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Abstract  

BACKGROUND The chronic kidney disease (CKD) public health burden is substantial and 
has not declined as expected with current interventions on disease treatments. A large number 
of clinical, biological, and behavioural risk factors have been associated with CKD. However, 
it is unclear which of them are causal.  
 
OBJECTIVE To systematically test whether previously reported risk factors for CKD are 
causally related to the disease in European and East Asian ancestries. 
 
DESIGN Two-sample Mendelian randomization (MR) and non-linear MR analyses. 
 
PARTICIPANTS 53,703 CKD cases and 960,624 controls of European ancestry from 
CKDGen, UK Biobank and HUNT, and 13,480 CKD cases and 238,118 controls of East 
Asian ancestry from Biobank Japan, China Kadoorie Biobank and Japan-Kidney-
Biobank/ToMMo. 
 
MEASURES Systematic literature mining of PubMed studies identified 45 clinical risk 
factors and biomarkers with robustly associated genetic variants, including phenotypes 
related to blood pressure, diabetes, glucose, insulin, lipids, obesity, smoking, sleep disorders, 
nephrolithiasis, uric acid, coronary artery disease, bone mineral density, homocysteine, C-
reactive protein, micro-nutrients and thyroid function, which were selected as exposures. The 
outcome was CKD (defined by clinical diagnosis or by estimated glomerular filtration rate 
(eGFR) < 60 ml/min/1.73m2). 
 
RESULTS Eight risk factors showed evidence of causal effects on CKD in European 
ancestry, including body mass index (BMI), hypertension, systolic blood pressure, high 
density lipoprotein cholesterol, apolipoprotein A-I, lipoprotein A, type 2 diabetes (T2D) and 
nephrolithiasis. In East Asian ancestry, BMI, T2D and nephrolithiasis showed evidence of 
causal effects on CKD. Hypertension showed reliable evidence of a strong causal effect on 
CKD in Europeans but in contrast appeared to show a null effect in East Asians, suggesting 
the possibility of different causal risk factors in Europeans and East Asians. Although 
liability to T2D showed consistent effects on CKD, the effect of glycemic traits on CKD was 
weak, suggesting T2D may have glucose-independent mechanisms to influence CKD. Non-
linear MR indicated a threshold relationship between genetically predicted BMI and CKD, 
with increased risk at BMI above 25 kg/m2. 
 
LIMITATION Due to the unbalanced distribution of data between ancestries, we could only 
test 17 of the 45 risk factors in East Asian participants.  
 
CONCLUSIONS Eight CKD-associated risk factors showed evidence of causal effects on 
the disease in over 1.2 million European and East Asian ancestries. These risk factors were 
predominantly related to cardio-metabolic health, which supports the shared causal link 
between cardio-metabolic health and kidney function. This study provides evidence of 
potential intervention targets for primary prevention of CKD, which could help reduce the 
global burden of CKD and its cardio-metabolic co-morbidities. 
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Research in context 

Evidence before this study 
Chronic kidney disease (CKD) has a major effect on global health, both as a direct cause of 
morbidity and mortality, and as an important complication for cardio-metabolic diseases. 
However, even with the existing interventions, the burden of CKD has not declined as 
expected over the last 30 years. Existing epidemiological studies of CKD have mainly 
focused on disease treatment in patients from specific populations and estimated association 
rather than causality. A systematic assessment of the causal determinants of CKD in different 
populations is urgently needed, to help promote a shift from treatment of CKD patients to 
prevention of the disease in high-risk groups. The use of genetic data and the latest 
Mendelian randomization (MR) methodologies offers a cost-effective way to evaluate the 
potential intervention targets for prevention of CKD in high-risk groups. 
 
Added value of this study 
In this study, we systematically constructed a causal atlas of 45 risk factors on CKD in 
European and East Asian ancestries using MR. To maximise power of these analyses and 
accuracy of the findings, we collected and harmonised CKD genetic association data from six 
large-scale biobanks (in over 1.1 million Europeans and 250,000 East Asians). By applying a 
comprehensive MR framework, including linear two-sample MR, bidirectional MR, 
multivariable MR and non-linear MR approaches, we identified eight risk factors with 
reliable evidence of causal effects on CKD in European ancestry studies, including body 
mass index (BMI), hypertension, systolic blood pressure, high density lipoprotein cholesterol, 
apolipoprotein A-I, lipoprotein A, type 2 diabetes (T2D) and nephrolithiasis. In East Asian 
studies, BMI, T2D and nephrolithiasis also showed causal effects on CKD. Among other 
factors, hypertension showed reliable evidence of a strong causal effect on CKD in 
Europeans but in contrast appeared to show a null effect in East Asians. This MR finding 
together with previous literature evidence opens up the possibility that hypertension could 
play different causal roles on CKD across ancestries. For diabetes and glycemic phenotypes, 
our MR and sensitivity analyses suggested the causal role of liability of T2D on CKD but 
suggested weak effects of glycemic phenotypes on CKD. This aligns with the recent trial of 
SGLT2 inhibitors on kidney disease, which implies T2D may have glucose-independent 
mechanisms to influence CKD. For lipids phenotypes, we found good evidence to support the 
role of high-density lipoprotein cholesterol on CKD and further suggested the effects of two 
lipids targets: circulating CETP level and lipoprotein A concentration. For body weight, our 
study quantified a threshold relationship between BMI and CKD, with increased risk at BMI 
above 25 kg/m2. The causal relationship between nephrolithiasis and CKD were reported in 
previous studies, but our study confirmed the causal links between the two for the first time.  
 
Implication of all the available evidence  
This study makes a significant advance in comprehensively prioritising intervention targets 
for CKD in over 1.2 million participants. Our study presents causal evidence from both 
European and East Asian population samples, widening the generalisability of the causal atlas. 
Importantly, the prioritised risk factors are predominantly related to cardio-metabolic health, 
which supports the shared causal link between cardio-metabolic health and kidney function. 
Clinically, the high-quality evidence from this study highlights the value of exploring these 
causal factors in the general population and prioritizes drug targets and life-style 
interventions for CKD primary prevention, which could help reduce the global burden of 
CKD and its cardio-metabolic co-morbidities. 
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Chronic kidney disease (CKD) affects 10-15% of the population worldwide. It has a major 

effect on global health, both as a direct cause of morbidity and mortality, and as an important 

complication for cardio-metabolic diseases (1)(2)(3). From 1990 to 2017, the global age-

standardized mortality for many important non-communicable diseases, such as 

cardiovascular disease, declined by 30.4%, but till now the mortality decline for CKD was 

only 2.8% (4). Therefore, reducing CKD incidence could be the next intervention target to 

reduce the burden of both CKD and its associated-complications globally (5). However, in 

reality, disease awareness of CKD is still deficient among the general public and health-care 

authorities. The majority of intervention trials have focused on disease treatment rather than 

primary prevention of CKD. In the literature, impaired fasting glucose, high blood pressure 

and high body-mass index are among the leading risk factors for CKD. However, even with 

the interventions on controlling glucose and blood pressure, the burden of CKD has not 

declined as expected (4). Thus, a systematic assessment of the causal determinants of CKD is 

urgently needed, which will help promote a shift from treatment of CKD patients to 

prevention of the disease in high-risk groups.  

Well-designed and well-powered randomized controlled trials (RCTs) are usually the best 

approach to estimate a causal relationship between a risk factor and a disease. Currently, 

most published CKD studies were observational and/or RCTs in CKD patients, and these 

have identified risk factors for CKD progression. However, no reliable RCT evidence exists 

to support their causal roles on CKD incidence. Mendelian randomization (MR) is an 

epidemiological method that can be used to obtain evidence about the effect of modifying 

intervention targets (6). MR exploits the random allocation of genetic variants at conception 

and is therefore less susceptible to confounding and reverse causality than traditional 

observational studies. The increasing availability of genetic association resources provides a 

timely opportunity to test the causal effects of various risk factors on CKD and provide 

insights into the disease pathogenesis using MR (7)(8).  

In this study, we aimed to investigate the causal effects of 45 previously reported risk 

factors on CKD in general European and East Asian populations. To achieve this, a 

systematic search of risk factors for CKD was conducted in PubMed using the literature 

mining tool MELODI (9)(10). A set of two-sample linear MR analyses was performed using 

CKD and estimated glomerular filtration rate (eGFR) summary data from over 1 million 

participants from CKDGen consortium (11), UK Biobank (12), Nord-Trøndelag Health 

(HUNT) Study (13), Biobank Japan (14), China Kadoorie Biobank (15) and Japan-Kidney-

Biobank/ToMMo consortium, in conjunction with the largest available genome-wide 
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association study (GWAS) for risk factors in European and East Asian ancestries. A set of 

comprehensive follow-up analyses was carried out to understand the independent effect of 

key risk factors and the relationship between glycemic, blood pressure and lipid phenotypes 

on CKD. For key causal risk factors with MR evidence, non-linear MR (16)(17)(18) was 

performed in participants from UK Biobank and HUNT Study to investigate the optimal level 

of intervention.  

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188284doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.04.20188284
http://creativecommons.org/licenses/by/4.0/


 

 7 

METHODS 

Study design  
Our study consisted of four components (Figure 1). First, we identified 45 risk factors for 

CKD by mining the literatures in PubMed. Second, we estimated the causal effects of these 

risk factors on CKD prevalence and eGFR in CKDGen (11), UK Biobank (12), HUNT Study 

(13), Biobank Japan (14) and China Kadoorie Biobank (15) and Japan-Kidney-

Biobank/ToMMo consortium separately using two-sample linear MR approach. We further 

evaluated the MR evidence based on the strength and consistency of MR evidence across MR 

methods and across studies and fitness of MR assumptions. Third, we conducted extensive 

follow-up analyses to confirm the findings for four types of cardio-metabolic risk factors: 

blood pressure phenotypes, BMI, blood lipid phenotypes and glycemic phenotypes on CKD. 

Finally, non-linear MR was performed to estimate the optimal level of BMI and fasting 

glucose for reducing CKD risk in UK Biobank and HUNT Study. 

 

Selection of risk factors  
CKD risk factors were identified from a literature review using the MELODI-Presto 

(9)(10)  to search the PubMed database (for more details on this method see Supplementary 

Note 1). We identified 49 risk factors/phenotypes for CKD, including blood pressure 

phenotypes, diabetic phenotypes (glucose- and insulin-related phenotypes), lipids phenotypes, 

obesity, smoking, alcohol intake, sleep disorders, nephrolithiasis, serum uric acid, coronary 

artery disease, bone mineral density, homocysteine, C-reactive protein, micro-nutrient 

phenotypes (serum metals and vitamins), dehydration and thyroid phenotypes, were selected. 

By searching the largest available GWAS studies (but minimums the sample overlap with the 

outcome samples), we extracted genetic variants associated with 45 of 49 risk factors in 

European ancestry studies and with 17 of 49 risk factors in East Asian ancestry studies and 

used them as genetic instruments for the MR analyses (Supplementary Table 1, more details 

in Supplementary Note 1). To select the independent genetic variants, the genome wide 

significant SNPs were grouped by LD (r2<0.001 for SNPs within 1Mb genomic region) and 

only the SNP with the lowest P value per group was kept (Supplementary Table 2, 3). 

 

Association of genetic variants with CKD and eGFR 

CKD was defined by clinical diagnosis (International Classification of Diseases (ICD) 

10th Revision) in the UK Biobank (12) (the CKD cases were defined as participants with 

ICD10 code range from N17-N19; the participants with all types of kidney disorders [N00-
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N29] were excluded from the controls to reduce the possibility of including CKD case in the 

control group), HUNT (13) and China Kadoorie Biobank (15); defined as eGFR <60 

ml/min/1.73m2 in CKDGen (11) and Biobank Japan (14) and defined as eGFR<60 

ml/min/1.73m2 and/or the presence of urine abnormality in the Japan-Kidney-

Biobank/ToMMo consortium, where eGFR was estimated from serum creatinine using the 

Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula (19). The genetic 

associations with CKD and eGFR were reported in three studies of European ancestry 

(CKDGen: 41,395 cases, 439,303 controls, 8.7% diabetes patients; UK Biobank: 9,884 cases, 

454,323 controls, 5.2% with diabetes; and HUNT Study: 2,424 cases, 66,998 controls, 4.9% 

with diabetes). The genetic associations with CKD were reported in three East Asian studies 

(Biobank Japan: 8,586 cases, 133,808 controls, 10.2% with diabetes; China Kadoorie 

Biobank: 848 cases, 94,887 controls, 6.7% with diabetes; Japan-Kidney-Biobank/ToMMo 

consortium: 4,046 cases, 9,423 controls, 7.3% with diabetes) and eGFR were reported in 

Biobank Japan (Supplementary Table 4, Supplementary Note 2). The novel GWAS results 

for eGFR and CKD generated using UK Biobank data were accessed using MRC-IEU 

OpenGWAS database (https://gwas.mrcieu.ac.uk/) (20) and MR-Base (www.mrbase.org) 

(21).  

 

Statistical analysis 

MR is an instrumental variable method that uses genetic variants as instruments to test the 

causal relationships between an exposure (e.g. BMI) and outcome (e.g. CKD). The causal 

effect of the exposure and the outcome can be estimated when the three core assumptions are 

satisfied (Supplementary Figure 1 and Supplementary Note 3). For the binary exposures 

(e.g. T2D), the odds ratios (ORs) were converted (multiplying log(ORs) by log(2) (equal to 

0.693) and then exponentiating) in order to represent the OR of outcome per doubling of the 

odds of susceptibility to the exposure (22)(23).  

A set of two-sample MR and sensitivity analyses for testing the underlying assumptions, 

were conducted using the TwoSampleMR package (21), including Wald ratio (24), inverse 

variance weighted (IVW) MR (25), MR-Egger (26), MR weighted median (27), MR mode 

estimator (28), Steiger filtering (29) and heterogeneity test across multiple instruments (30). 

Information of the bidirectional MR (31) of genetic liability of CKD or eGFR as exposure 

and risk factors as outcomes, as well as multivariable MR (MVMR) analyses of correlated 

phenotypes can be found in Supplementary Note 4. A conservative Bonferroni corrected 
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threshold (α=1.11×10-3, as 45 risk factors were assessed) was used to account for multiple 

testing. Power calculations were performed using an online tool 

(https://sb452.shinyapps.io/power/) (32).  

 

Follow-up MR analyses  

We conducted extensive follow-up analyses to validate and extend the depth of our main 

findings. First, a set of analyses was conducted to understand the pathways linking T2D with 

CKD: 1) we validated the causal effects of the eight glycemic phenotypes on CKD using 

Steiger filtering (29) and radial MR (33); 2) we considered the influence of genetic liability 

of type 1 diabetes (T1D) (34) (Supplementary Table 2) on CKD; 3) participants with eGFR 

measurements were stratified into diabetic (N=11,529) and non-diabetic populations 

(N=118,460) (35) and we conducted MR analyses of T2D and 5 glycemic phenotypes on 

eGFR in these two sub-populations; 4) diabetic retinopathy was included as a positive control 

outcome to validate the analytical approach. The instruments for T2D and glycemic 

phenotypes were used as exposure, while the CKD data from CKDGen, UK Biobank and 

HUNT as well as the diabetic retinopathy data from UK Biobank SAIGE release (36) were 

used as outcomes (Supplementary Table 4).  

Second, to further validate the MR findings of lipids on CKD, the following analyses 

were conducted: 1) we tested the independent effect of high density lipoprotein cholesterol 

(HDL-C) and apolipoprotein A-I on CKD using a MVMR model (Supplementary Note 4); 2) 

we estimated the effect of circulating cholesteryl ester transfer protein (CETP) levels (37) on 

CKD (Supplementary Table 2); 3) given that lipoprotein A (Lp[a]) levels for a fixed apo(a) 

isoform size may vary, we estimated the effect of apo(a) isoform size on CKD (Lp[a] KIV2 

repeats and apolipoprotein[a] protein isoform size data from Saleheen et al. (38)) 

(Supplementary Table 2).  

Third, to validate the blood pressure and HDL-C MR results in East Asians, we 

conducted two sensitivity analysis: 1) given the unbalanced distribution between the 

European and East Asian GWAS resources (39), we need to consider the potential influence 

of unbalanced number of instruments and the power of the MR results across the two 

populations. Therefore, we took all SNPs that are associated with systolic blood pressure 

(SBP; 197 SNPs), diastolic blood pressure (DBP; 235 SNPs) and HDL-C (145 SNPs) in 

Europeans and checked whether their genetic associations replicated in East Asians GWASs 

(which the P value thresholds of 0.001 and 0.01 were used as the threshold of replication 
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separately) and then included those replicated SNPs in the MR analyses of SBP, DBP and 

HDL-C (Supplementary Table 5; 128 SNPs were included using P<0.01, 84 SNPs were 

included using P<0.001) on CKD in East Asian samples. 2) We extracted genetic instruments 

of blood pressure phenotypes from a recent Chinese study (40) and conducted a validation of 

MR findings between the four blood pressure phenotypes (including hypertension, SBP, DBP, 

pulse pressure [PP]) and CKD in the three CKD outcome studies using East Asian samples.  

Finally, for BMI and fasting glucose, a fractional polynomial approach (17)(18) was 

applied to estimate the non-linear shape of the association between these risk factors and 

CKD  using UK Biobank and HUNT Study (Supplementary Note 5). 

 

Evaluation of Mendelian randomization evidence  

Previous study suggested that P value threshold should not be the only criteria to define 

“significance” (41). We therefore evaluated the MR evidence using three criteria: (1) MR 

strength: whether the MR IVW estimate of each risk factor passed the Bonferroni-corrected 

P value threshold (P < 1.1×10-3) in one study and passed the replication threshold (P < 0.05) 

in at least one other study; (2) Fitness of MR assumptions: whether the MR estimates of 

each risk factor showed the same direction of effect across MR sensitivity analyses (e.g. MR 

IVW, MR-Egger and other methods) and checked the influence of horizontal pleiotropy using 

MR-Egger intercept term and heterogeneity test (Cochran Q for IVW and Rucker’s Q for 

MR-Egger). (3) whether the direction of MR effect of each risk factor on CKD was 

consistent across multiple studies. Figure 1 demonstrated how the MR evidence were 

determined in Europeans and East Asians separately: “Reliable evidence” refers to risk 

factors that fulfilled all the three criteria and “Weak evidence” refers to risk factors that do 

not align with any one of the three criteria (e.g.MR estimates with strong MR evidence but 

with inconsistent directionality).  

 

RESULTS 

Causal effects of risk factors on CKD 

The causal effects of the 45 risk factors on CKD in Europeans and 17 risk factors in East 

Asians are presented in Figure 2. Among them, eight risk factors showed reliable evidence, 

and the remaining 37 showed weak evidence of associations with CKD. Detailed evaluations 

of the causal evidence in Europeans and East Asians were presented in Supplementary 

Table 6A and 6B separately. 
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Risk factors showing reliable MR evidence 

Supplementary Figure 2A shows the genetic predictors of eight risk factor are 

associated with CKD in European ancestries. The IVW odds ratio (95% CIs) for CKD per 1-

SD increase in continuous risk factors was 1.78 (1.64 to 1.94) for BMI, 1.24 (1.12 to 1.37) 

for SBP, 1.13 (1.07 to 1.19) for Lp(a) levels, 0.934 (0.90 to 0.97) for HDL-C  and 0.96 (0.94 

to 0.98) for Apolipoprotein A-I. The IVW odds ratio (95% CI) per doubling in the odds of 

genetically liability to binary risk factors was 2.05 (1.59 to 2.64) for hypertension, 1.20 (1.09 

to 1.31) for nephrolithiasis and 1.08 (1.05 to 1.12) for T2D. The effects of these eight risk 

factors on CKD was consistent across UK biobank, CKDGen and HUNT (Supplementary 

Table 7A, 8A and 9A).  

In East Asian participants, genetic predicted level of BMI (OR= 1.42, 95%CI=1.20 to 

1.69, P= 6.49×10-5), increased nephrolithiasis risk (OR=1.12, 95%CI=1.04 to 1.19, P=1.11

×10-3) and increased T2D risk (OR= 1.07, 95%CI=1.03 to 1.10, P=1.66×10-4) were 

associated with increasing risk of CKD (Supplementary Figure 2B). The effects of three 

factors on CKD was consistent across three East Asian studies (except that for BMI and 

nephrolithiasis effect on CKD was not observed in the China Kadoorie Biobank, which had 

limited CKD cases) (Supplementary Table 10, 11 and 12). 

For sensitivity MR analyses, bidirectional MR analysis found a consistent effect of 

increased genetic liability of CKD on increasing hypertension in European ancestry 

(Supplementary Table 13). The MVMR results of T2D, BMI and hypertension on CKD can 

be found in Supplementary Table 14 A, B and C. MR analysis using eGFR as outcome 

showed similar results as CKD (Supplementary Table 7B, 8B, 9B and 10B).  

Risk factors showing weak MR evidence 

For the remaining 37 risk factors in European ancestry (Supplementary Table 7, 8 and 9) 

and 12 risk factors in East Asian ancestry (Supplementary Table 10, 11 and 12), weak 

evidence was found to support their effect on CKD. This included some established risk 

factors such as smoking and serum uric acid. In addition, shorter sleep duration showed 

evidence of association with CKD in Japan-Kidney-Biobank/ToMMo (Supplementary 

Table 11) and in the UK Biobank (Supplementary Table 7A) but lack of replication in other 

studies.  
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Follow-up MR analyses of key findings 

Effects of glycemic phenotypes and CKD 

Although the evidence for an effect of T2D on CKD was reliable, we detected little 

evidence of the effect of eight glycemic phenotypes (fasting insulin (FI), fasting glucose (FG), 

2-hour glucose (2hGlu), fasting proinsulin (FP), haemoglobin A1c (HbA1c), HOMA-B, 

Insulin-Like Growth Factor Binding Protein 3 and Insulin-Like Growth Factor I) on CKD 

(Supplementary Figure 3) and eGFR (Supplementary Figure 4). To further evaluated 

these findings, we found that 1) similar results were observed after controlling for possible 

reverse causation of instruments and potential outliers (Supplementary Table 15); 2) little 

evidence was observed that genetic liability to T1D was associated with CKD risk in any of 

the three outcome studies from European ancestry (Supplementary Table 16A), which 

further supported the weak effect of glucose on CKD; 3) for the MR analysis using stratified 

eGFR in Europeans, little effect of glycemic phenotypes on eGFR was observed in both 

diabetic and non-diabetic samples (Supplementary Table 16B), which suggested that the 

weak effect of glucose on CKD could be independent to diabetes; 4) fasting glucose and 

genetic liability to T2D were associated with diabetic retinopathy (Supplementary Table 

16C), suggesting that the genetic predictors of glycemic phenotypes used for the main MR 

analyses were reliable.  

Effects of blood lipids and CKD 

For the MR findings of lipids, our follow-up analyses showed a few novel observations: 1) 

we observed different MR evidence for HDL-C on CKD across Europeans and East Asians. 

In Europeans, good MR strength were observed to support the effects of HDL-C and 

apolipoprotein A-I on CKD (Supplementary Table 7, 8 and 9), while HDL-C showed 

weaker MR strength in East Asians (Supplementary Table 10, 11 and 12). To test the 

potential influenced of power of the HDL-C effect on CKD in East Asians (OR=0.94, 

95%CI=0.87 to 1.02), we conducted MR using better powered HDL-C associated SNPs in 

Europeans as genetic predictors (but the genetic associations were still from East Asian 

studies) and found reliable MR evidence between the two (OR=0.89, 95%CI=0.83 to 0.96; 

Supplementary Table 17A), which suggested HDL-C may has an effect on CKD in both 

population; 2) using European data, the multivariable MR model considering both HDL-C 

and apolipoprotein A-I in the same model showed that the effect of HDL-C on CKD were 

independent to the apolipoprotein A-I (Supplementary Table 14D); 3) following the HDL-C 
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finding, we found an effect of circulating CETP level on CKD in CKDGen (OR= 1.06, 

95%CI=1.01 to 1.11, P= 0.01; Supplementary Table 18); 4) we further investigated the 

potential influence of apolipoprotein(a) size on CKD, but found little evidence for a causal 

effect. This suggested that the effect of Lp(a) level on CKD was independent of 

apolipoprotein(a) size (Supplementary Table 19);  

Effect of blood pressure phenotypes and CKD across populations 

As shown in Figure 3, blood pressure phenotypes including hypertension, SBP and PP 

showed reliable evidence of strong causal effects on CKD in the European studies but 

appeared to show a null causal effect in the East Asian studies (ORs of hypertension on CKD 

ranging from 1.72 to 2.35 in Europeans but only from 0.99 to 1.07 in East Asians). To 

validate the East Asian results, we first conducted a MR analysis using the more powerful 

European SBP and DBP instruments (but East Asian association information), which showed 

similar results (Supplementary Table 17B). Second, we used genetic instruments of SBP, 

DBP and hypertension from an additional GWAS study in East Asia (40) and still observed 

similar results (Supplementary Table 17C). These analyses provided additional evidence 

that blood pressure might have a population-specific role in CKD aetiology.  

Non-linear effects of BMI and fasting glucose on CKD 

We observed a threshold relationship between BMI and CKD. The curved shape of this 

relationship suggested higher risk in overweight or obese participants, with the BMI 

threshold at around 25 kg/m2 in UK Biobank and around 24~25 kg/m2 in HUNT Study 

(Figure 4). Stratified analysis split by sex suggested similar effects of BMI on CKD 

(Supplementary Figure 5), while stratified analysis split by age showed greater harm of 

increasing BMI in older participants (age>=65) (Supplementary Figure 6).  

Fasting glucose showed weak evidence for a non-linear relationship with CKD 

(Supplementary Figure 7). This finding was consistent with the stratified analysis results 

split by sex (Supplementary Figure 8) and age (Supplementary Figure 9). Supplementary 

Table 20 showed the non-linear trend test results of BMI and fasting glucose on CKD, where 

the analyses suggested little evidence supporting a non-linear relationship between fasting 

glucose and CKD. 

 

DISCUSSION  
In this trans-ethnic MR study, we comprehensively assessed the causal relationships of 45 

reported risk factors on CKD and eGFR in more than 1.1 million European and 17 risk 
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factors in over 250,000 East Asian ancestries. Using a set of MR approaches including five 

two-sample MR methods and multivariable MR, we found reliable evidence of causal effects 

of eight cardio-metabolic related risk factors (BMI, SBP, hypertension, T2D, nephrolithiasis, 

HDL-C, apolipoprotein A-I, and Lp[a]) on CKD. The remaining 37 risk factors, such as 

smoking and serum uric acid, showed weak evidence of causal effects on CKD with the 

current available data. These findings agreed with previous MR studies of similar risk factors 

separately (42)(43)(44). The null finding of the serum uric acid agreed with the recent trial 

evidence of the effects of serum urate lowering (using Allopurinol) on CKD progression 

(45)(46). Notably, our extensive MR and follow-up analyses suggested the possibility of 

glucose-independent pathways linking T2D with CKD. Using non-linear MR, we observed a 

threshold relation between BMI and CKD risk, with the CKD risk increased at BMI above 25 

kg/m2.  

The causal patterns of 17 risk factors were compared across the two ancestries, and we 

observed consistent effects of T2D, BMI and nephrolithiasis on CKD in both Europeans and 

East Asians. In contrast, distinguishable causal patterns were observed for hypertension 

against CKD across ancestries, where the causal estimate was strong in Europeans but 

towards null in East Asians. Our trans-ethnic comparison implies that careful assessments are 

needed before implementing interventions using CKD risk factors that were identified using 

evidence from a different population. 

For the prioritised risk factors, hypertension is one of the most common risk factors for 

CKD progression (51). A recent bi-directional MR study in Europeans supported the causal 

effects of higher kidney function on lower blood pressure using well-designed eGFR 

instruments controlled by blood urea nitrogen. But the study suggested inconclusive evidence 

of an effect of blood pressure on eGFR (52). In our MR analysis, we found evidence of 

positive bidirectional causal effects between hypertension and CKD in Europeans, in line 

with clinical and experimental studies. The inconsistent MR findings across these studies 

may be due to 1) the blood pressure instruments Yu et al used were adjusted for BMI in the 

additive model, but the genetic associations of eGFR and CKD were not controlled for BMI. 

Given the causal role of BMI on both CKD and hypertension, only controlling for BMI in the 

exposure data may create unintended bias to the MR estimates, as described previously (53); 

2) the CKD cases we used here were clinically diagnosed, which may bring additional 

statistical power and therefore provided more reliable evidence for the suggestive effect of 

blood pressure on CKD reported by Yu et al. Furthermore, the different MR evidence across 

ancestries we observed combined with previous literature evidence opens up the possibility 
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that hypertension could play different causal roles on CKD across ancestries. In literature, the 

ethnic disparities for effects of hypertension on CKD has been reported (47)(48). For 

example, Chinese hold lower risk of CKD when exposed to hypertension compared with 

Europeans (47). In 2019, hypertensive nephropathy accounted for 27% of the overall CKD 

cases in U.S but only accounted for 20.8% in East Asian (49)(50). Correctively, whether 

blood pressure showed a consistent causal effect on CKD across ancestries is still not directly 

clear. Well-powered trans-ethnic studies are needed to validate our findings.  

For two other emerging risk factors, BMI and nephrolithiasis, our MR analyses suggested 

substantial causal effects on CKD. Previous observational studies suggested a positive 

association for BMI on CKD (54)(55) and end stage renal disease (ESRD) onset (56) (57)(58) 

and the effect of weight loss on slowing kidney function decline (59). Using linear and non-

linear MR approaches, we observed a threshold causal relationship between BMI and CKD 

and quantified the optimal maximum (25 kg/m2) for body mass index. These findings provide 

additional confidence of the potential success of five ongoing trials registered in 

clincaltrials.gov. In addition, nephrolithiasis is a common serious problem around the world 

(60)(61)(62). Increasing evidence suggests that having kidney stones is a risk factor for CKD 

(63). For example, kidney stone formers tend to have lower eGFR (64). Previous cohort study 

suggested that even a single kidney stone episode was associated with an increase in the 

likelihood of adverse renal outcomes (65). A recent genetic study suggested that eGFR has an 

inverse relationship with kidney stone formation (66). However, the causal relationship 

between nephrolithiasis and CKD has not been investigated thoroughly. Our MR supported 

the causal effect of nephrolithiasis on increased risk of CKD, which were obtained by genetic 

predictors with good instrument strength. This is of particular importance as obstructive 

nephropathy was the third leading cause of CKD in the general Chinese population (15.6%) 

(50). Existing literature suggests that recurrent obstructive episodes may activate the 

fibrogenic cascade in renal cells and be responsible for the loss of renal function (67). Our 

study supports this literature and prioritises prevention of kidney stones as a sensible 

approach for CKD prevention. 

Notably, diabetic kidney disease is considered the most common type of CKD 

worldwide(68). A previous MR study of T2D on CKD in Chinese suggested a strong causal 

link between the two (69), which aligned with our MR finding in East Asians and Europeans. 

However, despite the reliable evidence for a causal effect of T2D on CKD, the linear and 

non-linear MR results suggested that the causal effects of fasting glucose and insulin levels 

on CKD were close to null. It has been observed that with increasing use of glucose-lowering 
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medications, the prevalence of CKD in diabetics was not reduced as expected from 1988 to 

2008 (70). Meta-analysis of RCTs of intensive glucose control showed little effect on 

reducing the risk of ESRD during the years of follow-up (71). These findings together with 

our MR results suggest that non-glucose pathways could play a role to link diabetes with 

CKD (70)(71). Consistently, the beneficial effects of antidiabetic SGLT2 inhibitors on renal 

outcomes were suggested to be mediated by glucose-independent pathways (72). One 

potential limitation was that the glucose GWAS used in this study was conducted in a general 

population sample (fasting glucose level lower than 7 mmol/L), which most of the existing 

MR studies using these data assume the glucose change in general population shows similar 

effects in diabetes patients (with fasting glucose level above 7 mmol/L), which may not 

always be the case. Although our stratified MR analysis showed similar little causal effects 

using eGFR in diabetes patients and non-diabetes patients, we believe better genetic 

instruments from diabetic population samples and well-designed clinical trials are needed to 

evaluate the effect of glucose-dependent and -independent mechanisms on CKD prevention 

in diabetic patients.  

Hyperlipidaemia and dyslipidaemia have been widely documented to be associated with 

kidney disease (73)(74). But the causal effects of lipid components on CKD are still unclear. 

A few recent MR studies suggested a protective effect of higher HDL-C on CKD in 

Europeans (75) and a nominal effect of Lp(a) lowering on reducing CKD risk (76). In this 

study, we strengthened the evidence of the Lp(a) finding and validated the HDL-C findings in 

completely independent samples. Our study also moved beyond the existing studies, by 1) 

establishing novel causal evidence of apolipoprotein A-I on CKD in Europeans; 2) the 

MVMR implies that non- apolipoprotein A-I property of HDL-C may have an effect on CKD; 

3) providing a natural extension of the HDL-C finding (77) and a recent trial of CETP 

inhibitor on cardiovascular disease (78), by estimating the causal effect of circulating CETP 

level on CKD and demonstrating a suggested effect between the two in European ancestry; 4) 

demonstrating that the causal effect of Lp(a) level on CKD was independent of 

apolipoprotein(a) size. A previous study suggested that HDL-C may protect from kidney 

diseases through altering cholesterol efflux in the pathogenesis of kidney disease (79). The 

causal effect of HDL-C and the effect of CETP level on CKD raises the possibility of 

increasing HDL-C concentration as an intervention strategy for CKD prevention. In addition, 

our MR finding of the effects of Lp(a) level also aligned with previous observational 

evidence, which suggested that Lp(a) level was inversely correlated with kidney function 

(80)(81) and positively correlated with lower eGFR (82). This also implies the possibility of 
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further investigation of Lp(a) reduction therapies, such as IONISAPO(a) on reducing CKD 

risk (83). Overall, our findings highlight the potential of multiple lipid management strategies 

in reducing CKD risk.  

 

Strengths and Limitations 

Our study has some strengths compared to previous studies. We used clinically diagnosed 

CKD instead of eGFR < 60ml/min/1.73m2 in European (UK Biobank and HUNT) and East 

Asian studies (China Kadoorie Biobank and Japan-Kidney-Biobank/ToMMo), which the 

later definition excluded CKD cases with abnormal urine protein level but with normal eGFR. 

Therefore, this increased the robustness of the CKD definition. By comprehensively 

validating the MR findings in the six CKD studies, we greatly enhanced the reliability of the 

causal atlas of risk factors on CKD.  

Our study also has some potential limitations. In the MR analysis, when instrumenting for 

a binary exposure (e.g. coronary artery disease), we are not instrumenting the exposure itself 

but the predisposition to the exposure (84), so our results speak to whether removal of the 

predisposition to the binary exposure (rather than treatment of the exposure) would reduce 

CKD risk. In addition, due to unbalanced representativeness of GWAS samples across 

Europeans and East Asians, we can only test causal effects for 17 of the 45 risk factors in 

East Asians. Due to the same reason, the number of instruments for each risk factors of the 

analyses were different across the two ancestries. For risk factors showed different MR 

evidence across ancestries, we further evaluated these findings using more powerful genetic 

predictors and using additional data sources to minimise the influence of unbalanced GWAS 

samples and number of instruments across ancestries. Other limitations of the study were 

listed in Supplementary Note 6.  

 

Conclusions 

By evaluating causal evidence of 45 risk factors on CKD in over 1.1 million individuals 

in European ancestry and 17 factors in over 250,000 East Asian ancestry, we built up a causal 

atlas of CKD risk factors and showed that eight risk factors are reliably causal for CKD. All 

these factors are predominantly related to cardio-metabolic health, which supports the shared 

causal link between cardio-metabolic health and kidney function. Our findings may have 

important clinical implications in terms of informing primary prevention in “at risk” 

individuals with normal renal function, which may help reduce the burden of CKD globally.  
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Figure legends 
 
Figure 1. Study design of the trans-ethnic Mendelian randomization study of chronic kidney 

disease. 

 
Figure 2. Forest plot for causal effects of the 45 risk factors on CKD in European and 

Eastern Asians. A) causal estimates using Europeans data; B) causal estimates using Eastern 

Asians data. For binary exposures, the effect reported on the X-axis is the OR of CKD per 

doubling in the odds of the exposure. For continuous exposure, the effects on the X-axis is 

the OR of CKD per 1 SD change in the exposure.  

 
Figure 3. Forest plot for causal effects of four blood pressure phenotypes on CKD risk. The 

subplots represent MR results of different blood pressure phenotypes.   

 
Figure 4. Non-linear Mendelian randomization of BMI on CKD risk. The dose-response 
curve between body mass index and CKD risk for (A) UK Biobank and (B) HUNT Study. 
Gradient at each point of the curve is the localized average causal effect. Shaded areas 
represent 95% confidence intervals.  
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Figure 2.  
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Figure 3. 
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Figure 4.  
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