D-lactate, acetate, D-alanine, L-alanine, L-cysteine, formate, L-leucine and succinate. 

Each crossfed metabolite shown had at least one taxa which satisfied minimal bounds on the 

metabolite secretion and uptake rates. For each metabolite, the top five taxa were ordered by the 

sum of the absolute values of their uptake and secretion rates across the two clusters. 
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Figure S6. Individual taxa synthesis and uptake of crossfed metabolites for maximal L-

cysteine production from an average EU diet. The metabolites shown from top left to bottom 

right are L-cysteine, acetate, D-alanine, L-alanine, L-glutamate,  hydrogen sulfide and L-leucine. 

Each crossfed metabolite shown had at least one taxa which satisfied minimal bounds on the 

metabolite secretion and uptake rates. For each metabolite, the top five taxa were ordered by the 

sum of the absolute values of their uptake and secretion rates across the two clusters. 
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Figure S7. Sample clustering and differentially produced metabolites between average EU 

and high protein diets. (A) Total samples shared between the three clusters obtained with the 

average EU diet and the three clusters obtained the high protein diet. (B) Gouty samples shared 

between the three clusters obtained with the average EU diet and the three clusters obtained the 

high protein diet. (C) Significant differences in maximal metabolite production rates were 

determined by applying the Wilcoxon rank sum test (FDR < 0.05) to each metabolite across all 

samples in the two high gout clusters and the two low gout clusters. In addition to being statistically 

different, each metabolite shown had an average production rate >10 mmol/day in at least one of 

the compared clusters and average production rates that differed between the compared clusters 

by at least 10%. Metabolite abbreviations are taken from the VMH database (www.vmh.life). 

 

Figure S8. Maximal amino acid and fermentation byproduct synthesis capabilities in the 

high and low gout clusters from average EU and high protein diets. (A) Classes of amino acids 

sharing common metabolic pathways. (B) Common metabolic byproducts of carbohydrate 

fermentation and amino acid catabolism. Metabolite abbreviations are taken from the VMH 

database (www.vmh.life).  
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Figure S9. Maximal amino acid and fermentation byproduct synthesis capabilities in the 

high and low gout clusters from average EU and high fiber diets. (A) Classes of amino acids 

sharing common metabolic pathways. (B) Common metabolic byproducts of carbohydrate 

fermentation and amino acid catabolism. Metabolite abbreviations are taken from the VMH 

database (www.vmh.life).  
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Figure S10. Individual taxa synthesis and uptake of crossfed metabolites for maximal H2S 

production from low gout clusters generated from average European, high protein and high 

fiber diets. The metabolites shown from top left to bottom right are hydrogen sulfide, L-alanine, 

L-cysteine, D-lactate, L-lactate and succinate. Each crossfed metabolite shown had at least one 

taxa which satisfied minimal bounds on the metabolite secretion and uptake rates for at least one 

diet. For each metabolite, the top five taxa are ordered by the sum of the absolute values of their 

uptake and secretion rates across the three diets. 
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