Abstract
Due to the complexity of linkage disequilibrium (LD) and gene regulation, understanding the genetic basis of common complex traits remains a major challenge. We develop a Bayesian model (BayesRR-RC) implemented in a hybrid-parallel algorithm that scales to whole-genome sequence data on many hundreds of thousands of individuals, taking 22 seconds per iteration to estimate the inclusion probabilities and effect sizes of 8.4 million markers and 78 SNP-heritability parameters in the UK Biobank. Unlike naive penalized regression or mixed-linear model approaches, BayesRR-RC accurately estimates annotation-specific genetic architecture, determines the underlying joint effect size distribution and provides a probabilistic determination of association within marker groups in a single step. Of the genetic variation captured for height, body mass index, cardiovascular disease, and type-2 diabetes in the UK Biobank, only ≤10% is attributable to proximal regulatory regions within 10kb upstream of genes, while 12-25% is attributed to coding regions, up to 40% to intronic regions, and 22-28% to distal 10-500kb upstream regions. ≤60% of the variance contributed by these exonic, intronic and distal 10-500kb regions is underlain by many thousands of common variants, each with larger average effect sizes compared to the rest of the genome. We also find differences in the relationship between effect size and heterozygosity across annotation groups and across traits. Up to 24% of all cis and coding regions of each chromosome are associated with each trait, with over 3,100 independent exonic and intronic regions and over 5,400 independent regulatory regions having ≤95% probability of contributing 0.001% to the genetic variance for just these four traits. In the Estonian Biobank, we show improved prediction accuracy over other approaches and generate a posterior predictive distribution for each individual.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This project was funded by an SNSF Eccellenza Grant to MRR (PCEGP3-181181), and by core funding from the Institute of Science and Technology Austria and the University of Lausanne.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Canton Vaud ethics committee.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
This project uses UK Biobank data under project 35520. The Estonian Biobank data are available upon request from the cohort authors with appropriate research agreements.