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Here, we develop a Bayesian approach (BayesW) that provides probabilistic inference of the
genetic architecture of age-at-diagnosis of disease and time-to-event phenotypes. We show in
extensive simulation work that our method provides insight into genetic effects underlying
disease progression, achieving a greater number of discoveries, better model performance
and improved genomic prediction as compared to other approaches. We develop a hybrid-
parallel sampling scheme facilitating age-at-onset analyses in large-scale biobank data. In
the UK Biobank, we find evidence for an infinitesimal contribution of many thousands of
common genomic regions to variation in the onset of common complex disorders of high blood
pressure (HBP), cardiac disease (CAD), and type-2 diabetes (T2D), and for the genetic basis
of age-at-onset reflecting the underlying genetic liability to disease. In contrast, while age-
at-menopause and age-at-menarche are highly polygenic, we find higher variance contributed
by low frequency variants. We find 291 LD-independent regions for age-at-menarche with
≥ 95% posterior inclusion probability of contributing 0.001% to the genetic variance, 176
regions for age-at-menopause, 441 regions for age-at-diagnosis of HBP, 67 regions for CAD,
and 108 regions for T2D. Genomic prediction into the Estonian Genome Centre data shows
that BayesW gives higher prediction accuracy than other approaches.

Genome-wide association studies (GWAS) have greatly expanded our understanding of the genetic architecture 1

of complex-traits, but have largely focused on binary phenotypes and quantitative traits [1], leaving the 2

age-at-onset of symptoms little studied, despite it being one of the key traits in biobank studies of age-related 3

disease. Understanding the environmental and genetic basis of the time at which symptoms first occur 4

is critical for early screening programs and for gaining insight into disease development and progression, 5

especially as the pathological processes of many age-related diseases may be triggered decades before the first 6

symptoms appear. Evidence suggests that genome-wide analyses conducted with case-control phenotypes tend 7

to have less power in comparison with their age-at-onset analysis counterparts [2,3]. Genetic predictors created 8

from case-control studies have been shown to be predictive of age-at-diagnosis [4], implying that early-onset 9

is to a certain degree indicative of a higher underlying liability of disease. However, our understanding of 10

the genetic architecture of reproductive timing, and the age at which symptoms first develop for common 11

complex disorders, remains limited. 12

Statistical modelling of time-to-event data is a highly active research area and is frequently applied to 13

clinical and pharmacogenetic studies. Analogous to single marker regression in GWAS analyses, a Cox 14

proportional hazards (PH) model [5] for each single nucleotide polymorphism (SNP) j ∈ {1, ...,M} can be 15

formulated as hi(t) = h0(t) exp(xijβj), where h0(t) is the baseline hazard at time t, hi(t) is the hazard for 16

individual i, xij is the standardised jth SNP marker value, with βj the effect size of the jth SNP and M 17

the total number of SNPs [6–8]. Recently there have been improvements in the computation times using 18

some approximations for single-marker Cox PH regression [9], however, this approach still yields marginal 19

effect size estimates as the markers are not fitted simultaneously. Residual based approaches have also 20

been widely used, which first regress the phenotype on covariates such as gender or age at entry in Cox 21
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PH model, and then use the residuals in a second regression on the SNP data, with Martingale residuals 22

M̂i = di − Λ̂0(ti) exp(Ztiγ),where M̂i is the residual for individual i, δi is the failure indicator (di = 1 for 23

event during the study period, otherwise di = 0), Λ̂0(ti) is the baseline cumulative hazard function at time 24

ti, ti is the follow-up time for individual i, Zi is the vector of variables used in the first regression step and 25

γ the vector of corresponding parameter estimates [10, 11]. The martingale residual approach retains the 26

linearity between the effect and the phenotype and given the model in the second step it can also be very 27

fast. However, the failure time and censoring indicator are combined to one summary statistic, rather than 28

including censoring information specifically via likelihood. Therefore, the martingale residual approach does 29

not use the censoring information efficiently diminishing the power of this model. Rather than testing markers 30

one-at-a-time, their effects can be estimated jointly in a mixed-effects Cox PH model, referred to as a frailty 31

model, specified as λi(t|b) = λ0(t) exp(Xt
iβ + b), where β is the effect for one SNP being tested along with 32

other fixed effects such as age or sex, b ∼ N(0, σ2Σ) is the N -dimensional vector of random effects (N is the 33

sample size), Σ : N ×N is the genetic relationship matrix, σ2 is the variance of the genetic component, λ0(t) 34

is the baseline hazard function and λi(t|b) is the hazard for individual i. This idea has been long limited by 35

computational resources and in the latest implementation (COXMEG) [12] analyses are constrained to around 36

∼ 10, 000 individuals. For joint marker effect estimation, there is also the Cox-LASSO model [13] which has 37

been recently developed for genetic data in the R package snpnet [14,15]. Fully parametric alternatives are 38

also the Sparse Bayesian Weibull regression (SBWR), which may outperform LASSO based approaches [16], 39

but like other Bayesian methods such as SurvEMVS [17] or a semi-parametric g-prior approach of Held 40

et al [18] the ultrahigh dimensions of genetic data limit their application. Therefore, approaches that can 41

efficiently handle both the complexity and scale of many millions of sequenced individuals with time-to-event 42

outcomes have not been extensively developed, limiting our understanding and our ability to predict disease 43

progression and the timing of symptom onset. 44

Here, we take an alternative approach to obtain accurate inference in full-scale phenotype-genotype 45

sequence data sets, by proposing a mixture of regressions model with variable selection, using different 46

regularisation parameters for genetically motivated groups (see Methods). Our suggested model fits all of the 47

markers jointly in a Bayesian framework using Weibull assumption for the phenotypes. We show that this 48

approach: (1) allows for a contrasting the genetic architectures of age-at-onset phenotypes under this flexible 49

prior formulation; (2) yields marker effect estimates βj that represent the effect of each marker conditional 50

on the effects of all the other markers accounting for genetic architecture; (3) provides a determination of the 51

probability that each marker and genomic region is associated with a phenotype, alongside the proportion of 52

phenotypic variation contributed by each, and (4) gives a posterior predictive distribution for each individual. 53

Regardless of the phenotypic distribution, our suggested approach greatly improves genomic prediction for 54

the timing of events for each individual and enables better insight behind the genetic architecture underlying 55

time-to-event traits. 56

BayesW model 57

An overview of our model is as follows, suppose that M markers are split between Φ different groups. The 58

groups can be for example formed based on marker-specific genomic annotations, MAF grouping, grouping 59

based on LD score, etc. We assume for an individual i that the age-at-onset of a disease Yi has Weibull 60

distribution, with a reparametrisation of the model to represent the mean and the variance of the logarithm 61

of the phenotype as 62

E(log Yi|µ, β, δ, α) = µ+
Φ∑
ϕ=1

xϕi β
ϕ + ziδ, (1)

63

V ar(log Yi|µ, β, δ, α) = π2

6α2 , (2)

where µ is the intercept, xϕi are the standardised marker values for all SNPs in group ϕ, βϕ are the marker 64

estimates for the corresponding group, zi are additional covariate values (such as sex or genetic principal 65

components), δ are the additional covariate effect estimates and α is the Weibull shape parameter (see 66
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Methods). For each group, we assume that βϕ are distributed according to a mixture of Lϕ Gaussian 67

components. Each marker (from group ϕ) estimate βj j ∈ {1, ...,M} is related to a corresponding indicator 68

variable γj ∈ {0, ..., Lϕ} where Lϕ is the number of mixture distributions. βj have zero values if and only 69

if γj = 0. We assume that non-zero βj , where marker j belongs to group ϕ, that has been assigned to 70

mixture component (γj = k ≥ 1) comes from a normal distribution with zero mean and variance Cϕk σ2
Gϕ, 71

that is βj ∼ N(0, Cϕk σ2
Gϕ), where σ2

Gϕ represents the phenotypic variance attributable to markers of group ϕ 72

and Cϕk is a group and mixture specific factor showing the magnitude of variance explained by this specific 73

mixture that is given by the user. For example, specifying Cϕ1 = 0.0001, Cϕ2 = 0.001 and Cϕ3 = 0.01 gives us 74

mixtures that respectively explain 0.01%, 0.1% and 1% of the genetic variance. We also assume that prior 75

probabilities of belonging to each of the mixture distribution k is stored in Lϕ + 1-dimensional vector πϕ. 76

Thus the mixture proportions, variance explained by the SNP markers, and mixture constants are all unique 77

and independent across SNP marker groups. 78

An algorithm for whole-genome data at biobank scale 79

We develop a computational framework that overcomes previous limitations for the application of age-at-onset 80

models to large-scale biobank studies. In the model likelihood, we account for right censoring, a situation 81

where only the last known time without an event is recorded, with the event potentially taking place some 82

time in the future (see Methods). Although we did not apply it in our final analysis, we also formulate 83

the model to accommodate left truncation, a situation where individuals are not missing from the data at 84

random, creating differences in the genetic composition of individuals across age groups (see Methods). We 85

implement a parallel sampling scheme for equation 1 that allows the data to be split across compute nodes 86

(in a series of MPI tasks), whilst still maintaining accuracy of the estimation of βj . With T parallel workers 87

(MPI tasks), Bulk Synchronous Parallel (BSP) Gibbs sampling can sample T marker effects when sequential 88

Gibbs samples a single one, but BSP requires an extra synchronisation step of the tasks after each of them 89

has processed u markers (see Methods). After each worker has processed u markers, we synchronise the 90

workers by transmitting the residual vector across workers. Given our assumption that the phenotype follows 91

a Weibull distribution, we are using a numerical method, Adaptive Gauss-Hermite quadrature, for calculating 92

the mixture membership probabilities for variable selection, and Adaptive Rejection Sampling (ARS) for 93

estimating the marker effects. We implement these approaches to take full advantage of the sparsity of 94

genomic data, converting computationally intensive calculations of exponents and dot products into a series 95

of summations. We provide publicly available software (see Code Availability) that has the capacity to easily 96

extend to a wider range of models (not just Weibull) than that described here. Our software enables the 97

estimation of 2,975,268 SNP inclusion probabilities split between T = 96 workers, using 12 compute nodes 98

and synchronisation rate of u = 10, mixture allocation and effect sizes in 371,878 individuals with an average 99

of 49.7 seconds per iteration without groups model and 50.0 seconds per iteration with the groups model; 100

using 151,472 individuals with T = 64, 8 compute nodes and u = 10 without groups we get an average of 101

24.8 and with groups we get an average of 26.4 seconds per iteration. Here, we have chosen to run the chains 102

for 10,000 iterations leading to execution times of 69 hours (N =151,472) to 139 hours (N =371,878). The 103

run times ultimately depend upon compute cluster utilisation and the genetic architecture of the phenotype, 104

as calls to the ARS procedure are linear with the number of markers. The calculations were done by using 105

Helvetios cluster of EPFL (see Code availability). 106

Simulation study 107

We show in a simulation study that our model estimates SNP marker effect sizes more accurately, with a 108

greater number of discoveries, and thus obtains better model performance with improved genomic prediction 109

accuracy as compared to other available methods (Figure 1, Figure S1 and S2). The other methods used for 110

comparisons in simulations are Cox-LASSO [13], Bayesian regression mixture model BayesR [19] applied on 111

martingale residuals and marginal single marker regression (OLS) applied on martingale residuals. First, 112

we show that the previous statement holds even in the case of model misspecification (Figure 1), where 113

the phenotypic distribution does not correspond to a Weibull distribution, but rather conforms to a series 114

of different generalised gamma distributions (of which Weibull is one of them in the case where θ = 1 in 115
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the parametrisation of equation 47), with differing θ value (see Methods, and Supplementary Note). In a 116

simulation study of N = 5, 000 individuals and 50,000 uncorrelated markers with p = 500 randomly selected 117

markers as causal variants, our BayesW model obtains higher out of sample prediction accuracy than a 118

Cox-LASSO, or a martingale residual approach used in several recent studies (Figure 1a). 119

Second, we show that this statement also holds in a larger simulation study using a real genomic data-set of 120

N = 20, 000 randomly selected UK Biobank individuals and 194,922 correlated genetic markers on chromosome 121

22 under different censoring levels (Figure S1). Interestingly, in figure 1a we observe that the generalised 122

gamma distributions with θ > 1 lead to more accurate genetic predictions compared to the Weibull model 123

(θ = 1). Such phenotypic distributions are easier to discriminate meaning that for distributions where θ > 1 124

the same difference in genetic values leads to greater phenotypic distribution differences in Kullback-Leibler 125

divergences compared to θ = 1. Our approach achieves better precision-recall as compared to these approaches 126

(Figure 1b) across all values of θ and all censoring levels within the data (Figure S2). We choose to use 127

precision-recall curves due to the great imbalance between the number of causal and non-causal markers [20]; 128

precision ( TP
TP+FP = 1− FDR) describes how accurately the markers were identified while recall ( TP

TP+FN ) 129

describes the proportion of how many causal markers were discovered. We show that across the range of θ 130

values that generate model misspecification, SNP marker effect estimates remain mostly correctly estimated 131

(Figure 1c, Figure S9), however due to the shrinkage effect of the prior distribution to the marker effect size 132

estimates, we observe a very slight underestimation of the effect size estimates for this simulation scenario if 133

the model is correctly specified. On the other hand, if the phenotype is from log-normal distribution (θ = 0) 134

then due to the inflated genetic variance hyperparameter (Figure 1d) we see the reduced impact of the priors 135

and less shrinkage of the effect size estimates, leading to more accurate effect size estimates. In general, we 136

recognise that Bayesian modelling may induce slight shrinkage in the effect size estimates due to the priors. 137

Nevertheless, we consider this effect negligible (Figure S9), especially in the context of improved genetic 138

prediction and more flexible framework that Bayesian modelling enables. 139

Third, in the Supplementary Note we derive a definition of SNP heritability, the proportion of among- 140

individual variation in age-at-onset that is attributable to SNP effects, for both the variance of the logarithmed 141

phenotype and the original scale (see Supplementary Note). We show that the log-scale SNP heritability 142

definition is valid under a Weibull assumption and across the range of theta when restricting the markers 143

entering the model (Figure 1d, single mixtures 0.01), but may be inflated under low theta values (Figure 1d, 144

mixtures 0.001, 0.01) because of the increase in small-effect false positives that enter the model (Figure 1e). In 145

addition, we demonstrate that the model is robust to the specification of mixture components (Figure 1f), false 146

discovery rate is bounded even if we add smaller mixtures. To explore false discovery rate and polygenicity 147

in a more realistic scenario we further simulate different numbers of causal loci on LD pruned set of UK 148

Biobank chromosome 1 (M =230,227) (see Methods). We show that a) our model captures accurately the 149

effect size distribution (Figure S11a), b) our model accurately captures the underlying polygenicity (Figure 150

S11b), c) our model controls for false discovery rate (Figure S12). Throughout this work we use posterior 151

probability of window variance (PPWV) [21] (see Methods) as the metric to summarise the significance of 152

genetic regions. PPWV shows the probability that a genetic region explains at least some fixed proportion of 153

the genetic variance. We show below that false positives are controlled for under all generative models when 154

conducting LD clumped based variable selection using a PPWV threshold of ≥ 0.9 (Figure S12) and hence it 155

is justified to use it for calling region based discoveries and compare it with other methods that are supposed 156

to control for false discovery rates. Finally, we show that our BSP algorithm is stable under a wide range of 157

synchronisation rates, parallelism, and quadrature point selection (Figure S3). 158

The genetic architecture of age-at-onset 159

We then applied our model to unrelated UK biobank individuals of European ancestry with a pruned set 160

of M=2,975,268 SNPs for five traits: two reproductive phenotypes of age-at-menopause (N =151,472) and 161

age-at-menarche (N =200,493) and three common complex diseases (selected as they are some of leading 162

causes of mortality) of time-to-diagnosis of type-2-diabetes (T2D) (N =372,280), coronary-artery-disease 163

(CAD) (N =360,715) and high blood pressure (HBP) (N =371,878) (see Descriptive statistics in Table S1). 164

Using our BSP Gibbs sampling scheme, we ran a baseline model without any grouping of markers, and 165

then we re-ran the model grouping markers into 20 MAF-LD bins (quintiles of MAF and then quartiles 166

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2021. ; https://doi.org/10.1101/2020.09.04.20188441doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.04.20188441
http://creativecommons.org/licenses/by-nc-nd/4.0/


within each MAF quantile split by LD score). Groups were defined using MAF and LD based on recent 167

theory [22] and recent simulation study results [23–26], which suggest that accurate estimation of genetic 168

variance might require accounting for the MAF-LD structure. To understand the effect size distribution 169

and genetic architecture, four mixture components were specified such that they would represent 0.001%, 170

0.01%, 0.1% or 1% of the total genetic variance for the no groups model (0.00001,0.0001,0.001,0.01). For the 171

groups model the four group-specific mixtures for each of the 20 groups were chosen to be 10 times larger 172

(0.0001,0.001,0.01,0.1) such that they would represent 0.01%, 0.1%, 1% or 10% of the group-specific genetic 173

variances. Additional variables such as sex, UK Biobank assessment centre, genotype chip, and the leading 174

20 PCs of the SNP data (see Methods) were used as fixed effects in the analysis. We conducted a series 175

of convergence diagnostic analyses of the posterior distributions to ensure we obtained estimates from a 176

converged set of chains (Figures S4, S5, S6 and S7). 177

Under the assumption that the traits are Weibull distributed, this gives log-scale SNP (pseudo-)heritability 178

estimates (see Supplementary Note) of 0.26 (95% CI 0.25, 0.27) for age-at-menopause, 0.41 (95% CI 0.40, 179

0.42) for age-at-menarche, 0.36 (95% CI 0.35, 0.37) for age-at-diagnosis of HBP, 0.48 (95% CI 0.44, 0.52) for 180

age-at-diagnosis of CAD, and 0.52 (95% CI 0.50, 0.55) for age-at-diagnosis of T2D. Both the model with 181

and without groups reach similar conclusions in terms of partitioning markers between mixtures (Figure 2a) 182

indicating that the inference we draw on the genetic architecture is here independent of the group-specific 183

prior specification. However, our BayesW grouped mixture of regression model allows for contrasting the 184

variance contributed by different MAF and LD groups across traits. For all traits, we find that the majority 185

of the variance contributed by SNP markers is attributable to SNPs that each proportionally contribute an 186

average of 10−5 of the genetic variance (Figure 2a). We find evidence that age-at-menarche is highly polygenic 187

with 88.1% (95% CI 86.8%, 89.4%) of the genetic variance attributable to the SNPs contributed by markers 188

in the 10−5 mixture group, similar to CAD with 74.2% (95% CI 63.6%, 81.5%, Figure 2b). Age-at-menopause 189

and age-at-T2D diagnosis stand out with 32.3% (95% CI 28.9%, 35.7%) and 18.9% (95% CI 14.6%, 22.9%) of 190

the genotypic variance attributable to the SNPs contributed by markers in the 10−3 mixture respectively 191

(Figure 2b), indicating a substantial amount of genetic variance resulting from moderate to large effect sizes. 192

In contrast, for the other traits the moderate to large effect sizes (mixture 10−3) explain a far smaller part 193

of the total genetic variance with age-at-menarche having almost no genetic variance (0.1%, 95% CI 0.0%, 194

0.6%) and only a small amount coming from that mixture for age-at-HBP diagnosis (5.6%, 95% CI 3.1%, 195

8.4%) and age-at-CAD (9.4%, 95% CI 6.5%, 12.9%). 196

We find marked differences in the underlying genetic architecture of these different age-at-onset phenotypes 197

(Figure 2c,d). For age-at-menarche, many rare low-LD SNPs and many common SNPs contribute similar 198

proportions to the phenotypic variance attributable to the SNP markers, implying larger absolute effect sizes 199

for rare low-LD variants per minor allele substitution, with age-at-menopause showing a similar but less 200

pronounced pattern with a noticeable proportion of the genetic variance stemming from small effect sizes of 201

the rare variants (Figure 2d, MAF quintiles 1-3). In contrast, we find evidence that the phenotypic variance 202

attributable to the SNP markers for age-at-diagnosis for CAD, HBP, and T2D is predominantly contributed 203

by common variants of small effect (Figure 2d). This implies that female reproductive traits may have been 204

under far stronger selection in our evolutionary past than age-at-diagnosis of modern day common complex 205

disease [27]. In summary, we find that most of the phenotypic variance attributable to SNPs is contributed by 206

very many small effect common variants, but that there are key differences among time-to-event phenotypes, 207

with reproductive traits showing different patterns of genetic architecture to time-to-diagnosis phenotypes. 208

We then partitioned the SNP markers into regions of LD clumps (see Methods) and determined the 209

genetic variance each of those regions explain. Then, we calculated the probability (PPWV) that each 210

such region contributes at least 1/1000, 1/10,000, or 1/100,000 of the total genotypic variance, providing a 211

probabilistic approach to assess the contribution of different genomic regions to time-to-event phenotypes. 212

The smallest threshold was chosen to be 1/100,000 of the total genotypic variance corresponding to the 213

smallest mixture component models were estimated with which also represents the magnitude of the smallest 214

effect size we intend the model to capture. We find 291 LD clumped regions for age-at-menarche with ≥ 0.95 215

PPWV of 1/100,000, 176 regions for age-at-menopause, 441 regions for age-at-diagnosis of HBP, 67 regions 216

for age-at-diagnosis of CAD, and 108 regions for age-at-diagnosis of T2D from our BayesW grouped mixture 217

of regression model (Figure 3a). Our grouped model provides slightly better model performance, as reflected 218
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by higher posterior inclusion probabilities at smaller effect sizes (Figures 3a, S8), with the baseline BayesW 219

mixture of regression model detecting 13.7% fewer LD clump regions for age-at-menarche, 4.5% fewer for 220

age-at-menopause, 34.0% fewer for age-at-diagnosis of HBP, 35.8% fewer for age-at-diagnosis of CAD, and 221

33.3% fewer for age-at-diagnosis of T2D when using 1/100,000 PPWV threshold. Similarly we evaluated 222

region-based significance by calculating PPWV for regions that were created by mapping markers to the 223

closest gene (Figure 3b). For age-at-menopause we find 101, for age-at-menarche we find 119, for time-to-T2D 224

we find 41, for time-to-HBP we find 159 and for time-to-CAD we find 20 gene-associated regions with ≥ 95% 225

PPWV of explaining at least 1/10,000 of the genetic variance. In addition, we find evidence for differences 226

in the effect size distribution across traits, largely reflecting differences in power that result from sample 227

size differences and different censoring levels across traits (Figure 3c,d) (see Methods). Overall, these results 228

suggest many hundreds of genomic regions spread throughout the genome contribute to the timing of common 229

complex traits. 230

We also compared the LD clumped regions discovered by BayesW with LD clumped regions discovered 231

by another association method fastGWA [28]. Even though fastGWA is a frequentist and BayesW is a 232

Bayesian method and the comparison between the two approaches is not comprehensive, we still use it as 233

both methods should control for false discovery rate (Figure S12) and fastGWA is one of the most recent 234

methods released. Although for age-at-menarche and age-at-menopause we find 191 and 97 regions that are 235

concordantly significant according to the two methods (Table 1), we find less concordance among the other 236

traits. For time-to-angina and -heart attack fastGWA does not find any significant regions, for time-to-HBP 237

BayesW finds greatly more LD clumped regions (BayesW: 663, fastGWA: 14). The striking difference between 238

the numbers of identified regions could be largely attributed to the larger sample size of BayesW as BayesW 239

can also use the data from censored individuals where fastGWA can only resort to the uncensored individuals. 240

For time-to-diabetes BayesW identifies more than three times more regions but only a small minority of the 241

discovered regions are concordant. Although for time-to-menarche the fastGWA identifies more LD clumped 242

regions, still around half of the regions identified by BayesW are not picked up by fastGWA. We further looked 243

into the properties behind the discoveries that are not concordant between the two methods. It can be seen 244

that the regions discovered by BayesW have lower p-values compared to the overall p-values (Figure S13a) 245

indicating that many of those regions could be lacking power with fastGWA whereas BayesW manages to 246

identify them; similarly, the regions that are discovered by fastGWA and not by BayesW tend to have higher 247

PPWV compared to the overall PPWV values (Figure S13b) indicating that some potential signal could 248

be lost when using such PPWV threshold. In terms of the prediction accuracy, the BayesW shows greatly 249

better prediction accuracy to Estonian Biobank compared to fastGWA when predicting age-at-menarche 250

or age-at-menopause (Figure 4a,b) indicating that the regions identified by BayesW and their effect size 251

estimates might reflect the genetic architecture more accurately. Therefore, BayesW identifies already found 252

regions along with novel regions compared to previous association methods; for time-to-diagnosis traits, it 253

can discover more regions due to using the censored individuals; and BayesW results yield greatly improved 254

prediction accuracy compared to fastGWA. 255

Out of sample prediction in an Estonian population 256

We used the estimates obtained from the group-specific model to predict time-to-event in N = 32, 594 257

individuals of the Estonian Biobank data. We compared our model performance to the Cox-LASSO approach 258

implemented in the R package snpnet [14,15] trained on the same UK Biobank data (see Methods) using two 259

metrics. As some of the Estonian Biobank time-to-event phenotypes are censored, we choose to calculate 260

the R2 values between the predicted values and the martingale residuals from the Cox PH model where the 261

true phenotypes are regressed on sex. In addition we calculate Harrell’s C-statistic [29] from the Cox PH 262

model where the true phenotypic values are regressed on the predicted values and sex. BayesW outperforms 263

Cox-LASSO for all phenotypes (Figure 4 a,b) by giving R2 of 0.032 compared to Cox-LASSO’s 0.017 for 264

age-at-menopause of 18,134 women and 0.05 compared to Cox-LASSO’s 0.040 for age-at-menarche of 18,134 265

women. We also get an increase in Harrell’s C-statistic with BayesW giving 0.623 (se = 0.00443) compared 266

to Cox-LASSO’s 0.593 (0.00455) for age-at-menopause and for age-at-menarche we get C-statistic of 0.598 267

(0.00290) with BayesW compared to Cox-LASSO’s 0.580 (0.00294). For the age-at-diagnosis traits, we obtain 268

R2 values of 0.0047, 0.0236, and 0.0441 for BayesW and 0.0030, 0.0135, and 0.0271 with Cox-LASSO for 269
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BayesW: no BayesW: no BayesW: yes BayesW: yes Total BayesW
Phenotype fastGWA: no fastGWA: yes fastGWA: no fastGWA: yes
Time to Angina 290,220 0 128 0 128
Time to Heart attack 289,787 0 128 0 128
Time to HBP 291,674 4 653 10 666
Time to Menarche 292,127 242 223 191 414
Time to Menopause 292,202 125 126 97 227
Time to Diabetes 290,599 40 174 8 183

Table 1. Concordance between the LD clumped regions discovered by BayesW or fastGWA.
We split the genome into LD clumped regions and we evaluated the significance of each of the regions with using the results
from the groups BayesW model and the fastGWA model. The fastGWA results for our CAD and T2D definition were missing so
instead time-to-angina and time-to-heart attack are shown for CAD and time-to-diabetes is shown for T2D. Here, BayesW calls
a LD clumped region significant if the PPWV of the region (explaining at least 0.001% of the genetic variance) is higher than
0.9; fastGWA calls a LD clumped region significant if there exists at least one marker with a p-value < 5 · 10−8. We find that
although for age-at-menarche and age-at-menopause there exists an abundance of regions with concordant significance, for other
traits most of the discovered regions differ between two methods. For creating the comparison only overlapping markers were
used; in the column Total BayesW we show the total number of discovered LD clumped regions, including those that did not
have a counterpart among fastGWA results.

CAD, T2D, and HBP respectively. This shows that our BayesW model gives a higher prediction accuracy 270

compared to the Cox-LASSO method, in-line with our simulation study results. 271

We then compared the BayesW prediction results to those obtained from a case-control analysis. In a 272

companion paper [22], we develop a group-specific BayesR approach and we use this to analyse the indicator 273

variable (0 = no registered disease, 1 = reported disease) for HBP using the same data and a liability model to 274

facilitate a direct comparison of the methods. For CAD and T2D, we use the results of the companion paper, 275

where there were almost twice as many case observations (for CAD BayesR had 39,776 vs BayesW 17,452 276

and for T2D BayesR had 25,773 vs BayesW 15,813 cases) as it included those with confirmed diagnosis but 277

no age information and 8.4 million SNPs were analysed. For the prediction of age-at-diagnosis, we compared 278

the R2 values between the predicted values and the martingale residuals from the Cox PH model and the 279

Harrell’s C-statistic (Figure 4a,b). For HBP, CAD we find that BayesW marginally outperforms BayesR with 280

(HBP R2 BayesW 0.0441, BayesR 0.0437; CAD R2 BayesW 0.0047, BayesR 0.0046) and for T2D BayesR 281

marginally outperforms BayesW (R2 BayesW 0.0236, BayesR 0.0262). Similar ranking can be observed when 282

using Harrell’s C-statistic for comparison (Figure 4b). We then compared approaches when predicting 0/1 283

case-control status, rather than age-at-diagnosis (Figure 4c,d). We find that for predicting HBP BayesW 284

marginally outperforms BayesR in terms of R2 (BayesW 0.0375, BayesR 0.0365) and area under PR curve 285

(BayesW 0.339, BayesR 0.336) (used because of the imbalance between cases and controls); for predicting 286

CAD or T2D despite the increase case sample size, BayesR only marginally outperforms BayesW (T2D R2
287

BayesW 0.0127, BayesR 0.0136 and AUC BayesW 0.0766, BayesR 0.0799; CAD R2 BayesW 0.0025, BayesR 288

0.0027 and AUC BayesW 0.0920, BayesR 0.0941). Therefore we get very similar prediction accuracies with 289

both methods when predicting case-control phenotypes although the BayesW model was estimated using 290

time-to-event phenotypes with less cases for T2D and CAD. 291

A finding of similar prediction accuracy is unsurprising given the striking concordance between the results 292

of the two models when partitioning the genotype into 50kb regions. We calculated (on logarithmic scale) 293

the mean proportion of genetic variance attributed to each 50kb region for the model using case-control 294

phenotype (BayesR) and for the model using time-to-event phenotype (BayesW). Both models attribute 295

similar amounts of genetic variance to the same 50kb regions (Figure S10), with correlations between 296

logarithmic proportions of genetic variances are 0.941, 0.647 and 0.554 for HBP, T2D and CAD respectively. 297

Thus, we have shown here that using either time-to-event or case-control data for genome-wide association 298

analysis we find similar amount of genetic variance attributed to the same regions and both analyses have 299

similar predictive performance when predicting case-control phenotypes. This suggests that to some extent 300

there is interchangeability between the case-control and time-to-event phenotypes demonstrating that both 301

phenotypes are describing a similar latent mechanism. 302

The BayesW model enables posterior predictive distributions to be generated for each individual. For 303
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evaluating the predictive performance of BayesW on the reproductive traits, we calculated the 95% credibility 304

prediction intervals for each of the subjects in the Estonian Biobank. We chose to evaluate reproductive traits 305

only as it is sure that every woman should experience those events given they have reached a sufficient age. 306

For age-at-menopause 92.3% and for age-at-menarche 94.8% of the true uncensored phenotypes lie within the 307

BayesW 95% credibility prediction intervals. This demonstrates that even though the prediction R2 values 308

for those traits are not extremely high due to the low genetic variance underlying the phenotypic variance, 309

our Bayesian model quantifies the model uncertainty and yields well-calibrated subject-specific prediction 310

intervals. An example of the shape of the distribution is shown in the Figure S15. A caveat is that the 311

subject-specific prediction intervals can be rather wide, though approximately half the width of the data 312

range. For age-at-menopause the data range from 34 to 63 (a width of 29 years), and the width of the 95% 313

credibility intervals ranged from 13.4 to 18.6 years with a median width of 15.9 years. For age-at-menarche, 314

data values range from 9 to 19, and the posterior predictive interval width ranged from 5.1 to 7.9 years with 315

a median width of 6.3 years. 316

Discussion 317

Here, we have shown that our BayesW mixture of regressions model provides inference as to the genetic 318

architecture of reproductive timing and the age at which symptoms first develop for common complex 319

disorders. We provide evidence for an infinitesimal contribution of many thousands of common genomic 320

regions to variation in the onset of common complex disorders and for the genetic basis of age-at-onset 321

reflecting the underlying genetic liability to disease. In contrast, while age-at-menopause and age-at-menarche 322

are highly polygenic, average effects sizes and the variance contributed by low frequency variants is higher, 323

supporting a history of stronger selection pressure in the human population [27]. 324

Genome-wide association studies of time-to-event phenotypes are critical for gaining insights into the 325

genetics of disease etiology and progression, but their application has been hampered by the computational 326

and statistical challenges of the models, especially when the predictors are ultrahigh-dimensional. Our 327

hybrid-parallel sampling scheme enables a fully Bayesian model to be applied to large-scale genomic data and 328

we show improved genomic prediction over competing approaches, not only in the R2 or C-statistic obtained, 329

but in the inference that can be obtained from a full posterior predictive distribution. Previous evidence 330

shows that cohort studies using proportional hazards (or Cox) regression models generally increase statistical 331

power compared to case-control studies using logistic regression model [2, 3]. Our results support this and we 332

expect the benefits to become more evident as the number of cases accrue with accurate age-at-diagnosis 333

information. 334

A typical approach in time-to-event analysis is the Cox PH model [5] that uses a non-parametric estimate 335

for the baseline hazard and then estimates other effect sizes proportional to this hazard. Our BayesW model 336

is also a proportional hazard model with the constraint that the baseline hazard follows a Weibull distribution 337

and thus marker effect size estimates have similar interpretation as those from a Cox PH model. Interestingly, 338

the results from both our simulation study and real data analysis show that when quantifying the significance 339

of the markers and estimating the marker effect sizes, it might not be pivotal to capture the baseline hazard 340

with a non-parametric method. The simulations show that even in the misspecified cases BayesW performs 341

better compared to the semi-parametric Cox model, demonstrating that using a parametric assumption might 342

be more descriptive than simply using a Cox PH model from standard practice. 343

There has been a significant amount of work on the heritability of the time-to-event traits. For example, 344

it has been suggested to define heritability in the Weibull frailty model on the log-time scale [30], or on 345

the log-frailty scale in Cox PH model [31]. Transforming the log-scale heritability to the original scale [32], 346

has then required approximations and the term of original scale heritability has not been easy to explain 347

and use [33]. Here, using a similar idea of partitioning the total phenotypic variance into genetic and error 348

variance components, we present an expression for SNP heritability on the log-time scale. We then show that 349

there exists a natural correspondence between log-scale and original scale heritabilities, without the need 350

for any approximations, with log-scale and original scale heritability giving similar estimates if the Weibull 351

shape parameter tends to higher values. Therefore, under Weibull assumptions, we provide a definition of 352

SNP-heritability for time-to-event traits for the GWAS-era. 353

There are a number of key considerations and limitations. The assumption of a Weibull distribution for 354
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the traits considered here can induce bias in the hyperparameter estimates, although we have shown that this 355

assumption yields accurate results in terms of prediction regardless of the phenotypic distribution. A third 356

parameter could be introduced through the use of a generalised gamma distribution and this will be the focus 357

of future work as it should allow for unbiased hyperparameter estimation irrespective of the trait distribution. 358

In this study we have used hard-coded genotypes to make the method computationally efficient which can 359

result in reduced covariance between the imputed marker and the trait. However, we do not believe this to be 360

a hindrance to our method or the application in this work as hard-coded genotypic values will likely be the 361

norm with the upcoming release of whole-genome sequence data and our aim is to provide a time-to-event 362

model that is capable of scaling to these data requirements. We apply our approach only to markers that are 363

imputed in both the UK Biobank and the Estonian genome centre data and by selecting markers present in 364

both populations we are favouring markers that impute well across human populations. 365

Additionally, despite allowing for left-truncation in the likelihood, we focus on presenting a series of 366

baseline results before extending our inference to account for differences in sampling, semi-competing risks 367

across different outcomes, genomic annotation enrichment, and sex-differences both the effect sizes and in the 368

sampling of different time-to-event outcomes all of which require extensions to the modelling framework, which 369

are also the focus of future work. Furthermore, we do not consider time-varying coefficients or time-varying 370

covariates, which may improve inference as multiple measurements over time are collected in biobank studies. 371

Nevertheless, this work represents a first step toward large-scale inference of the genomic basis of variation in 372

the timing of common complex traits. 373
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Methods 374

Parametrisation of Weibull distribution 375

We define Yi as the time-to-event for an individual i, with Weibull distribution Yi ∼W (a, bi), where a and bi 376

are correspondingly the shape and scale parameters. The survival function is 377

Si(y) = exp
(
−
( y
bi

)a)
. (3)

We are interested in modelling the mean and the variance of the time-to-event. Unfortunately, the mean 378

and the variance of Weibull are dependent as they share both parameters in their expressions. Moreover, 379

as the expressions for mean and variance contain gamma functions it is rather difficult to dissect the mean 380

and variance to be dependant only on one parameter. One possible solution is to use log Yi and its moments 381

instead. If Yi ∼W (a, bi) then log Yi has a Gumbel distribution, with mean and variance 382

E(log Yi|bi, a) = log bi −
K

a
, (4)

V ar(log Yi|bi, a) = π2

6a2 . (5)

where K is the Euler-Mascheroni constant, K ≈ 0.57721. The parametrisation for the variance is only 383

dependent on one parameter which we denote as α = a. As we are interested in modelling SNP effects β, 384

covariates δ (sex, PCs) and the average scale for time-to-event µ (intercept), it is possible to introduce them 385

in the following way bi = exp
(
µ+ xiβ + ziδ + K

α

)
, resulting in 386

E(log Yi|µ, β, δ, α) = µ+ xiβ + ziδ, (6)

V ar(log Yi|µ, β, δ, α) = π2

6α2 , (7)

where xi is the transposed vector of scaled SNP marker values and zi is the transposed vector of covariate 387

values for an individual i and π = 3.14159... is a constant. The third and the fourth moment for log Yi are 388

constant regardless of the parametrisation. 389

Modelling time-to-event and age-at-onset 390

As a baseline model, we propose to test association of Yi with a series of covariates (SNP markers in this 391

case) X using a mixture of regression model, with γj as the mixture indicator, with γj = k if jth marker is 392

included into the kth mixture component of the model, k ∈ {1, ..., L}, and γj = 0 if it is not included into the 393

model. The expected value of time-to-event logarithm is then a linear combination of the markers included 394

into the model plus the effect of the covariates and the intercept (µ) as in equation 6 and error variance is 395

expressed via the shape parameter as shown in equation 7. βj have non-zero values if and only if γj ≥ 1. We 396

assume that non-zero βj from mixture component k > 0 (γj = k) come from a normal distribution with zero 397

mean and variance Ckσ2
G, that is βj ∼ N(0, Ckσ2

G). 398

The survival and density function for Yi are correspondingly 399

Si(y) = exp{−yα exp(−α(µ+ xiβ + ziδ)−K)}, (8)

fi(y) = exp{−K − α(µ+ xiβ + ziδ)− yα exp(−α(µ+ xiβ + ziδ)−K)}yα−1α, (9)
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The likelihood function for the right censored and left truncated data of n individuals is then

p(D|α, β, δ, µ) =
n∏
i=1

1
S(ai)

n∏
i=1

f(yi)diS(yi)1−di =

αd exp{−Kd+ (α− 1)
n∑
i=1

di log yi − α
n∑
i=1

di(µ+ xiβ + ziδ)−

−
n∑
i=1

yαi exp(−α(µ+ xiβ + ziδ)−K) +
n∑
i=1

aαi exp(−α(µ+ xiβ + ziδ)−K)}, (10)

where di is the failure indicator and d is the number of events in the end of the periods; ai is the time of left 400

truncation. It is possible to use the model without left truncation. In order to do so, for every i, we will 401

assume that ai = 0. Whenever ai = 0, we will naturally define exp(α(log(ai)− µ− xiβ − ziδ)) = 0, thus the 402

left truncation would not contribute to the likelihood in the equation 10. 403

Let the prior distribution of α be a gamma distribution with parameters α0, κ0 404

p(α) ∝ αα0−1 exp(−κ0α), (11)

the prior for βj be normal: 405

p(βj |σ2
G, γj = k) ∝ ( 1

Ckσ2
G

)0.5 exp[− 1
2Ckσ2

G

β2
j ], (12)

the prior for σ2
G be inverse gamma distribution with parameters ασ and βσ 406

p(σ2
G) ∝ ( 1

σ2
G

)ασ+1 exp(− βσ
σ2
G

), (13)

the prior for δq (qth covariate) be normal with variance parameter σ2
δ : 407

p(δq) ∝ exp(− 1
2σ2

δ

δ2
q ), (14)

the prior for µ be normal with variance parameter σ2
µ: 408

p(µ) ∝ exp(− 1
2σ2

µ

µ2), (15)

the prior for γj be multinomial: 409

p(γj |π) = π
I(γj=0)
0 · ... · πI(γj=L)

L , (16)
the prior probabilities of belonging to each of the mixture distributions k are stored in L+ 1-dimensional 410

vector π with the prior for π a Dirichlet distribution 411

p(π) = Dirichlet(pL), (17)

where I(·) is the indicator function and pL is the L+ 1-dimensional vector with prior values. For the exact 412

values of the prior specification see Data Analysis Details. 413

The conditional posterior distribution for σ2
G is inverse gamma with parameters 414

ασ + 0.5
L∑
k=1
|γk| and 0.5

L∑
k=1
|γk|β′γkβγk + βσ,

where γk denotes the set of indices j for which γj = k. The conditional posterior distribution for π is Dirichlet 415

distribution 416

p(π|γ) = Dirichlet(pL + (|γ0|, ..., |γL|)). (18)
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Unfortunately, there is no simple form for the conditional posteriors of α, µ, βj and δq. However, the 417

conditional posterior distributions are log-concave (see Supplementary Note), and thus the sampling for α, µ, 418

βj and δq can be conducted using adaptive rejection sampling requiring only the log posteriors. Denoting 419

β−j as all the β parameters, excluding βj , and δ−q as all the δ parameters, excluding δq, these are 420

log p(α|D,µ, β, δ) = const+ (α0 + d− 1) logα+ α[
n∑
i=1

di(log yi − µ− xiβ − ziδ)− κ0]+

exp(−K)
n∑
i=1

[exp(α(log(ai)− µ− xiβ − ziδ))− exp(α(log(yi)− µ− xiβ − ziδ))], (19)

log p(βj |D,α, µ, β−j , δ, σ2
G, γj = k) = log

(const√
Ck

)
− αβj

n∑
i=1

dixij+

exp(−K)
n∑
i=1

[exp(α(log(ai)− µ− xiβ − ziδ))− exp(α(log(yi)− µ− xiβ − ziδ))]−
1

2Ckσ2
G

β2
j , (20)

log p(δq|D,α, µ, β, δ−q, σ2
G) = −αδq

n∑
i=1

dizij+

exp(−K)
n∑
i=1

[exp(α(log(ai)− µ− xiβ − ziδ))− exp(α(log(yi)− µ− xiβ − ziδ))]−
1

2σ2
δ

δ2
q , (21)

log p(µ|D,α, β, δ) = const− αµd+

exp(−K)
n∑
i=1

[exp(α(log(ai)− µ− xiβ − ziδ))− exp(α(log(yi)− µ− xiβ − ziδ))]−
1

2σ2
µ

µ2. (22)

Selection of the mixture component 421

We intend to do variable selection and select mixture component by using the idea of spike and slab priors [34], 422

where the spike part of the prior has a point mass on 0. SNP will be assigned to a mixture component by 423

comparing the ratios of marginal likelihood. For mixture selection for the jth SNP, we need to find the 424

following marginal likelihood for every k. Suppose here that C0 > 0 is the factor for 0th mixture (spike) 425

p(D|β−j , δ, σ2
G, α, µ, γj = k) =

∫
βj

p(D|β−j , δ, µ, α, βj)p(βj |σ2
G, γj = k)dβj = Q√

Ck

∫
βj

exp{hk(βj)}dβj ,

(23)
where D represents the observed data, Q is a positive constant that is not dependent on k and 426

hk(βj) = −αβj
n∑
i=1

dixij+

exp(−K)
n∑
i=1

[exp(α(log(ai)− µ− xiβ − ziδ))− exp(α(log(yi)− µ− xiβ − ziδ))]−
1

2Ckσ2
G

β2
j . (24)

The probability for γj is : 427

p(γj = k|D,β−j , δ, σ2
G, α, µ) = Cp(D|β−j , δ, γj = k, σ2

G, α, µ)p(γj = k). (25)
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where C is a positive constant that is not dependent on k. Denoting Θ = {D,β−j , δ, σ2
G, α, µ}, the probability 428

to include SNP j in the component k can be calculated as 429

p(γj = k|Θ) = Cp(γj = k|Θ)
C(p(γj = 0|Θ) + ...+ p(γj = L|Θ)) . (26)

For every k 430

p(γj = k|Θ) =
πk√
Ck

∫
βj

exp(hk(βj))dβj
π0√
C0

∫
βj

exp(h0(βj))dβj + ...+ πL√
CL

∫
βj

exp(hL(βj))dβj
(27)

Here, the numerator represents the marginal likelihood assuming jth variable is included to the kth mixture 431

component. 432

In general it is not possible to find an analytic expression for the integrals presented in equation 23, thus 433

some numeric method has to be used for approximating their values. For this we use adaptive Gauss-Hermite 434

quadrature as the integral is improper with infinite endpoints. 435

We start by rewriting the expression 24 as 436

hk(βj) = −αβj
n∑
i=1

dixij +
n∑
i=1

[exp(ui − αxijβj)− exp(vi − αxijβj)]−
1

2Ckσ2
G

β2
j , (28)

where vi = α(log yi − µ − xi,−jβ−j − ziδ) −K and ui is analogous with ai instead of yi. We introduce a 437

reparameterisation with variable s 438

s = βj√
2Ckσ2

G

(29)

and therefore we get from equation 23 439

Q

∫ 1√
Ck

exp{hk(βj)}dβj =

Q

∫ √
2Ckσ2

G√
Ck

exp{−αs
√

2Ckσ2
G

n∑
i=1

dixij+
n∑
i=1

[exp(ui−αxijs
√

2Ckσ2
G)−exp(vi−αxijs

√
2Ckσ2

G)]−s2}ds =

Q
√

2σ2
G

∫
exp{−αs

√
2Ckσ2

G

n∑
i=1

dixij +
n∑
i=1

[exp(ui − αxijs
√

2Ckσ2
G)− exp(vi − αxijs

√
2Ckσ2

G)]− s2}ds =

Q
√

2σ2
G

∫
gk(s)ds. (30)

in the last expression in equation 27, the term Q
√

2σ2
G cancels out from the numerator and the denominator. 440

If the smallest mixture variance factor C0 > 0, then the corresponding spike distribution is absolutely 441

continuous. As we would like to use Dirac spike instead, we define the corresponding marginal likelihood by 442

finding the limit of the expression in the process C0 → 0+. 443

p(D|β−j , δ, σ2
G, α, µ, γj = 0) = lim

C0→0+
Q

∫ 1√
C0

exp{h0(βj)}dβj . (31)

We are only interested in C0 in the limiting process so without the loss of generality we define C0 through 444

an auxiliary positive integer variable l as C0 = 1
l and using the reparametrisation result from equation 30 we 445

get that 446
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p(D|β−j , δ, σ2
G, α, µ, γj = 0) =

lim
C0→0+

Q
√

2σ2
G

∫
exp{−αs

√
2C0σ2

G

n∑
i=1

dixij+
n∑
i=1

[exp(ui−αxijs
√

2C0σ2
G)−exp(vi−αxijs

√
2C0σ2

G)]−s2}ds =

lim
l→∞

Q
√

2σ2
G

∫
exp{−αs

√
2σ2

G/l
n∑
i=1

dixij+
n∑
i=1

[exp(ui−αxijs
√

2σ2
G/l)−exp(vi−αxijs

√
2σ2

G/l)]−s
2}ds =

lim
l→∞

Q
√

2σ2
G

∫
f(s, l) exp{−s2}ds. (32)

As f(s, l) ≤ 1 for every possible combination of arguments, because in the data censoring or event occurs 447

only after entering the study, we can write that 448

f(s, l) exp{−s2} ≤ exp{−s2},∀l (33)

which means that the integrand in equation 32 is dominated by exp{−s2}. Furthermore, we see that the 449

limit of the integrand is 450

lim
l→∞

f(s, l) exp{−s2} = exp{
n∑
i=1

[exp(ui)− exp(vi)]− s2}. (34)

As
∫

exp{−s2}ds <∞, it is possible to use the Lebesgue’s dominated convergence theorem and therefore 451

lim
l→∞

Q
√

2σ2
G

∫
f(s, l) exp{−s2}ds = Q

√
2σ2

G

∫
exp{

n∑
i=1

[exp(ui)− exp(vi)]− s2}ds =

Q
√

2σ2
G exp{

n∑
i=1

[exp(ui)− exp(vi)]}
∫

exp{−s2}ds = Q
√

2πσ2
G exp{

n∑
i=1

[exp(ui)− exp(vi)]}. (35)

In conclusion, we have derived the expression for the marginal likelihood for the Dirac spike variance 452

component as 453

p(D|β−j , δ, σ2
G, α, µ, γj = 0) = Q

√
2πσ2

G exp{
n∑
i=1

[exp(ui)− exp(vi)]}. (36)

Adaptive Gauss-Hermite quadrature 454

It is possible to use Gauss-Hermite quadrature, however it can happen that for adequate precision one has to 455

use large number of quadrature points leading to more calculations. Adaptive Gauss-Hermite quadrature can 456

make the procedure more efficient. For any function gk(s) as defined in equation 30 we can write 457∫ ∞
−∞

gk(s)ds ≈ σ̂
√

2
m∑
r=1

wrgk(µ̂+ σ̂
√

2tr), (37)

where µ̂ could be chosen as the mode of gk(s) and σ̂ = 1√
−(log gk(s))′′|s=µ̂

; m is the number of quadrature 458

points, tr are the roots of mth order Hermite polynomial and wr are corresponding weights [35]. 459

Finding the posterior mode can be computationally cumbersome, calculating σ̂ requires evaluating the 460

logarithm of gk at this mode. As we assume that the effects sizes are distributed symmetrically around zero, 461

we use µ̂ = 0 which avoids numerical posterior mode calculations and evaluating the second derivative at 462

different posterior modes. 463
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Posterior inclusion probability 464

Combining the previous results we get a numerical solution for calculating the posterior inclusion probability. 465

For every k > 0 the inclusion probabilities are 466

p(γj = k|Θ) =
πk
∫
gk(s)ds

π0
√
π exp{

∑n
i=1[exp(ui)− exp(vi)]}+

∑L
l=1 πl

∫
gl(s)ds

≈

πkσ̂k
√

2
∑m
r=1 wrgk(σ̂k

√
2tr)

π0
√
πT +

∑L
l=1 πlσ̂l

√
2
∑m
r=1 wrgl(σ̂q

√
2tr)

=
πk
√

2σ̂k
∑m
r=1 wrgk(σ̂k

√
2tr)/T

π0
√
π +

∑L
l=1 πlσ̂l

√
2
∑m
r=1 wrgl(σ̂l

√
2tr)/T

. (38)

Similarly we can find the probability of excluding (γj = 0) the marker 467

p(γj = 0|Θ) = π0
√
π

π0
√
π +

∑L
l=1 πlσ̂l

√
2
∑m
r=1 wrgl(σ̂l

√
2tr)/T

. (39)

For both cases σ̂k are calculated as 468

σ̂k = 1√
−(log gk(s))′′|s=0

= 1
√

2
√

1 + α2Ckσ2
G

∑n
i=1 x

2
ij(exp(vi)− exp(ui))

. (40)

For computational purposes we evaluate gk(σ̂k
√

2tr)
T as 469

gk(σ̂k
√

2tr)
T

= exp{−ασ̂k
√

2tr
√

2Ckσ2
G

n∑
i=1

dixij+

n∑
i=1

[exp(ui − αxij σ̂k
√

2tr
√

2Ckσ2
G)− exp(ui) + exp(vi)− exp(vi − αxij σ̂k

√
2tr
√

2Ckσ2
G)]− (σ̂k

√
2tr)2} =

exp{−ασ̂k
√

2tr
√

2Ckσ2
G

n∑
i=1

dixij+
n∑
i=1

[(exp(vi)−exp(ui))(1−exp(−αxij σ̂k
√

2tr
√

2Ckσ2
G))]−(σ̂k

√
2tr)2}.

(41)

Adaptive rejection sampling 470

To sample α, µ and βj , δq, we use Adaptive Rejection Sampling, initially outlined by Gilks and Wild [36]. 471

The prerequisite of the method is log-concavity of the sampled density function. 472

The idea of the method is to build an envelope around the log-density. The lower hull is constructed by 473

evaluating function at some pre-specified abscissae and connecting the evaluation results with linear functions 474

resulting in a piecewise linear lower hull. Upper hull can be constructed either by using tangents evaluated 475

at the prespecified abscissae (Derivative based ARS) or by extending the linear functions obtained in the 476

construction of lower hull (Derivative free ARS [37]). Although derivative based method might result in a 477

more accurate upper hull, thus leading to faster sampling, it would still require evaluating derivatives and 478

thus we employ the derivative free method. 479

The proposals are sampled from appropriately scaled exponent of upper hull from which it is easier to 480

sample. The sampling proposal will go through tests. If the proposal is not accepted then it will be included 481

in the set of used abscissae to create a more accurate envelope in the next round. Therefore, the method 482

requires specifying the log posterior and at least three initial abscissae. It also requires some abscissae larger 483

and smaller than the posterior mode. To set the abscissae for some parameter θ, we could, for example, 484

choose the abscissae {θ̂− cθ, θ̂, θ̂+ cθ}, where θ̂ is ideally the posterior mode for θ. cθ is some positive number 485

that would guarantee that at least one of the proposed abscissae would be larger then posterior mode and 486

one smaller. If θ̂ is the posterior mode, then cθ choice is arbitrary and smaller cθ are preferred, potentially 487

decreasing the sampling time. 488
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In addition, the derivative free method requires specifying the minimum and maximum value of the 489

distribution, an assumption which is often incorrect. In practice, it poses no problems as we can simply set 490

the required minima and maxima to be extreme enough so that the distribution is extremely unlikely to 491

reach those values. To sample intercept µ we set the limits to 2 and 5 which after exponentiation would 492

correspond to 7.39 an 148.4 which we believe each of our posterior means should fit in; for α we set the limits 493

to 0 to 40; for non-zero betas we used the previous beta value ±2
√
Ckσ2

G as minimum and maximum limits 494

for sampling as this can adapt to different mixtures and should still safely retain almost the entire posterior 495

distribution. The Adaptive Rejection Sampling was implemented using C code by Gilks (http://www1.maths. 496

leeds.ac.uk/~wally.gilks/adaptive.rejection/web_page/Welcome.html, accessed 26.08.2020). In the 497

Supplementary Note we provide a proof of the log-concavity of the functions sampled. 498

Sampling algorithm 499

We summarise the serial sampling algorithm in Algorithm 1 along with the specification for the prior 500

distributions and the initialisation of the model parameters. Algorithm 2 summarises the Bulk Synchronous 501

Gibbs sampling for BayesW that extends the Algorithm 1. If the number of workers T = 1 and the 502

synchronisation rate u = 1 then Algorithm 2 reduces down to Algorithm 1. 503
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Algorithm 1: Serial algorithm for BayesW sampling from the posterior distribution
p(µ, α, δ, γ, β, π, σ2

G|D). Initialisation and prior specification.
Data: Matrix X of standardised genotypes, Matrix with covariate data Z, vector of last time

without an event y, vector of failure indicators d, prior hyperparameters α0, κ0, ασ, βσ, σ2
µ,

σ2
δ , pL, iterations I. V

j
0 , V

j
1 and V j2 denote the partial sums of the exponentiated residuals

(defined in Derivations for the sparse calculations), K is the Euler-Mascheroni constant.
Initial values. Initially, we exclude all the variables from the model, thus the initial γj = 0,
∀j ∈ {1, ...,M}. We set βj = 0, ∀j and δq = 0, ∀q. The initial value for α is chosen to be the suitably
transformed variance of the log sample. The initial value for µ is the mean of the log sample. The σ2

G

is initialized as the variance of the log sample divided by the total number of markers M .
Parameters for prior distributions. We set priors weakly informative. Otherwise, if available,
prior information could be used. To get weakly informative priors, for α prior, we set parameters to
be α0 = 0.01 and κ0 = 0.01; for σ2

G, we set parameters to be ασ = 1, βσ = 0.0001; for µ prior, we set
parameter σ2

µ = 100 and similarly for δq we set parameter σ2
δ = 100. The choice of prior parameters

for π, pL is a vector of ones.
1 Initialise ε = y− µ
2 for iteration← 1 to I do
3 Add the previous effect to the residual: ε← ε+ µold

4 Sample µ using ARS;
5 Subtract the new effect from the residual: ε← ε− µ
6 Shuffle (covariates);
7 foreach covariate q do
8 ε← ε+ Zqδoldq
9 Sample δq using ARS

10 ε← ε− Zqδq
11 Sample α using ARS;
12 Shuffle (markers);
13 Calculate exponentiated residuals: ε← exp(αε−K);
14 foreach marker j do
15 if βoldj = 0 then
16 Calculate V j0 , V

j
1 , V

j
2 ;

17 if βoldj 6= 0 then
18 ε← ε+ Xjβoldj ;
19 ε← exp(αε−K);
20 Calculate V j0 , V

j
1 , V

j
2 ;

21 Sample mixture indicator γj ;
22 if γj > 0 then
23 sample βj from the γjth conditional distribution using ARS;
24 ε← ε−Xjβj ;
25 ε← exp(αε−K);
26 if γj = 0 then
27 set βj = 0;

28 Sample π ;
29 Sample σ2

G.

17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2021. ; https://doi.org/10.1101/2020.09.04.20188441doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.04.20188441
http://creativecommons.org/licenses/by-nc-nd/4.0/


Algorithm 2: Bulk Synchronous Parallel Gibbs sampling with BayesW. Data, parameter initialisa-
tion and prior values are set as in Algorithm 1.

Input :Define T parallel workers (tasks) and synchronisation rate u. Each worker t ∈ {1, ..., T} has a
its corresponding vector of marker effects βt (with number of markers in each ∼ M

T , M is the
total number of markers), indicator values γt to update and set of T messages ∆εt : N × 1, N
is the sample size.

1 Initialise variables;
2 for iteration← 1 to I do
3 Update µ, δ, α (as in Algorithm 1);
4 foreach subset of size u do
5 ∆εt ← 0, t ∈ {1, ..., T};
6 for t← 1 to T in parallel do
7 foreach column j from a subset of size u of the columns assigned to worker t do
8 if βoldj = 0 then
9 Calculate V j0 , V

j
1 , V

j
2 based on ε;

10 if βoldj 6= 0 then
11 ε̃← ε+ Xjβoldj ;
12 ε̃← exp(αε̃−K);
13 Calculate V j0 , V

j
1 , V

j
2 based on ε̃;

14 Sample mixture indicator γj ;
15 if γj > 0 then
16 sample βj from the γjth conditional distribution using ARS;
17 if γj = 0 then
18 set βj = 0;
19 if

(
βj − βoldj

)
6= 0 then

20 ∆εt ← ∆εt −Xj
(
βj − βoldj

)
;

21 Wait until all workers are finished processing their sets of u markers;

22 ε← ε+
∑T
t=1 ∆εt ;

23 ε← exp(αε−K);
24 Update π, σ2

G (as in Algorithm 1);

Extension to a grouped mixture of regressions model 504

Here, we now assume that the SNP marker effects come from Φ of disjoint groups, with a reparametrisation 505

of the model parameters to represent the mean of the logarithm of the phenotype as 506

E(log Yi|µ, β, δ, α) = µ+
Φ∑
ϕ=1

xϕi β
ϕ + ziδ, (42)

where there is a single intercept term µ, and a single Weibull shape parameter α, but now xϕi are the 507

standardised marker values in group ϕ, βϕ are the marker estimates for the corresponding group. Each βϕj is 508

distributed according to: 509

βϕj ∼ π
ϕ
0 δ0 + πϕ1N

(
0, Cϕ1 σ2

Gϕ

)
+ πϕ2N

(
0, Cϕ2 σ2

Gϕ

)
+ . . .+ πϕLϕN

(
0, CϕLσ

2
Gϕ

)
(43)

where for each SNP marker group prior probabilities of belonging to each of the mixture distribution k is 510

stored in Lϕ + 1-dimensional vector πϕ and these mixture proportions {πϕ0 , π
ϕ
1 , . . . , π

ϕ
L},

∑L
k=0 π

ϕ
k = 1 are 511

updated in each iteration. Each mixture component (γj = k ≥ 1) is a normal distribution with zero mean and 512

18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2021. ; https://doi.org/10.1101/2020.09.04.20188441doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.04.20188441
http://creativecommons.org/licenses/by-nc-nd/4.0/


variance Cϕk σ2
Gϕ, where σ2

Gϕ represents the phenotypic variance attributable to markers of group ϕ and Cϕk is 513

group and mixture specific factor showing the magnitude of variance explained by this specific mixture. Thus, 514

the mixture proportions, variance explained by the SNP markers, and mixture constants are all unique and 515

independent across SNP marker groups. The formulation presented here of having an independent variance 516

parameter σ2
Gϕ per group of markers, and independent mixture variance components, enables estimation of 517

the amount of phenotypic variance attributable to the group-specific effects and enables differences in the 518

distribution of effects among groups. All of the steps shown in previous paragraphs are still valid and now we 519

are using group specific genetic variances σ2
Gϕ, prior inclusion probabilities πϕ and mixture proportions Cϕk . 520

Furthermore, due to the fact that the model is additive, the sum of group-specific genetic variances represents 521

the total genetic variance σ2
G =

∑Φ
ϕ=1 σ

2
Gϕ. 522

Derivations for the sparse calculations 523

In order to reduce the number of computations and improve running times we derive a sparse representation 524

of genotypes, given that conditional posterior distributions in our scheme are different, we have to derive 525

different update equations. Suppose ξij represents the jth SNP allele count (0, 1 or 2) for the ith individual, 526

and ξ̄j , sj represent the mean and standard deviation of the j − th SNP in our sample. In the regular 527

setting we would like to use standardised count values (xij = ξij−ξ̄j
sj

) instead and meanwhile speed up the 528

computations by using the knowledge that xij can have only three values within a SNP. 529

There are three equations where we can apply sparsity. Firstly, equation 40 for the σ̂k term (for the jth 530

SNP) in the adaptive Gauss-Hermite quadrature can be expressed as 531

σ̂k = 1√
2

[
1 + αCkσ

2
G

n∑
i=1

(
ξij − ξ̄j
s2
j

)2
(exp(vi)− exp(ui))

]−0.5
=

1√
2

[
1+αCkσ

2
G

s2
j

( n∑
i=1

ξ2
ij(exp(vi)−exp(ui))−2ξ̄j

n∑
i=1

ξij(exp(vi)−exp(ui))+ξ̄2
j

n∑
i=1

(exp(vi)−exp(ui))
)]−0.5

=

1√
2

[
1 + αCkσ

2
G

s2
j

( ∑
ξij=1

(exp(vi)− exp(ui)) + 4
∑
ξij=2

(exp(vi)− exp(ui))

− 2ξ̄j
∑
ξij=1

(exp(vi)− exp(ui))− 4ξ̄j
∑
ξij=2

(exp(vi)− exp(ui)) + ξ̄2
j

n∑
i=1

(exp(vi)− exp(ui))
)]−0.5

=

1√
2

[
1+αCkσ

2
G

s2
j

(
(1−2ξ̄j)

∑
ξij=1

(exp(vi)−exp(ui))+4(1−ξ̄j)
∑
ξij=2

(exp(vi)−exp(ui))+ξ̄2
j

n∑
i=1

(exp(vi)−exp(ui))
)]−0.5

.

(44)

We see that sj and ξ̄j and the expressions containing these terms can be calculated already beforehand for 532

each SNP j. 533

Secondly, we can use the knowledge about sparsity to simplify expression 41. More specifically 534
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n∑
i=1

[(exp(vi)− exp(ui))(1− exp(−αxij σ̂k
√

2tr
√

2Ckσ2
G))] =

n∑
i=1

[(exp(vi)− exp(ui))]− exp(αξ̄j
sj

σ̂k
√

2tr
√

2Ckσ2
G)

n∑
i=1

[(exp(vi)− exp(ui))] exp(−αξij
sj

σ̂k
√

2tr
√

2Ckσ2
G) =

n∑
i=1

[(exp(vi)− exp(ui))]− exp(αξ̄j
sj

σ̂k
√

2tr
√

2Ckσ2
G) ·

[ ∑
ξij=0

(exp(vi)− exp(ui))+

exp(− α
sj
σ̂k
√

2tr
√

2Ckσ2
G)
∑
ξij=1

(exp(vi)− exp(ui)) + exp(−2α
sj
σ̂k
√

2tr
√

2Ckσ2
G)
∑
ξij=2

(exp(vi)− exp(ui))
]
.

(45)

Thirdly, in expression 20 we can rewrite the transformed residuals as 535

n∑
i=1

[exp(α(log(ai)− µ− xiβ − ziδ))− exp(α(log(yi)− µ− xiβ − ziδ))] =

n∑
i=1

[
exp(ui − α

(ξij − ξ̄j
sj

)
βj)− exp(vi − α

(ξij − ξ̄j
sj

)
βj)
]

= exp
(αβj ξ̄j

sj

)
·[

−
∑
ξij=0

(exp(vi)−exp(ui))−exp
(
− αβj

sj

) ∑
ξij=1

(exp(vi)−exp(ui))−exp
(
− 2αβj

sj

) ∑
ξij=2

(exp(vi)−exp(ui))
]
.

(46)

For all cases, after each update we need to recalculate the difference exp(vi)− exp(ui) for each individual 536

i. We notice that it is sufficient to use three sums (
∑
ξij=ξ(exp(vi)− exp(ui)), ξ ∈ {0, 1, 2}) that we denote 537

as V j0 , V
j
1 , V

j
2 which are used in both of the final expressions. Thus, we have eliminated the need to calculate 538

exponents and dot products in expressions 40 and 41, reducing them to a series of sparse summations and 539

making the analysis scale sub-linearly with increasing marker number. 540

Simulation study 541

We conducted simulations to analyse the performance of our model under model misspecification, where 542

the phenotypic distribution does not conform to a Weibull distribution, and to different censoring levels in 543

the data. We assessed i) estimation of hyperparameters, ii) false discovery rate, and iii) prediction accuracy. 544

We used M = 50, 000 uncorrelated markers and N = 5, 000 individuals for whom we simulated effects 545

on p = 500 randomly selected markers, heritability (as defined in the Supplementary Note) was set to be 546

h2 = 0.5. Then, we generated phenotypes from the generalised gamma distribution (see Supplementary Note), 547

retaining the mean and the variance on a logarithmic scale and thus fixing the heritability, while varying the 548

θ parameter of the generalised gamma distribution between 0 and 2 (five settings of θ = 0, 0.5, 1, 1.5, 2 with 549

θ = 1 corresponding to a Weibull distribution). For these data sets, we also varied the censoring levels of 0%, 550

20% and 40% (see Supplementary Note). For each of the censoring and phenotypic distribution combinations, 551

25 replicate phenotypic data sets were created, giving a total of 375 data sets. The prior parameters for σ2
G, 552

α and µ were set the same way as described in Data Analysis Details. 553

To compare our approach with other available methods we analyzed each data set using different 554

approaches: a Cox Lasso [13], a martingale residuals approach with single-marker ordinary least squares 555

(OLS) regression [11], and martingale residuals with a Bayesian regression mixture model with a Dirac spike 556

(BayesR) [19]. For each of the 25 simulation replicates, across the five generalised gamma θ parameters, we 557

calculated the correlation between the simulated genetic values and a genetic predictor, created from the 558
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regression coefficients obtained from each approach, in an independent data set (same number of markers, 559

same causal markers and same effect sizes, with N = 1, 000 individuals), with results shown in Figure 1a). 560

Secondly, for all four methods we calculated precision-recall curves for the generalised gamma distributions 561

θ ∈ {0, 1, 2} and censoring levels 0%, 20% and 40% (Figure 1b, Figure S2). Bayesian models used 5 chains 562

with 1,100 iterations for each chain with a burn-in of 100 and no thinning. The BayesW model was estimated 563

using 11 quadrature points. The hyperparameter for Cox Lasso was estimated using 5-fold cross-validation 564

for each simulated data set separately. 565

Additionally, for the BayesW model, we analysed each of the 375 data sets, using only a single mixture 566

distribution set to a constant of 0.01, or two mixture distributions with constants 0.01, 0.001. We compared 567

these model formulations by accessing the slope between true and estimated non-zero marker effects (Figure 568

1c) and the estimated heritability, across the range of generalised gamma distributions (Figure 1d). For each 569

of the 5 generalised gamma θ parameter settings, we also calculated the mean false discovery rate (FDR) 570

levels across the 25 replicate simulations given fixed posterior inclusion probabilities (Figure 1e) for both the 571

single- and two-mixture model formulations (Figure 1f). Finally, we tested the impact of using a different 572

number of quadrature points by running the model for the Weibull setting data sets. We varied the number 573

of quadrature points from 3 to 25 across 5 simulation replicates, using two mixture distributions (0.001,0.01), 574

and investigated the root mean square error (RMSE: estimated/true) for marker effect estimates within 5 top 575

deciles of the simulated marker effect distribution (Figure S3b). 576

To test the impact of LD among the markers, we used UK Biobank chromosome 22 imputed genotype 577

data (M = 194, 922 markers, N = 20, 000 randomly selected individuals, p = 2000 randomly selected causal 578

markers, with heritability h2 = 0.5) and we simulated the phenotypes from Weibull distribution, with 25 579

simulation replicates. We used this data to compare BayesW to the same other methods described above, 580

by calculating the correlation of simulated genetic value and a genetic predictor in an independent data set 581

(same number of markers, same causal markers and same effect sizes, with N = 4, 000 individuals). We 582

present these results in Figure S1a. In addition, we used the same genetic data set but varied the censoring 583

levels, to examine the stability of the heritability estimate (Figure S1b). Bayesian analyses used 5 chains 584

with 3000 iterations each and a burn-in of 1000 and thinning of 5. The Cox Lasso model was trained the 585

same way as in the uncorrelated case. 586

To validate properties of polygenicity, variance partitioning between mixtures and false discovery rate we 587

used UK Biobank chromosome 1 imputed genotype data that was LD pruned with threshold r2 = 0.9 as this 588

data set was later used in the final analyses (M =230,227 markers, N =25,000 randomly selected individuals). 589

We ran 10 simulations with three different number of causal loci: 200, 2500 and 4000. The phenotypes were 590

simulated from Weibull distribution with a fixed heritability of h2 = 0.5. All the models were executed with 591

three variance components (0.0001,0.001,0.01) (Figures S11, S12). The effects were created by first grouping 592

the markers via a clumping procedure (window size 10Mb, LD threshold r2 = 0.1) and then assigning the 593

effects to the index SNPs of randomly selected clumps. 594

Finally, we ran 10 simulations on the same UK Biobank chromosome 1 data as described in the previous 595

section to check the performance of the BSP Gibbs sampling algorithm in a scenario that would be the 596

closest to the empirical UK Biobank data analysis. Here, we only used p = 2, 500 randomly selected causal 597

SNPs, with heritability h2 = 0.5. The phenotypes were simulated from Weibull distribution and models were 598

run with three variance components (0.0001,0.001,0.01). Models were run by varying the number of tasks 599

(parallelism) between 1, 4, 8, 16 and synchronisation rate (number of markers processed by each task until 600

synchronisation) between 1, 5, 10, 20, 50 (Figure S3a). The scenario of 8 tasks (∼30,000 markers per task) 601

and synchronisation rate of 10 is used in the empirical data analysis. 602

UK Biobank Data 603

We restricted our discovery analysis of the UK Biobank to a sample of European-ancestry individuals 604

(N=456,426). To infer ancestry, 488,377 genotyped participants were projected onto the first two genotypic 605

principal components (PC) in 2,504 individuals of the 1,000 Genomes project with known ancestries. Using 606

the obtained PC loadings, we then assigned each participant to the closest population in the 1000 Genomes 607

data: European, African, East-Asian, South-Asian or Admixed. As we wished to contrast the genetic basis 608

of different phenotypes, we then removed closely related individuals as identified in the UK Biobank data 609
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release. While we expect that our model can accommodate relatedness similar to other mixed linear model 610

approaches, we wished to compare phenotypes at markers that enter the model due to LD with underlying 611

causal variants, and relatedness leads to the addition of markers within the model to capture the phenotypic 612

covariance of closely related individuals. 613

We used the imputed autosomal genotype data of the UK Biobank provided as part of the data release. For 614

each individual, we used the genotype probabilities to hard-call the genotypes for variants with an imputation 615

quality score above 0.3. The hard-call-threshold was 0.1, setting the genotypes with probability ≤ 0.9 as 616

missing. From the good quality markers (with missingness less than 5% and p-value for Hardy-Weinberg 617

test larger than 10-6, as determined in the set of unrelated Europeans) were selected those with minor allele 618

frequency (MAF) 0.0025 and rs identifier, in the set of European-ancestry participants, providing a data set of 619

9,144,511 SNPs, short indels and large structural variants. From this we took the overlap with the Estonian 620

Biobank data to give a final set of 8,433,421 markers. From the UK Biobank European data set, samples 621

were excluded if in the UKB quality control procedures they (i) were identified as extreme heterozygosity 622

or missing genotype outliers; (ii) had a genetically inferred gender that did not match the self-reported 623

gender; (iii) were identified to have putative sex chromosome aneuploidy; (iv) were excluded from kinship 624

inference. Information on individuals who had withdrawn their consent for their data to be used was also 625

removed. These filters resulted in a dataset with 382,466 individuals. We then excluded markers of high LD 626

by conducting LD pruning using a threshold of r2 = 0.9 for a 100kb window leaving us with a final set of 627

2,975,268 markers. This was done in order to decrease the number of markers that were in extremely high LD 628

and thus giving very little extra information but requiring more than two times the computational resources. 629

We then selected the recorded measures of for the 382,466 to create the phenotypic data sets for age-at- 630

menopause, age-at-menarche and age-at-diagnosis of HBP, T2D or CAD. For each individual i we created a 631

pair of last known time (logarithmed) without an event Yi and censoring indicator Ci (Ci = 1 if the person 632

had the event at the end of the time period, otherwise Ci = 0). If the event had not happened for an 633

individual, then the last time without having the event was defined as the last date of assessment centre visit 634

minus date of birth (only month and year are known, exact date was imputed to 15). 635

For age-at-menopause we used UKB field 3581 to obtain the time if available. We excluded from the 636

analysis 1) women who had reported of having and later not having had menopause or vice versa, 2) women 637

who said they had menopause but there is no record of the time of menopause (UKB field 2724), 3) women 638

who have had hysterectomy or the information about this is missing (UKB field 3591), 4) women whose 639

menopause is before age 33 or after 65. This left us with a total of N = 151, 472 women of which 108, 120 640

had the event and 43, 352 had not had an event by the end of the follow-up. For time-to-menarche we used 641

UKB field 2714 and we excluded all women who had no record for time-to-menarche which left us with a 642

total of N = 200, 493 women of which all had had the event. For age of diagnosis of HBP we used the UKB 643

field 2966 for and we left out individuals who had the HBP diagnosed but there was no information about 644

the age of diagnosis (UKB field 6150) which left us with a total of N = 371, 878 individuals of which 95, 123 645

had the event and 276, 755 had not had an event by the end of the follow-up. For age of diagnosis of T2D we 646

used either the UKB field 2976 or field 20009 or the mean of those two if both were available. We excluded 647

individuals who had indicated self-reported “type 1 diabetes” (code 1222) and had Type 1 Diabetes (ICD 648

code E10) diagnosis; we also excluded individuals who did not have any recorded time for the diagnosis of 649

T2D but they had indicated secondary diagnosis (UKB fields 41202 and 41204) of “non-insulin-dependent 650

diabetes mellitus” (ICD 10 code E11) or self-reported non-cancer illness (UKB field 20002) “type 2 diabetes” 651

(code 1223) or "diabetes" (code 1220). That left us with a total of N = 372, 280 individuals of which 15, 813 652

had the event and 356, 467 had not had an event by the end of the follow-up. For age of diagnosis of CAD we 653

used the either the minimum of age at angina diagnosed and age heart attack diagnosed (UKB fields 3627 654

and 3894) or the minimum age indicated to have either two of diagnoses (codes 1074, 1075) in UKB field 655

20009 or the mean of those if both were available. We excluded individuals who did not have any information 656

about the time of diagnosis but had following primary or secondary diagnoses: ICD 10 codes I20, I21, I22, 657

I23, I24 or I25; self-reported angina (code 1074) or self-reported heart attack/myocardial infarction (code 658

1075). That left us with a total of N = 360, 715 individuals of which 17, 452 had the event and 343, 263 had 659

not had an event by the end of the follow-up. 660

In the analysis we included covariates of sex, UK Biobank recruitment centre, genotype batch and 20 first 661
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principal components of the an LD clumped set of 1.2 million marker data set, calculated using flashPCA, to 662

account for the population stratification in a standard way. We did not include any covariates of age or year 663

of birth because these are directly associated to our phenotypes. 664

Estonian Biobank Data 665

The Estonian Biobank cohort is a volunteer-based sample of the Estonian resident adult population. The 666

current number of participants-close to 52000–represents a large proportion, 5%, of the Estonian adult 667

population, making it ideally suited to population-based studies [38]. For the Estonian Biobank Data, 48,088 668

individuals were genotyped on Illumina Global Screening (GSA) (N = 32,594), OmniExpress (N = 8,102), 669

CoreExome (N = 4,903) and Hap370CNV (N = 2,489) arrays. We selected only those from the GSA array 670

and imputed the data set to an Estonian reference, created from the whole genome sequence data of 2,244 671

participants [39]. From 11,130,313 markers with imputation quality score > 0.3, we selected SNPs that 672

overlapped with the UK Biobank LD pruned data set, resulting in a set of 2,975,268 markers. The phenotypic 673

data was constructed similarly to the phenotypes based on the UK Biobank data for the NEst = 32, 594 674

individuals genotyped on GSA array. For time-to-event traits if no event had happened then the time is 675

considered censored and the last known age without the event was used, calculated as the last known date 676

without event minus the date of birth. Because only the year of birth is known, birth date and month were 677

imputed as July 1 for age calculations. 678

For age-at-menopause we excluded women who had reported having menstruation stopped for other reasons 679

which resulted in 6,434 women who had had menopause and 12,934 women who had not had menopause. For 680

age-at-menarche we excluded women who had not reported the age when the menstruation started which 681

resulted in 18,134. For both age-at-menarche and age-at-menopause if the event had occurred, self-reported 682

age during that event was used. 683

Initially the cases of CAD, HBP or T2D were identified on the basis of the baseline data collected during 684

the recruitment, where the disease information was either retrieved from medical records or self-reported by 685

the participant. Then, the information was linked with the Estonian Health Insurance database that provided 686

additional information on prevalent cases. To construct the phenotypes for the time-to-diagnosis of CAD, 687

HBP or T2D for the individuals with the corresponding diagnosis we used the age at the first appearance of 688

the respective ICD 10 code that was also used for creating the UK Biobank phenotypes. If the self-reported 689

data about the ICD 10 code has only the information about the year, the date and month was imputed as 690

July 1 and if only the date is missing then the date was imputed as 15. Respective case-control phenotypes 691

for CAD, HBP or T2D were defined 0 if the person had not had an event (censored) and 1 if the person had 692

had an event and these binary indicators were adjusted for age and sex. For the T2D phenotype we excluded 693

individuals with a diagnosis of T1D. For CAD we resulted with 30,015 individuals without the diagnosis and 694

2579 individuals with a diagnosis, for HBP we resulted with 24,135 individuals without the diagnosis and 695

8459 individuals with a diagnosis and for T2D we resulted with 30,883 individuals without the diagnosis and 696

1457 individuals with a diagnosis. 697

Data Analysis Details 698

The BayesW model was run on the UK Biobank data without groups and with 20 MAF-LD groups that were 699

defined as MAF quintiles and then quartiles within each of those MAF quintiles split by the LD score. The 700

cut-off points for creating the MAF quintiles were 0.006, 0.013, 0.039, 0.172; the cut-off points for creating 701

LD score quartiles were 2.11, 3.08, 4.51 for the first; 3.20, 4.71, 6.84 for the second; 4.70, 6.89, 9.94 for 702

the third; 7.65, 11.01, 15.70 for the fourth and 10.75, 15.10, 21.14 for the fifth MAF quintile. The prior 703

distributions for the hyperparameters were specified such that they would be only weakly informative: normal 704

priors would have a zero mean and very large variance, Dirichlet priors would be vectors of ones and the rest 705

such that the prior parameter value would have a very small contribution to the conditional distribution 706

compared to the likelihood. Specifically, for µ and δ the mean is chosen 0 and variance σ2
µ = σ2

δ = 100; for 707

α we choose α0 = 0.01 and κ0 = 0.01; for σ2
G in without groups and σ2

Gϕ, ∀ϕ in with groups model, we 708

set parameters to be ασ = 1, βσ = 0.0001; for π and πϕ the prior parameters is set to be a vector of ones. 709

The model without groups was executed with mixture components (0.00001,0.0001,0.001,0.01) (reflecting 710
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that the markers allocated into those mixtures explain the magnitude of 0.001%, 0.01%, 0.1% or 1% of the 711

total genetic variance) and the model with groups was executed with (group specific) mixture components 712

(0.0001,0.001,0.01,0.1). Guided by our simulation study (Figure S3b), we used 25 quadrature points for 713

running each of the models. For the model without groups we used five chains and for the model with 714

groups we used three chains. Each of the chains was run for 10,000 iterations with a thinning of 5 giving us 715

2,000 samples. We applied a stringent criterion of removing the first half of the chain as burn-in, giving the 716

convergence statistics of Figures SS4, SS5, SS6, SS7. That gave 5,000 samples for the model without groups 717

and 3,000 samples for the model with groups for each of the five traits. 718

The BSP Gibbs sampling scheme is implemented by partitioning the markers in equal size chunks assigned 719

to workers (MPI tasks) themselves distributed over compute nodes. For the analyses we used 8 tasks per 720

node; due to the differences in sample size we were using different number of nodes to accommodate the 721

data in memory: for time-to-menopause we used 8 nodes, for time-to-menarche we used 10 nodes and for 722

time-to-diagnosis of CAD, HBP or T2D we used 12 nodes. This resulted in splitting the markers between 723

64 workers for time-to-menopause, 80 workers for time-to-menarche and 96 workers for time-to-diagnosis of 724

CAD, HBP or T2D. For the last case, the average number of markers assigned to one worker is 30,992. We 725

chose to use a synchronisation rate of 10 meaning the synchronisation between all of the workers was done 726

after sampling 10 markers in each of the workers. Both the choice of maximum number of workers and the 727

synchronisation rate are stringent options considering our simulation study results plotted in Figure S3a. 728

For testing region-based significance for BayesW, we used a Posterior Probability of the Window Variance 729

(PPWV) [21]. PPWV requires first setting a threshold of the proportion of the genetic variance explained. 730

Then, based on the posterior distributions we calculated the probability that each region explained more 731

than the specified threshold of the proportion of the genetic variance and this quantity is denoted as PPWV. 732

The regions were defined via LD clumping procedure (window size 10Mb, LD threshold r2 = 0.1) resulting 733

in regions that have high inter-region correlations but low intra-region correlations. For these LD clumped 734

regions we used thresholds of 1/100,000, 1/10,000 and 1/1,000 of the total genetic variance. The smallest 735

threshold for PPWV is 1/100,000 of the total genetic variance as this gives the same magnitude as the 736

smallest mixture component (0.00001) used in the models. The smallest mixture component reflects the 737

smallest effect size the model is intended to capture. The thresholds of 1/10,000 and 1/1000 of the total 738

genetic variance are chosen 10 and 100 times greater than the smallest threshold to point out the regions with 739

larger effect sizes. To check the significance of the gene-associated regions we used more stringent thresholds 740

of 1/10,000 and 1/1,000 of the total genetic variance as gene-associated regions can contain greatly more 741

markers. Furthermore, to make gene-associated regions more comparable, we fixed an upper bound of 250 for 742

the markers that can contribute to a gene-associated, markers exceeding the bound were randomly discarded. 743

To do the comparison in terms of discovered regions and prediction accuracy we used the summary 744

statistics from the fastGWA method [28]. Because there were no results for our definition of time-to-CAD 745

or time-to-T2D we used time-to-angina and time-to-heart attack summary statistics for comparison with 746

CAD and time-to-diabetes for comparison with T2D. We called an LD clumped region significant if the 747

region contained at least one SNP with a p-value < 5 · 10−8. To do the prediction into the Estonian Biobank 748

we only used the markers with p-value < 5 · 10−8. We did the predictions only for age-at-menarche and 749

age-at-menopause since the number of significant markers for them is higher. 750

To do the comparison in terms of predictive accuracy with a competing method we also trained the 751

Cox-LASSO method with R package snpnet [14, 15] with UK Biobank data and then used the estimates to 752

make prediction into Estonian Biobank. To make the two models comparable, we used exactly the same 753

data sizes for estimating the models on the UK Biobank as were used with the BayesW. For all of the 754

traits we decided to use 95% of the sample size as the training data and the rest as the validation data. 755

This was done in order to minimise the loss in power due to not using the entire sample and 5% of the 756

sample gives a sufficiently large validation set. We ran the Cox-LASSO model using snpnet with 16 threads 757

and allocating 250GB of memory. This was sufficient to find the optimal hyperparameter for the traits of 758

time-to-menopause (22 iterations to find the optimal hyperparameter) and time-to-CAD (21 iterations to 759

find the optimal hyperparameter). However, for the other traits the snpnet procedure ran out of memory and 760

it was decided to use the results from the last available iteration (iteration 28 for time-to-HBP, iteration 35 761

for time-to-menarche, iteration 27 for time-to-T2D). For the traits for which it was not possible to detect the 762
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optimal hyperparameter a sensitivity analysis was done by comparing with the previous iterations. Prediction 763

accuracy was virtually the same between the last available iteration and some iterations before that suggesting 764

that the last available iteration was already providing a hyperparameter close to the optimum. 765

The prediction based on BayesW into Estonian Biobank ĝ was calculated by multiplying ĝ = XEstβ̂, 766

where XEst is NEst ×M matrix of standardised Estonian genotypes (each column is standardised using the 767

mean and the standard deviation of the Estonian data), β̂ is the M × I matrix containing the posterior 768

distributions for M marker effect sizes across I iterations. To calculate the prediction into Estonia we used 769

the BayesW model with groups using 3000 iterations which gave us posterior predictive distributions of the 770

genetic values with 3000 iterations. To create the final predictor, we calculated the mean genetic value for 771

each individual across 3000 iterations. We also created the predictor using the estimates from Cox-LASSO by 772

multiplying the standardised Estonian genotype matrix with the vector of Cox-LASSO effect size estimates. 773

We evaluated the performance of the two predictors by comparing them to the true phenotype value and 774

calculating R2 and Harrell’s C-statistic [29]. Instead of using the exact phenotypes the martingale residuals 775

from the Cox PH model where the true phenotype was regressed on the gender (if applicable) were used 776

to calculate the R2. That enables calculating the R2 value using also the censored individuals. Harrell’s 777

C-statistic was calculated from the Cox PH model where the true phenotype was regressed on the predictor 778

and gender (if applicable). 779

The BayesW calculations have been performed using the facilities of the Scientific IT and Application 780

Support Center of EPFL and the Helvetios cluster. All of the post-analysis steps were conducted using R 781

software(version 3.6.1) [40]. 782
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Figure 1. Simulation study results. We present a method comparison, parameter estimation results and the
behaviour of the false discovery rate (FDR). Models were estimated on a data set of M = 50, 000 uncorrelated markers and
N = 5000 individuals. Phenotypes were created from Generalised gamma distributions (see Supplementary note) using p = 500
causals markers and retaining heritability of h2 = 0.5; independent data set had the same markers with N = 1000 other
individuals. (a) Prediction accuracy of four methods when predicting to an independent data set given different generalised
gamma distributions; (b) Precision-recall curves for four methods using Weibull phenotype (theta=1); (c) Regression slope
(true effect size ∼ estimated effect size) when estimating non-zero marker effects given different theta values estimated with
BayesW; (d) BayesW SNP heritability estimates given different generalised gamma distributions and different used mixtures; (e)
relationship between the posterior inclusion probability and FDR given different generalised gamma distributions for BayesW;
(f) relationship between the posterior inclusion probability and FDR for a different number of mixture distributions used using
Weibull phenotype and BayesW.
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Figure 2. Genetic architecture for time-to-diagnosis of CAD, HBP, T2D and age-at-menarche
and age-at-menopause, estimated using 2,975,268 markers and unrelated European ancestry
individuals from the UK biobank. We ran BayesW models with and without partitioning the markers to groups.
Groups were created by splitting them first to MAF quintiles and each MAF quintile was further split to quartiles based on LD
giving us a total of 20 groups. (a) Mean proportions of genetic variances explained by each of the mixtures with the groups model
and without groups model, groups model and no group model are yielding rather similar results; (b) distribution of proportion
of genetic variance between mixtures for the model without groups, time-to-menarche stands out with almost all of genetic
the variance attributed to the small mixtures; (c) distribution of proportion of genetic variance between LD quartiles within
each MAF quintile, LD bins do not have a large impact on genetic variance partitioning as the credibility intervals are large
and medians across LD quartiles are rather stable; (d) distribution of proportion of genetic variance between mixtures within
each MAF quintile, mixture allocations tend to be similar compared to no groups model; (e) enrichment (ratio of proportion of
genetic variance and proportion of markers attributed to each MAF quintile group) value for each phenotype, enrichment of
higher than 1 represents that the markers are explaining more of the genetic variance compared to their count proportion and
vice versa. (b)-(e) median and 95% credibility intervals are shown, (c)-(e) are group models. For all of the traits most of the
genetic variance is coming from common SNPs (MAF quintile 5).
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Figure 3. Regional and individual SNP contributions to the time-to-diagnosis of CAD, HBP,
T2D and age-at-menarche and age-at-menopause. (a) Count of LD clumped regions with high PPWV (Posterior
Probability Window Variance). We split the genome into LD clumped regions such that the r2 < 0.1 between index SNPs. Then
we calculated the probability that a region is explaining at least either 0.001%, 0.01% or 0.1% of the genetic variance (PPWV);
(b) Count of gene-mapped regions with high PPWV. Each marker is mapped to the closest gene given that it is within ± 50kb
from the marker, then for each of those gene-specific regions, we calculate PPWV that the region explains either 0.01% or 0.1%
of the genetic variance. Both (a) and (b) are using the groups model; (c) distribution of mean non-zero effect sizes for markers
with posterior inclusion probability (PIP) > 0.5 for models with and without groups, we pick up mostly large effects for traits
such as time-to-diagnosis of CAD or T2D whereas we find an abundance of small effects for age-at-menarche, we see a very
small effect of penalisation in the case of group model; (d) relationship between mean non-zero effect size and posterior inclusion
probability for markers with PIP > 0.5 with markers.

29

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2021. ; https://doi.org/10.1101/2020.09.04.20188441doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.04.20188441
http://creativecommons.org/licenses/by-nc-nd/4.0/


BayesW Cox Lasso BayesR fastGWA

0.00

0.01

0.02

0.03

0.04

0.05

Time to
CAD

Time to
HBP

Time to
Menarche

Time to
Menopause

Time to
T2D

Phenotype

P
re

di
ct

io
n 

R
2

a

0.50

0.55

0.60

0.65

Time to
CAD

Time to
HBP

Time to
Menarche

Time to
Menopause

Time to
T2D

Phenotype

C
 s

ta
tis

tic

b

0.00

0.01

0.02

0.03

CAD HBP T2D
Phenotype

P
re

di
ct

io
n 

R
2

c Female Male Total

CAD HBP T2D CAD HBP T2D CAD HBP T2D

0.0

0.1

0.2

0.3

Phenotype

A
re

a 
un

de
r 

P
R

 c
ur

ve

d

Figure 4. Prediction into the Estonian biobank. BayesW and Cox-LASSO (estimated with snpnet) methods
were used for all of the phenotypes; BayesR was used to see how case-control model predicts time-to-diagnosis phenotypes (CAD,
HBP, T2D); fastGWA was used to see how marginal model performs when predicting continuous traits. (a) Prediction R2 when
predicting Estonian martingale residuals of time-to-event phenotypes using either BayesW, Cox-LASSO, BayesR or fastGWA
model trained on the UK biobank data, martingale residuals were calculated from Cox PH model with an intercept and sex if
applicable; (b) Harrell’s C-statistic with 95% confidence intervals, calculated from Cox PH model where true phenotype was
regressed on the genomic prediction and gender data (for CAD, HBP and T2D); (c) Prediction R2 when predicting Estonian
binary phenotypes (CAD, HBP, T2D) using either a model based on time-to-event data (BayesW) or case-control data (BayesR),
the binary phenotypes that were used for the comparison were adjusted for age and sex; (d) Area under Precision-recall curve
when predicting Estonian binary phenotypes (CAD, HBP, T2D) using either BayesW or BayesR, areas under the curve were
calculated separately for females, males and everyone combined.
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Time to CAD Time to HBP Time to Menarche Time to Menopause Time to T2D
All
Nuncens/N 17,452/360,715 95,123/371,878 200,493/200,493 108,120/151,472 15,813/372,280
Uncensored % 4.8% 25.6% 100% 71.4% 4.2%
Mean (sd) 54.0 (8.86) 51.1 (9.96) 13.0 (1.60) 50.4 (4.28) 54.4 (9.99)
Median (Range) 55.2 (0.0-78.2) 52.0 (18.0-81.0) 13.0 (5.0-25.0) 51.0 (33.0-68.0) 56.3 (0.5-79.3)
Female
Nuncens/N 4746/197,471 43,457/199,499 200,493/200,493 108,120/151,472 5587/201,933
Uncensored % 2.4% 21.8% 100% 71.4% 2.8%
Mean (sd) 54.7 (9.03) 50.5 (10.83) 13.0 (1.60) 50.4 (4.28) 54.8 (9.75)
Median (Range) 56.3 (1.5-78.1) 52.0 (18.0-81.0) 13.0 (5.0-25.0) 51.0 (33.0-68.0) 56.3 (0.5-79.3)
Male
Nuncens/N 12,706/163,244 51,666/172,379 10,226/170,347
Uncensored % 7.8% 30.0% 6.0%
Mean (sd) 53.7 (8.78) 51.6 (9.14) 54.2 (10.11)
Median (Range) 55.2 (0.0-78.2) 52.0 (18.0-79.0) 55.6 (0.5-79.3)

Table S1. Descriptive statistics for the five UK Biobank phenotypes used in the analysis.
Descriptive statistics listed are the number of uncensored individuals Nuncens, the number of individuals N , the percentage of
uncensored individuals, the mean and the standard deviation across uncensored individuals, the median and the range across
uncensored individuals.
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Figure S1. Simulation results for correlated data. 25 simulations used genotypic data from UK biobank
randomly chosen individuals and chromosome 22: N = 20, 000 individuals, M = 194, 922 markers, p = 2, 000 causal markers,
Weibull phenotype, variance components (0.001,0.01), heritability h2 = 0.5. The independent data set consisted of another
2,000 randomly chosen UK Biobank individuals. (a) Prediction accuracy when predicting to an independent data set across
four methods given different censoring levels. Similarly to figure 1 we see that also for the correlated markers BayesW gives us
higher accuracy for prediction. The higher level of censoring mildly decreases the prediction accuracy; (b) SNP heritability
estimates given the censoring level. Similarly to the uncorrelated case in figure 1 we see that the true heritability falls into the
95% credibility interval. Higher censoring values mildly decrease the power and therefore also the heritability estimate.
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Figure S2. Precision recall curve for different phenotypic distributions and censoring levels.
Phenotypes were created by varying the θ parameter of generalised gamma distributions parameter and 25 simulations were run.
θ = 1 corresponds to Weibull data and θ → 0+ (denoted with 0) corresponds to log-normal distribution. Simulation setting:
N = 5, 000 individuals, M = 50, 000 uncorrelated markers, p = 500 causal markers, heritability h2 = 0.5, variance components
(0.01). Even for the phenotypes where θ 6= 1, BayesW gets higher precisions for most of the recall values which indicates that
the model is relatively robust. The higher the censoring rate the lower is the power.
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Figure S3. Computational recommendations for using BayesW. (a) Statistics to compare the MPI stability
in various scenarios. Compared statistics: 1) Kolmogorov-Smirnov (K-S) test statistic for h2 where every MPI setting was
compared to the sequential version (one task, sync rate = 1), the dotted line indicates the critical value for the K-S statistic at
the significance level of 0.01; 2) Number of effective samples per one iteration for h2 after thinning of 5; 3) RMSE for h2; 4)
Linear regression slope when regressing the true marker values on the estimated ones; 5) RMSE for β parameters. We took the
chromosome 1 of the UK biobank data set that was pruned for LD of 0.9 (M = 230, 227), with randomly sampled N = 25, 000
individuals to make it similar to the real data setting. Phenotypes were simulated from Weibull distribution with heritability
h2 = 0.5 and the number of causal loci was p = 2, 500. The models were run with three variance components (0.0001,0.001,0.01)
with 10 simulations and 5 chains per MPI setting. The settings with 8 MPI tasks (∼ 30, 000 markers per task) corresponds
roughly to the setting in which full data sets are analysed. In the case where we are using very high synchronisation rate
and split markers between many tasks, the estimates might deviate away from the sequential sampling results but for most
settings updating markers synchronously will yield similar results compared to sequential sampling. (b) Impact of the number of
quadrature points on the estimation of effect sizes. Non-zero effect sizes were grouped to deciles and then RMSE(estimated/true)
was calculated within each decile. We see that using more quadrature points makes the estimation better but the improvement
plateaus after some point.
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Figure S4. Convergence diagnostics of model chains for UK Biobank analysis with markers
grouped into minor allele frequency (MAF) quintiles and then further subset into linkage
disequilibrium (LD) quantiles.(a) traceplot of the proportion of variance attributable to SNP markers across MAF
quintiles for each trait , with colours representing the different chains. (b) a time series of the running mean of each chain, of
the proportion of variance attributable to SNP markers for each MAF quintile and each trait, showing all chains approach the
same mean value for each parameter. (c) lagged autocorrelation plot of each chain, for each MAF quintile and each trait and
(d) effective number of uncorrelated sampled obtained for each MAF quintile and each trait. As phenotypic variance is being
partitioned it is not expected that posterior estimates obtained are entirely uncorrelated. (e) Geweke z-score statistic comparing
the intial part of the chain to the final part, for each MAF quintile and each trait.
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Figure S5. Convergence diagnostics of model chains for UK Biobank analysis with markers
grouped into minor allele frequency (MAF) quintiles and then further subset into linkage
disequilibrium (LD) quantiles.(a) overlapped density plots to compare the target distribution by chain showing each
chain has converged in a similar space, for each MAF quintile and each trait. (b) overlapped density plots comparing the last 10
percent of the chain (green), with the whole chain (pink), showing that the initial and final parts of the chain are sampling the
same target distribution for each MAF quintile and each trait. (c) the potential scale reduction factor comparing the among-
and within-chain variance for each MAF quintile and each trait. (d) the cross-correlation between all parameters for each MAF
quintile and each trait.

37

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2021. ; https://doi.org/10.1101/2020.09.04.20188441doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.04.20188441
http://creativecommons.org/licenses/by-nc-nd/4.0/


alpha sigmaG h2
0

10
00

20
00 0

10
00

20
00 0

10
00

20
00

0.0

0.2

0.4

iterations

va
lu

e

CADa

alpha sigmaG h2

0

10
00

20
00 0

10
00

20
00 0

10
00

20
00

0.0

0.2

0.4

iterations

va
lu

e

T2D

alpha sigmaG h2

0

10
00

20
00 0

10
00

20
00 0

10
00

20
00

0.0

0.1

0.2

0.3

0.4

iterations

va
lu

e

HBP

alpha sigmaG h2

0

10
00

20
00 0

10
00

20
00 0

10
00

20
00

0.0

0.2

0.4

iterations

va
lu

e

Menarche

alpha sigmaG h2

0

10
00

20
00 0

10
00

20
00 0

10
00

20
00

0.0

0.1

0.2

iterations

va
lu

e

Menopause

1 2 3 4 5

alpha
sigm

aG
h2

0

10
00

20
00 0

10
00

20
00 0

10
00

20
00 0

10
00

20
00 0

10
00

20
00

0.020

0.024

0.028

0.01

0.02

0.03

0.2

0.3

0.4

iterations

va
lu

e

CADb

1 2 3 4 5

alpha
sigm

aG
h2

0

10
00

20
00 0

10
00

20
00 0

10
00

20
00 0

10
00

20
00 0

10
00

20
00

0.0200

0.0225

0.0250

0.0275

0.01

0.02

0.03

0.04

0.2

0.3

0.4

0.5

iterations

va
lu

e
T2D

1 2 3 4 5

alpha
sigm

aG
h2

0

10
00

20
00 0

10
00

20
00 0

10
00

20
00 0

10
00

20
00 0

10
00

20
00

0.032

0.034

0.036

0.038

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.20

0.25

0.30

0.35

iterations

va
lu

e

HBP

1 2 3 4 5

alpha
sigm

aG
h2

0

10
00

20
00 0

10
00

20
00 0

10
00

20
00 0

10
00

20
00 0

10
00

20
00

0.006

0.008

0.010

0.012

0.010

0.015

0.020

0.40

0.45

0.50

iterations

va
lu

e

Menarche

1 2 3 4 5

alpha
sigm

aG
h2

0

10
00

20
00 0

10
00

20
00 0

10
00

20
00 0

10
00

20
00 0

10
00

20
00

0.0035

0.0040

0.0045

0.0050

0.0014

0.0015

0.0016

0.0017

0.0018

0.16

0.18

0.20

0.22

0.24

0.26

iterations

va
lu

e

Menopause

1 2 3 4 5

alpha
sigm

aG
h2

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

lag

va
lu

e

CADc

1 2 3 4 5

alpha
sigm

aG
h2

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

lag

va
lu

e

T2D

1 2 3 4 5

alpha
sigm

aG
h2

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

lag

va
lu

e

HBP

1 2 3 4 5

alpha
sigm

aG
h2

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

lag

va
lu

e

Menarche

1 2 3 4 5

alpha
sigm

aG
h2

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

lag

va
lu

e

Menopause

●

●

●

alpha

sigmaG

h2

1600 1800 2000 2200 2400
effective

CADd

●

●

●

alpha

sigmaG

h2

1200 1400 1600 1800 2000 2200
effective

T2D

●

●

●

alpha

sigmaG

h2

2400 2600 2800
effective

HBP

●

●

●

alpha

sigmaG

h2

2000 2200
effective

Menarche

●

●

●

alpha

sigmaG

h2

2200 2400 2600 2800 3000 3200 3400
effective

Menopause

●●● ● ●

● ● ●● ●

● ● ●●●

alpha

sigmaG

h2

−4 −2 0 2
z

CADe

●● ● ●●

● ●●● ●

● ●●● ●

alpha

sigmaG

h2

−2 0 2 4
z

T2D

●● ●● ●

● ● ●●●

● ●●●●

alpha

sigmaG

h2

−2 −1 0 1 2
z

HBP

●● ●● ●

● ●● ●●

● ●● ●●

alpha

sigmaG

h2

−2 −1 0 1 2
z

Menarche

● ●●● ●

●●● ●●

●●● ●●

alpha

sigmaG

h2

−2 −1 0 1 2
z

Menopause

Chain

1
2
3
4
5

Figure S6. Convergence diagnostics of model chains for UK Biobank analysis with single
marker group.(a) traceplot of the residual variance calculated as π2/(6α2) labelled alpha, phenotypic variance attributable
to SNP markers (sigmaG), and the SNP-heritability (h2) of each trait, with colours representing the different chains. (b) a time
series of the running mean of each chain, for each trait showing all chains approach the same mean value for each parameter. (c)
lagged autocorrelation plot of each chain, for each trait and (d) effective number of uncorrelated sampled obtained for each trait.
As phenotypic variance is being partitioned it is not expected that posterior estimates obtained are entirely uncorrelated. (e)
Geweke z-score statistic comparing the intial part of the chain to the final part, for each trait.
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Figure S7. Convergence diagnostics of model chains for UK Biobank analysis with single
marker group.(a) overlapped density plots to compare the target distribution by chain showing each chain has converged in
a similar space, for each trait, with the residual variance calculated as π2/(6α2) labelled alpha, phenotypic variance attributable
to SNP markers labelled sigmaG), and the SNP-heritability labelled h2. (b) overlapped density plots comparing the last 10
percent of the chain (green), with the whole chain (pink), showing that the initial and final parts of the chain are sampling the
same target distribution for each trait. (c) the potential scale reduction factor comparing the among- and within-chain variance
for each trait. (d) the cross-correlation between all parameters for each trait.
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Figure S8. LD clumped region contributions to the time-to-diagnosis of CAD, HBP, T2D and
age-at-menarche and age-at-menopause using no groups model. Count of LD clumped regions with high
PPWV (Posterior Probability Window Variance). We conducted LD clumping procedure to partition genome into regions
that have low LD between each other (r2 < 0.1 between index SNPs) and then we calculated the probability that a region is
explaining at least either 0.001%, 0.01% or 0.1% of the genetic variance (PPWV) using no groups model.
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Figure S9. True effect size regressed on the BayesW estimated effect size at one iteration. Same
simulation scenario as described for Figure 1c; the blue line is the estimated regression slope between true and estimated effect
sizes and the red line is the slope true=estimated. Estimated slopes in the figure are 0.996, 1.048 and 1.031 for θ = 0, 1 and 2
respectively. As shown in the Figure 1c we observe a slope between true and estimated effect sizes that indicates on average a
very slight underestimation of the effect sizes even if the model is correctly specified (θ = 1). This is likely happening due to the
selected normal prior for the effect sizes yields a model that is giving ridge regression estimates that are known to slightly shrink
the effect size estimates. On the other hand, if θ = 0 we seemingly get a better fit for the effect sizes for the misspecified model
due to the inflated hyperparameter estimate that is reducing shrinkage of the effect sizes.
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Figure S10. Logarithm of mean proportion of genetic variance explained by each 50kb region
using either time-to-event model (BayesW groups) or case-control approach (BayesRR). Three
analysed phenotypes were (time-to-)HBP, (time-to-)T2D and (time-to-)CAD and the analysis was conducted on unrelated UK
Biobank individuals. The BayesW groups model is using 20 MAF-LD groups and BayesR model is using 36 groups based on
genomic annotations and MAF-LD binning. Both modelling frameworks reach similar conclusions in terms of discovered regions:
for HBP, T2D and CAD the correlation between the logarithm of results are 0.941, 0.647 and 0.554 respectively.
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Figure S11. Variance partitioning and polygenicity for different number of causal loci. (a) The
proportion of genetic variance explained by different mixture components given the number of causal loci. With a smaller
number of causal markers and fixed heritability, we attribute more of the genetic variance to the larger mixtures 10−2 and 10−3

whereas with a higher number of causal markers and fixed heritability the genetic variance is assigned to smaller mixtures of
10−4 and 10−3; (b) polygenicity parameter (proportion of markers with non-zero effect size) given the number causal loci. The
model identifies correctly the magnitude of causal loci, a small number of causal loci results in a small number of non-zero effect
size estimates and a larger number of causal loci results in a larger number of non-zero effect size estimates. Simulation setting:
chromosome 1 markers (M =230,227) were used to create 10 data sets (for 10 simulations) with a different number of effect
sizes (200, 2500 and 4000), in total 30 phenotypic data sets; heritability h2 = 0.5, no censoring, phenotypes simulated from
Weibull distribution; data from randomly selected N = 25, 000 UK Biobank individuals. Effects were assigned to index SNPs
from randomly chosen LD clumps acquired from an LD clumping procedure using r2 = 0.1.
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Figure S12. Relationship between PPWV thresholds and FDR throughout a different number
of causal loci. LD clumps (r2 = 0.1) were used as blocks for calculating PPWV (the probability that the block variance is
exceeding 0.001, 0.0001 or 0.00001 of the total genetic variance). For each such clump, it was determined whether it was as
a true positive or a false positive and using those the false discovery rate was calculated. Simulation setting: chromosome 1
markers (M =230,227) were used to create 10 data sets (for 10 simulations) with a different number of effect sizes (200, 2500,
and 4000), in total 30 phenotypic data sets; heritability h2 = 0.5, no censoring, phenotypes simulated from Weibull distribution;
data from randomly selected N = 25, 000 UK Biobank individuals. Effects were assigned to index SNPs from randomly chosen
LD clumps acquired from an LD clumping procedure using r2 = 0.1.
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Figure S13. Densities of the discoveries missed by fastGWA or BayesW. (a) Estimated log p-value
densities for all the fastGWA-non-significant LD clumps and for the fastGWA-non-significant LD clumps that were deemed
significant by BayesW (PPWV ≥ 0.9). LD clumps that were called significant by BayesW tend to be shifted left in the figure
indicating that fGWA might have missed those effects due to insufficient power. (b) Estimated PPWV densities for all the
BayesW-non-significant LD clumps and for the BayesW-non-significant clumps that were deemed significant by fastGWA
(p < 5 · 10−8).
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Figure S14. Precision-recall curves for predicting binary phenotypes (CAD, HBP, T2D) in
Estonian biobank using either BayesR or BayesW model. Both models were trained on UK biobank data
but BayesR model was using binary case-control phenotypes treating them as continuous variables and BayesW model was using
respective time-to-diagnosis phenotypes. Precision-recall curves were drawn separately for females, males and all of the people
(Total).

43

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2021. ; https://doi.org/10.1101/2020.09.04.20188441doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.04.20188441
http://creativecommons.org/licenses/by-nc-nd/4.0/


Time to
menarche

Time to
menopause

1
2

3
4

5

10 15 20 25 40 50 60 70 80

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

Age

D
en

si
ty

Figure S15. Posterior predictive distributions from BayesW for five random individuals from
the Estonian biobank for time-to-menarche and time-to-menopause. BayesW enables calculating
individual posterior predictive distributions, dotted lines indicate the true age at event. For age-at-menarche and age-at-
menopause 94.8% and 92.3% of the true phenotypes from the Estonian biobank lie within 95% credibility intervals of those
predictive distributions.
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Supplementary Note 814

Generating data from Generalised gamma distribution 815

We generate the time-to-event phenotypes Yi that follows Generalised gamma distribution using the following 816

formula: 817

log Yi = µ+ xiβ + cwi − cEwi, (47)
where wi (random error) has the following density:

f(w) = |θ|(θ
−2 exp(θw))

1
θ2 exp(−θ−2 exp(θw))
Γ( 1

θ2 )
.

This specification means that E[log(Yi|µ + xiβ)] = µ + xiβ. We will specify the constant c so that the 818

phenotype log(Yi) would have a fixed heritability h2: 819

h2 = σ2
G

σ2
G + c2V ar(wi)

⇐⇒ c =

√( 1
h2 − 1

) σ2
G

V ar(wi)
. (48)

For each value of θ we calculate the values of E(wi) and V ar(wi). The value θ = 0 is not a valid parameter 820

for the Generalised gamma distribution. Therefore, the notation θ = 0 stands for the limiting distribution in 821

the process θ → 0. It is known that the limiting distribution is the log-normal distribution. If θ = 1 then Yi 822

has a Weibull distribution. 823

Generating data with fixed proportion of censored individuals 824

Suppose that time of censoring is Ci for individual i. The observed event is defined as Ti = min(Yi, Ci), 825

where Yi is the true time of event which in reality can be unobserved. The time of censoring is simulated 826

from uniform distribution Ci ∼ U(0, τ). The parameter of the uniform distribution τ is chosen such that the 827

proportion of censored individuals pτ (that is for whom Ci < Yi) would be some fixed constant. The choice 828

of τ will be dependent on the distribution of Yi. 829

Such generative model guarantees that the censoring times Ci and the event times Yi are independent 830

which is one of the assumptions of our survival model. 831

Therefore, the τ is chosen such that we would get a fixed censoring level pτ :

pτ = EI [P (CI < YI |I = i)],

where I denotes a random individual. 832

Proofs of log-concavity 833

The functions g under investigation are twice differentiable. Therefore, to prove the concavity of g it is 834

sufficient to show that g′′(x) ≤ 0 for every x in the domain of g. 835

Log-concavity for the posterior of α. As constants do not affect concavity, it is sufficient to show
that the following function is concave where α > 0.

g(α) = log p(α|D,µ, β)− const =

(α0+d−1) logα+α[
n∑
i=1

di(log yi−µ−xiβ)−κ0]+e−K
n∑
i=1

[exp(α(log(ai)−µ−xiβ))−exp(α(log(yi)−µ−xiβ))] =

A logα+Bα+ e−K
n∑
i=1

[exp(α(log(ai)− µ− xiβ))− exp(α(log(yi)− µ− xiβ))] =

A logα+Bα+ e−K
n∑
i=1

[exp(αCi)− exp(αDi)]
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We see that A > 0 and as failure or censoring happens after left truncation then Di > Ci for every i. The
second derivative of g is

g′′(α) = − A

α2 + e−K
n∑
i=1

[C2
i exp(αCi)−D2

i exp(αDi)].

As A > 0 and Di > Ci for every i, then g′′(α) < 0 for every α > 0. 836

837

Log-concavity for the posterior of βj. We need to show that the following function is concave 838

g(βj) = log p(βj |D,α, µ, β−j)− const =

− αβj
n∑
i=1

dixij + exp(−K)
n∑
i=1

[exp(α(log(ai)− µ− xiβ))− exp(α(log(yi)− µ− xiβ))]− 1
2σ2

β

β2
j =

−Aβj −Bβ2
j +

n∑
i=1

(Ci −Di) exp{−αxijβj}.

We see that B > 0, and Di > Ci, i ∈ {1, ..., n}. The second derivative is

g′′(βj) = −B + α2
n∑
i=1

(Ci −Di)x2
ij exp(−αxijβj)

and clearly g′′(βj) < 0 for every βj ∈ R. 839

Log-concavity for the posterior of δq. Analogous to the case of βj . 840

Log-concavity for the posterior of µ.

g(µ) = log p(µ|D,α, β)− const = −αµd+

exp(−K)
n∑
i=1

[exp(α(log(ai)− µ− xiβ))− exp(α(log(yi)− µ− xiβ))]− 1
2σ2

µ

µ2 =

−Aµ−Bµ2 +
n∑
i=1

(Ci −Di) exp{−αµ}

We see that B > 0, and Di > Ci, i ∈ {1, ..., n}. The second derivative is

g′′(µ) = −B + α2
n∑
i=1

(Ci −Di) exp(−αµ)

and clearly g′′(µ) < 0 for every µ ∈ R. 841

SNP heritability of age-at-onset on the log and original scale 842

We will derive expressions for SNP heritability on the log-scale and on the original scale given that the 843

phenotype follows a Weibull distribution. The quantity defined here is meaningful in terms of heritability if 844

the appearance of the event is guaranteed for all of the individuals (for example menopause but not diagnosis 845

of T2D). For the events that are not guaranteed to happen we call this quantity pseudo-heritability because 846

then the underlying random variable can be improper. 847

The Weibull data for the model is generated using following expression

log Yi = µ+ xiβ + wi
α

+ K

α
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where wi (random error) comes from the standard extreme value distribution (Gumbel distribution) and K is 848

Euler-Mascheroni constant. This guarantees that Yi has a Weibull distribution, E(log(Yi)|µ+ xiβ) = µ+ xiβ 849

and V ar(log(Yi)|µ+ xiβ) = π2

6α2 . In the following, we denote gi = xiβ and we assume gi ∼ N(0, σ2
G) where 850

σ2
G is the genetic variance of the logarithmed phenotype. 851

We require the variance of log Yi and the corresponding heritability h2
log. Using the law of total variance 852

it is possible to separate the variance components in the following way where the first part represents the 853

genetic variance and second is the error variance. 854

V ar(log Yi) = E[V ar(µ+ gi + wi
α

+ K

α
|wi)] + V ar[E(µ+ gi + wi

α
+ K

α
|wi)] =

σ2
G + V ar(µ+ K

α
+ wi

α
) = σ2

G + π2

6α2 (49)

As the genetic variance is σ2
G we get the log-scale heritability by dividing the genetic variance component 855

by the total variance: 856

h2
log = σ2

G

σ2
G + π2

6α2

. (50)

Using the same idea we decompose the variance of Yi and find the corresponding heritability h2
orig. In 857

addition we need three following results: 858

Firstly we see that [exp(µ+ K
α )]2 will cancel out when calculating the heritability 859

V ar(Yi) = V ar[exp(µ+ gi + wi
α

+ K

α
)] = [exp(µ+ K

α
)]2V ar[exp(gi + wi

α
)]. (51)

Secondly, we note that as gi is normally distributed then exp(gi) has a corresponding log-normal distribution 860

and therefore V ar(exp(gi)) = [exp(σ2
g)− 1] exp(σ2

g) and E(exp(gi)) = exp(σ2
G/2). 861

Thirdly, we see that if wi has standard extreme value distribution then for α > 2

E[exp(2wi
α

)] = Γ(1− 2
α

),

otherwise the expected value is undefined and for α > 1

E[exp(wi
α

)] = Γ(1− 1
α

),

otherwise the expected value is undefined. 862

Using the law of total variance the genetic and error variance can be separated as 863

V ar[exp(gi + wi
α

)] = E[V ar(exp(gi + wi
α

)|wi)] + V ar[E(exp(gi + wi
α

)|wi)]. (52)

The genetic variance component is 864

E[V ar(exp(gi + wi
α

)|wi)] =

E[(exp(wi
α

))2V ar(exp(gi))] = E[exp(2wi
α

)]V ar(exp(gi)) = Γ(1− 2
α

)[exp(σ2
G)− 1] exp(σ2

G). (53)

The error variance component is 865

V ar[E(exp(gi + wi
α

)|wi)] =

V ar[exp(wi
α

)E(exp(gi))] =
(

exp
(
σ2
g

2

))2
V ar

(
exp

(
wi
α

))
= exp(σ2

G)
(

Γ(1− 2
α

)−
(
Γ(1− 1

α
)
)2)

. (54)
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Therefore, by dividing the genetic variance component with the sum of genetic and error variance, we get 866

that the heritability on the original scale, given α > 2, is 867

h2
orig =

Γ(1− 2
α )(exp(σ2

G)− 1)
Γ(1− 2

α ) exp(σ2
G)−

(
Γ(1− 1

α )
)2 . (55)
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