
Kynurenic acid underlies sex-specific immune responses to COVID-19 

 

Authors  

Yuping Cai1, Daniel J. Kim2, Takehiro Takahashi2, David I. Broadhurst3, Shuangge Ma4, Nicholas 

J.W. Rattray5, Arnau Casanovas-Massana6, Benjamin Israelow2,7, Jon Klein2, Carolina Lucas2, 

Tianyang Mao2, Adam J. Moore6, M. Catherine Muenker6, Jieun Oh2, Julio Silva2, Patrick Wong2, 

Yale IMPACT Research team, Albert I. Ko6, Sajid A. Khan8, Akiko Iwasaki2,9, Caroline H. 

Johnson1 

 

1Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 

06510, USA 

2Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, 

USA 

3Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan 

University, Joondalup, 6027, Australia 

4Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA 

5Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow 

G4 0RE, UK 

6Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, 

CT 06510, USA 

7Department of Internal Medicine, Section of Infectious Diseases, Yale University School of 

Medicine, New Haven, CT 06520, USA 

8Department of Surgery, Division of Surgical Oncology, Yale University School of Medicine, New 

Haven, CT 06520, USA 

9Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 8, 2020. ; https://doi.org/10.1101/2020.09.06.20189159doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.09.06.20189159
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract  

Coronavirus disease-2019 (COVID-19) has poorer clinical outcomes in males compared to 

females, and immune responses underlie these sex-related differences in disease trajectory. 

As immune responses are in part regulated by metabolites, we examined whether the serum 

metabolome has sex-specificity for immune responses in COVID-19. In males with COVID-

19, kynurenic acid (KA) and a high KA to kynurenine (K) ratio was positively correlated 

with age, inflammatory cytokines, and chemokines and was negatively correlated with T cell 

responses, revealing that KA production is linked to immune responses in males. Males that 

clinically deteriorated had a higher KA:K ratio than those that stabilized. In females with 

COVID-19, this ratio positively correlated with T cell responses and did not correlate with 

age or clinical severity. KA is known to inhibit glutamate release, and we observed that 

serum glutamate is lower in patients that deteriorate from COVID-19 compared to those 

that stabilize, and correlates with immune responses. Analysis of Genotype-Tissue 

Expression (GTEx) data revealed that expression of kynurenine aminotransferase, which 

regulates KA production, correlates most strongly with cytokine levels and aryl hydrocarbon 

receptor activation in older males. This study reveals that KA has a sex-specific link to 

immune responses and clinical outcomes, in COVID-19 infection. 

 

Main 

Sex-related differences in coronavirus disease-2019 (COVID-19) severity and morbidity exist, 

with the male sex being a risk factor1; male COVID-19 patients have an increased risk of admission 

(OR 1.68, 95%CI=1.45-1.90) and in-hospital mortality (OR 1.87, 95%CI=1.33-2.63)1. It was 

recently shown that hospitalized patients with moderate SARS-CoV-2 infection have elevated 

levels of certain inflammatory cytokines and chemokines, and sex-differences exist in these 

immune responses2. Furthermore, across all ages, female patients at baseline had a more robust T 

cell activation than males. Loss of T cell activation was correlated with older age in males, and 

this poorer T cell response was correlated with worse disease outcomes in males only2. Therefore, 

males and females have clear differences in COVID-19 immune responses that correlate with 

clinical course. 
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Since immune responses are regulated, in part, by metabolites, it is possible that sex-related 

differences in metabolism could affect the host immune response to SARS-CoV-2 infection. For 

instance, specific metabolites are required for macrophage, neutrophil, and T cell functions, 

enhancing glycolytic and fatty acid synthesis pathways in these cells3. Conversely, immune 

stimulation can also elicit metabolic reprograming in cells, thereby affecting disease trajectory by 

altering metabolite abundance4. In addition to the metabolic requirements of the host immune 

system, viruses also require host-derived metabolites and lipids5. Thus, utilization of metabolic 

substrates for viral replication could affect metabolite availability required for immune responses. 

Metabolites correlate with COVID-19  

To address how metabolites might mediate the sex-related differences in COVID-19 immune 

response, we first used an untargeted metabolomics workflow with multivariable logistic 

regression to identify serum metabolites associated with COVID-19. Serum samples were 

collected from COVID-19 patients (n=22 females and n=17 males) on the day of enrollment into 

the IMPACT study at Yale New Haven Hospital (CT, USA). Samples were taken from patients 3-

7 days after hospital admission after confirmation of COVID-19 infection who (1) were not 

immediately triaged to the intensive care unit, (2) had not received tocilizumab, and (3) had not 

received high dose corticosteroids (Cohort A described in Takahashi et al.2). Uninfected healthcare 

worker (HCW) controls (n=10 females and n=10 males) were included in the analysis. There was 

a statistically significant difference in age between the COVID-19 patients and HCWs, which was 

adjusted for in our models (Extended Data Table 1). We first carried out metabolite identification 

on detected signals that were present in the serum metabolome of quality control samples pooled 

from both COVID-19 patients and HCWs. We positively identified 75 metabolites with the highest 

confidence (Extended Data Table 2). Regression analysis revealed that 17 metabolites were 

associated with COVID-19 status after adjustment for age, BMI, sex, and multiple comparisons 

(Extended Data Table 3). Glutamate, cysteine-S-sulfate, palmitoleic acid, arachidonic acid, 

lysophosphatidylethanolamine (LPE) (22:6), uracil and myristic acid were positively associated 

with COVID-19. Whereas glutamine, 3-methylxanthine, tryptophan, proline, citrulline, 

homoserine, 2,3-dihydroxybenzoic acid, lysophosphatidic acid (LPA) (18:2), LPA (20:2), and 

lysophosphatidylcholine (14:0) were negatively associated with COVID-19. 

Metabolites correlate with immune response in a sex-specific manner 
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Next, we examined how the 75 positively identified serum metabolites from both COVID-19 

patients and HCWs might correlate with immune markers (cytokines and chemokines levels in 

plasma, T cells, B cells, NK-T cells, NK cells, monocytes, macrophages, and dendritic cells in 

peripheral blood mononuclear cells (PMBCs)) that were previously measured from the same 

individuals2 (Fig. 1). In COVID-19 patients, we observed 36 correlations between immune 

markers and metabolites with |R|>0.5 and p value<0.05 (Extended Data Fig. 1, Supplementary 

Table 1). However, after stratification by sex, additional correlations were observed between 

metabolites and immune markers for each sex independently, suggesting that sex-specific immune 

responses could be linked to metabolism (Extended Data Fig. 1, Supplementary Table 2).  

Further examination revealed that kynurenic acid (KA), an endogenous ligand of the aryl 

hydrocarbon receptor (AhR) that regulates immunes responses6, had positive correlations with 

immune markers (Fig. 1). Many of these positive correlations were observed in male patients 

including IL1RA, IL6, IL10, TNF, M-CSF, SCF, CX3CL1, CXCL9, CXCL13, CCL1, CCL21, 

and CCL22. In addition, KA in males was negatively associated with T cell number, naïve CD8 T 

cells, CD4 effector memory (CD4Tem), and CD8 effector memory (CD8Tem) T cells (Figs. 2a, 

2b). In female patients, KA was positively associated only with IL12p40, CCL3, CXCL9, and SCF 

(Fig. 2b). In summary, sex-specific differences in correlations between metabolites and immune 

responses were observed in COVID-19 patients, wherein KA had the most prominent connection 

to immune response in males.  

Kynurenic acid is associated with a sex-specific immune response  

To further understand the sex-specific correlation of KA to immune markers, we examined the 

relationship between KA and kynurenine (Fig. 2b). Kynurenine (K) is a product of tryptophan 

metabolism that is converted to KA by kynurenine aminotransferases (KATs), which are encoded 

by KYAT genes (Fig. 2c). Of note, tryptophan was inversely associated with COVID-19 disease, 

as noted in Extended Data Table 3. We examined the ratio of KA:K in patients with COVID-19 

as a surrogate for KAT-mediated production of KA from K7. In males, we observed that a high 

KA:K was positively correlated with IL6, CCL1, CCL21, TNF, M-CSF, NK cells, and CD8 

terminally differentiated effector memory (Temra) T cells (Fig. 2b). A high KA:K was negatively 

correlated with sCD40L, PDGFAA, PDGFAB/BB, monocytes, PD1+TIM3+CD8 T cells, 

CD38+HLA-DR+CD8+ T cells, naïve T cells, and IL6+CD4 T cells (Fig. 2c). Of note, a high 
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KA:K was positively correlated with T cell activation in females, but overall T cell numbers 

showed a negative correlation with the ratio of KA:K in males with COVID-19 (Fig. 2c). 

We also observed that KA:K and KA positively correlated with age in males with COVID-19 (Fig. 

2d, Extended Data Fig. 2a). KA had a low positive correlation to age in females with COVID-

19, but the ratio of KA:K was not correlated (Extended Data Fig. 2a, Fig. 2d). In HCWs, KA 

negatively correlated with age only in males (Extended Data Fig. 2a), while KA:K negatively 

correlated with age in both males and females (Fig. 2d).  

Closer examination of other metabolites involved in K and KA metabolism revealed additional 

correlates of the cellular immune response during COVID-19. The microbial catabolite of 

tryptophan, indole-3-lactic acid8, was positively associated with IL4+CD4 and CD38+HLA-

DR+CD8 cells in males (Extended Data Fig. 2b). In females, indole-3-lactic acid was negatively 

associated with plasma levels of G-CSF, M-CSF, and CXCL10; K was positively associated with 

IL2, CCL15, CXCL13, and SCF; and tryptophan was positively correlated with follicular CD8 T 

cells (Fig. 2b). 

To evaluate whether the sex-specific association between KA and the immune response, which 

was observed in males with COVID-19, is a phenomenon also present in healthy individuals, we 

analyzed tissue-specific expression data from the Genotype-Tissue Expression (GTEx) Project9. 

While KYAT genes generally tended to have more positive correlations with cytokines in males 

compared to females, KYAT3 had particularly stronger correlations in a subset of tissues (including 

the brain and colon), many of which are classically involved in COVID-19 (Extended Data Fig. 

3). Within the brain, we found that these positive correlations with cytokines were specific to older 

males (aged > 60 years old) (Extended Data Fig. 4a). Because KA is a ligand for AhR which 

regulates immune responses and inflammation6, we analyzed AhR activation using a previously 

defined score10 and found that AhR activation correlates most positively with KYAT3 expression 

in older males in brain and muscle, while closely correlating in colon (Extended Data Fig. 4b). 

Correlations in the brain became even more pronounced when analyzing only the AhR target gene 

CYP1B1, which is classically used to follow AhR activation in the brain (Extended Data Fig. 

4c)11. We also show that KYAT3 expression decreases with age in both males and females, which 

is consistent with the decreasing ratios of KA:K observed in HCW control samples (Fig. 2e). In 

summary, these data suggest that older males are uniquely sensitive to increases in KA levels, 
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reacting disproportionately with increased levels of inflammatory cytokines, likely as part of a 

broader AhR activation.   

Kynurenic acid correlates with disease severity in a sex-specific manner 

As KA levels correlate with numerous immune markers, and these immune markers have been 

previously linked disease progression2, we examined whether KA was directly associated with 

disease severity. We used previously defined clinical scores to classify disease severity in COVID-

19 patients as deteriorated (males n = 6, females n = 6) or stabilized (males n = 11, females n =16)2. 

KA levels were not significantly different between deteriorated and stabilized patients, or after 

additional stratification by sex. However, KA was positively correlated with CXCL9, IL6, 

IL12p40, CCL1, CCL3, CCL15, CCL21, CCL27, SCF, M-CSF, and G-CSF in patients that 

deteriorated with COVID-19 (|R|>0.5 and p value<0.05). In stabilized patients, KA was also 

positively correlated with CXCL9 and CX3CL1 (Figs. 3a, b). We further examined whether KA:K 

was correlated with disease severity by sex. Males who deteriorated had a significantly higher 

KA:K compared to those that stabilized, whereas there was no difference in KA:K between 

females based on clinical course (Fig. 3c). Furthermore, a high KA:K was positively correlated 

with CXCL9 and CCL1 in males that deteriorated, but this correlation was not seen in patients that 

stabilized, or in females (Fig. 3d). 

We also examined whether any of the 17 metabolites associated with COVID-19 status (Extended 

Data Table 3) were correlated with disease severity. We observed that only glutamate was 

associated with disease trajectory, and a significantly higher glutamate level was observed in 

stabilized patients compared to those that deteriorated (Fig. 4a); incidentally, KA is a glutamate 

receptor antagonist, thus high KA production could inhibit glutamate release12. Correlation 

analysis revealed that Eotaxin2, IL5, CD4 T cells, CD4rnTreg negatively correlated with glutamate 

in deteriorated patients, whereas IL6, CD8 T cells and GzB+CD8 T cells positively correlate (Fig. 

4b). Further stratification by sex, showed a similar trend where stabilized patients had higher levels 

of glutamate than deteriorated patients within each sex group (Fig. 4a). Correlation analysis of 

immune markers with glutamate by sex revealed a negative correlation to Eotaxin2 and positive 

correlation to IL6, only in females that deteriorate. CD4 T cells negatively correlate and GzB+CD8 

T cells positively correlate with glutamate, only in males that deteriorate. IL5 negatively correlates 

with glutamate in males who deteriorate whereas it negatively correlates with glutamate in females 
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that stabilize. CD8 T cells positively correlate with glutamate in males that deteriorate and 

negatively correlate in males that stabilize (Fig. 4c). These data suggest that low levels of 

glutamate may contribute to poorer disease progression in patients with COVID-19 by regulating 

immune responses. In addition, a high KA:K is correlated to poorer prognosis only in male 

COVID-19 patients. 

Discussion 

Patients with severe COVID-19 disease experience a “cytokine storm”, characterized by the 

elevation of pro-inflammatory cytokines and aggressive inflammatory response13, and sex-

specificity in immune response has been previously reported that could underlie differences in 

clinical outcomes2. Our analysis of serum metabolites from COVID-19 patients, reveals that KA 

and the ratio of KA:K has a strong relationship to sex-specific immune response and clinical 

disease course. Importantly, a previous study revealed that serum metabolites in tryptophan and K 

metabolism correlate with IL6 in a sex-aggregated cohort of COVID-19 patients, but sex-

specificity was not examined14. Our study shows that, in males, a high ratio of KA:K was positively 

correlated with increased levels of cytokines/chemokines and portends clinical deterioration. On 

the other hand, a negative association was observed with Eotaxin, sCD40L, PDGFs, and T cells, 

indicating that males with a high KA:K may have a poorer response to inflammation associated 

with COVID-19, including decreased eosinophil recruitment and T cell activation15,16. A previous 

study showed that PDGFs associate with better prognosis from COVID-19 if the patients have 

lower cytokine levels, supporting the association between a higher KA:K and poorer outcomes in 

males17. In females with COVID-19, a high KA:K positively correlated with a small number of 

cytokines and also T cell activation, but in contradistinction to males, high KA:K was not 

associated with disease severity. These results therefore support the role of K metabolism in sex-

related differences previously reported in immune responses to COVID-192.  

Analyzing gene expression data from GTEx, we found that older males (but not females or younger 

males) appear to have exquisite sensitivity to changes in KYAT gene expression (which we used 

as a proxy for KA levels), whereby natural increases in KYAT expression are met with concomitant 

natural increases in tissue cytokine expression. It is worthwhile to note that the tissues exhibiting 

these sex-specific correlations – including brain, muscle, kidney, and colon – are those that are 
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commonly implicated in symptoms of COVID-19 patients such as anosmia, myalgia, acute kidney 

injury, and gastrointestinal distress.  

Given its role in regulating the immune system and inducing pro-inflammatory cytokines like IL66, 

modulations in the AhR signaling pathway likely account for this differential response among 

older males. In support of this hypothesis, we show that AhR activation is most strongly associated 

with KYAT3 expression in healthy older males. Also, studies have already shown that male rodents 

have a more toxic response to stereotypical AhR agonists like TCDD18. Furthermore, testosterone-

mediated signaling is known to inhibit AhR activity19, and given the decreasing serum levels of 

testosterone seen in older males20, it seems plausible that healthy older males could be naturally 

susceptible to greater AhR activation by endogenous ligands. 

In the context of COVID-19 infection, patients presented with elevated KAT activity (as suggested 

by high KA:K ratios), especially among deteriorating male patients. A recent study has 

demonstrated that a similar AhR induction occurs in the context of murine coronavirus infection, 

inducing IDO-2 expression17. Notably, two major risk factors for COVID-19, type 2 diabetes and 

obesity, have already been shown to have increased AhR ligand activity21,22. Such an influx of 

endogenous AhR ligands, combined with an already elevated susceptibility for AhR activation, 

therefore, would pose a significantly elevated risk of developing a cytokine storm, specifically in 

older male patients.  

The analysis in this study also revealed discrete serum metabolites associated with COVID-19 that 

may account for some of the varying clinical outcomes in these patients. For instance, metabolites 

that were positively associated with COVID-19 (Extended Data Table 3) have inflammatory 

(palmitoleic23 and arachidonic acids24) and neurological (glutamate25 and cysteine-S-sulfate26) 

roles. Metabolites negatively associated with COVID-19, are involved in the urea cycle and nitric 

oxide (NO) synthesis pathway (proline, citrulline, and glutamine27). The NO synthesis pathway 

mediate responses to pro-inflammatory cytokines, macrophages, and neutrophils. Low levels of 

citrulline have been observed in patients with acute respiratory distress syndrome28 and can cause 

NO synthase uncoupling and decreased NO synthesis, which is important for vascular function 

and endothelial cell function29. It was recently suggested that therapeutic NO could be used to 

improve pulmonary vascular function in COVID-1930. Of the 17 metabolites associated with 

COVID-19 status, only glutamate was associated with disease severity. In addition, sex-specific 
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correlations between immune responses and glutamate were observed by disease severity. Males 

that deteriorated from COVID-19 had positive correlations between glutamate and CD8 T cells, 

and a negative correlation with CD4 T cells. A previous study showed that higher innate immune 

cytokine levels are associated with clinical deterioration in females with COVID-192, here we 

observed that IL6 was positively correlated with glutamate only in females that deteriorate. 

Increasing levels of glutamate have also been shown to decrease IL5 secretion31, and we observed 

a negative correlation between glutamate and IL5 in males that deteriorate and also in females that 

stabilize, furthermore, Eotaxin2 negatively correlates with glutamate in females that deteriorate. 

Similar to Eotaxin2, IL5 is also linked to eosinophil activation, therefore in females, glutamate 

may be important in regulating eosinophilia in COVID-19. Incidentally, KA is a glutamate 

receptor antagonist. Glutamate receptors are expressed on the surface of T cells and expression of 

these receptors is triggered by T cell activation32. Glutamate transporters have also been described 

in various immune cells32, therefore, this correlation could be therefore reflective of the actions of 

KA on glutamate levels and also immune cell responses to COVID-1933. 

Because our study did not analyze non-COVID individuals exhibiting similar clinical symptoms 

to COVID-19 patients, it remains a possibility that elevated KA and KA:K may lead to elevated 

cytokines and more broadly mediate the inflammatory symptoms of other pathologies. This 

possibility, however, does not detract from our observations in COVID-19 patients or the potential 

of AhR as a therapeutic target in COVID-19.  

In summary, we have identified serum metabolites associated with COVID-19 clinical course, 

immune response and sex-specific differences. Among these metabolites, perhaps the most salient 

discovery is the identification of KA as a metabolite associated with sex, age, increased disease 

severity, and elevated cytokine and chemokine levels. KA is a ligand for AhR, and when activated, 

AhR is a master regulator of immune responses and inflammation. Sex-specific agonism of AhR 

has yet to be reported in humans, but appears to be a prominent feature in COVID-19 disease, 

potentially underlying the cytokine storm and dampening of T cell activation. In addition, KA is 

known to dampen glutamate release12, and we observed lower levels of glutamate in patients that 

deteriorate compared to those that stabilize. Further investigation into the relevance of KA, KAT, 

and AhR activation in COVID-19 and the role of glutamate in clinical outcomes will be of utmost 

importance, particularly for understanding the sex-specific differences in immune response and 

patient outcomes. As we learn more about the impact of the metabolome on COVID-19 disease 
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course, clinicians may find that modulating metabolite levels, either through enteral nutrition or 

targeted metabolic enzymes may alter disease trajectory. 
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Figures 

Fig. 1 Chord diagram of correlations between metabolites and immune markers in COVID-19 

patients. Spearman correlations > 0.5 or < -0.5 are displayed and with p<0.05.  
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Fig. 2 Tryptophan pathway metabolites and immune responses. a, Correlation between kynurenic acid 

(KA) and immune markers in males with COVID-19 (Pt. M, n=17) and females with COVID-19 (Pt. F, 

n=22). 95% confidence intervals (CIs) for the correlation coefficients are indicated as shaded areas colored 

according to patient sex. b, Tryptophan (T) metabolism pathway schematic. c, Heatmap showing correlation 

between tryptophan metabolites and immune markers in males and females with COVID-19. Spearman 

correlations > 0.5 or < -0.5 are displayed, p<0.05. d, Correlation between age and KA:kynurenine (K) ratio 

in patients with COVID-19 and healthcare workers (HCWs). e, Correlation between KYAT3 (expression 

averaged within each age group) and age in Genotype-Tissue Expression (GTEx) samples (n=729 males, 

1914 females). Metabolites are displayed as ion intensity log10 transformed, cytokines and chemokines are 

pg/mL log10 transformed, T cell subsets are % in CD3 T cells, T cell number are 10^6 cells/mL, PBMCs 

are % in live PBMCs.  
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Fig. 3 Tryptophan metabolites, immune markers and disease severity. a, Heatmap of correlations 

between metabolites in the tryptophan pathway and immune markers by disease severity. Spearman 

correlations > 0.5 or < -0.5 are displayed with a p<0.05. b, Correlation between kynurenic acid (KA) and 

immune markers by disease severity. 95% confidence intervals (CIs) for the correlation coefficients are 

indicated in shaded area colored according to disease progression status. c, Comparison of the ratio of 

KA:kynurenine (K) level by disease severity stratified by sex. Stabilized (females n=16, males =11), 

deteriorated (females n = 6, males n = 6). Nonparametric Kruskal–Wallis rank sum test with pairwise 

Wilcoxon Mann-Whitney U test, p values adjusted for false discovery rate (Benjamini-Hochberg). 

**p<0.01, NS. not significant. d, Correlation between the ratio of KA:kynurenine (K) and CXCL9 and 

CCL1 stratified by disease severity and sex. Metabolites are displayed as ion intensity log10 transformed, 

cytokines and chemokines are pg/mL log10 transformed, T cell subsets are % in CD3 T cells, T cell number 

are 10^6 cells/mL, PBMCs are % in live PBMCs. 
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Fig. 4. Glutamate, immune markers and disease severity. a, Comparison of glutamate levels in stablized 

patients and deteriorated patients (left panel) and stratified by sex (right panel). Stabilized patients (n=27), 

deteriorated patients (n=12), stabilized females (n=16), deteriorated females (n = 6), stabilized males (n = 

11), and deteriorated males (n = 6). Nonparametric Kruskal–Wallis rank sum test with pairwise Wilcoxon 

Mann-Whitney U test, p values adjusted for false discovery rates (FDR) (Benjamini-Hochberg). **p<0.01, 

NS. not significant. b, Correlation between glutamate and Eotaxin2, IL5, IL6, CD4 T cells, CD4rnTreg 

cells, CD8 T cells and GzB+CD8 cells in stabilized patients and deteriorated patients. c, Correlation 

between glutamate and immune markers eotaxin2, IL5, IL6, CD4 T cells, CD8 T cells, GzB+CD8 cells, 

and IL6 in stabilized patients and deteriorated patients stratified by sex. 95% confidence intervals (CIs) for 

the correlation coefficients were indicated as the shadowed area colored according to progression status. 

Metabolites are displayed as ion intensity log10 transformed, cytokines and chemokines are pg/mL log10 

transformed, T cell subsets are % in CD3 T cells, T cell number are 10^6 cells/mL, PBMCs are % in live 

PBMCs. 
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Methods  

Clinical biospecimens 

Serum samples were collected from patients enrolled in the IMPACT study from Cohort A as 

described and stored at -20°C2. Cohort A consisted of 39 patients aged ≥ 18 years old that tested 

positive for SARS-CoV-2 by RT-PCR from nasopharyngeal and/or oropharyngeal swabs (females 

n=22, males n=17)34. Intersex individuals were not represented in this study. Prior to the serum 

collection, these patients were not in an intensive care unit, had not received tocilizumab and had 

not received high dose corticosteroids. Patients on hydroxychloroquine (n=29) and remdesivir 

(n=3) were not excluded. For control groups, we used 20 serum samples collected from COVID-

19 uninfected health care workers working at the Yale-New Haven Hospital between April 2nd and 

April 28th 2020 who enrolled in the IMPACT study (females n=10, males n=10). The detailed 

demographics and clinical characteristics of these study participants and controls are shown in 

Extended Data Table 1.   

Immune markers and analysis of disease severity 

An immune panel of markers for each patient was obtained and published in a previous study2. 

The patients were assessed with a locally developed clinical scoring system for disease severity17; 

1: admitted and observed without supplemental oxygen, 2: required ≤ 3L supplemental oxygen via 

nasal canal to maintain SpO2 > 92%, 3: received tocilizumab, which per hospital treatment 

protocol required that the patient to require > 3L supplemental oxygen to maintain SpO2 > 92%, 

or, required > 2L supplemental oxygen to maintain SpO2 > 92% and had a high sensitivity C-

reactive protein (CRP) > 70. 4: the patient required intensive care unit (ICU) level care, 5: the 

patient required intubation and mechanical ventilation. In relation to the WHO scoring, our clinical 

score 1, 2/3, 4, 5 largely correspond to WHO score 3, 4, 5, 6/7, respectively35. Detailed 

demographic information is available from2. For the patients who are 90-year-old or older, their 

ages were protected health information, and 90 was put as the surrogate value for the analyses. 

Individuals with active chemotherapy against cancers, pregnant patients, patients with background 

hematological abnormalities, patients with autoimmune diseases and patients with a history of 

organ transplantation and on immunosuppressive agents, were excluded from this study. 
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Serum metabolite extraction 

Serum samples (50 µL) were thawed and deactivated for COVID-19 in 150 µL acetone:methanol 

(50:50 v/v) for 60 min at room temperature. Control samples were treated in the exactly the same 

manner. To precipitate proteins, the samples were incubated for 2 hours at −20 °C, followed by 

centrifugation at 13,000 rpm (15,000× g) and 4 °C for 15 min. The resulting supernatant was 

removed and evaporated to dryness for 12 h using a vacuum concentrator (Thermo Fisher 

Scientific, Waltham, MA, USA). The dry extracts were then reconstituted in 100 µL of ACN:H2O 

(1:1, v/v), sonicated for 10 min, and centrifuged at 13,000 rpm (15,000× g) and 4 °C for 15 min, 

to remove insoluble debris. The supernatants were transferred to ultra performance liquid 

chromatography (UPLC) autosampler vials (Thermo Scientific, Waltham, MA, USA). A pooled 

quality control (QC) sample was prepared by mixing 5 μL of extracted solution from each sample 

into a similar UPLC vial. All the vials were then capped and stored at −80 °C prior to UPLC-mass 

spectrometry (MS) analysis. 

UPLC-MS-based metabolomics analysis 

To comprehensively analyze the serum metabolome, both hydrophilic interaction chromatography 

(HILIC)-MS and reverse phase liquid chromatography (RPLC)-MS approaches were used. A 

UPLC system (H-Class ACQUITY, Waters Corporation, Milford, MA, USA), coupled to a 

quadrupole time-of flight (QTOF) (Xevo G2-XS QTOF, Waters Corporation, Milford, MA, USA), 

was used for MS data acquisition. A Waters ACQUITY UPLC BEH Amide column (particle size, 

1.7 μm; 100 mm (length) × 2.1 mm (i.d.)) and Waters ACQUITY UPLC BEH C18 column 

(particle size, 1.7 μm; 100 mm (length) × 2.1 mm (i.d.)) were used for the UPLC-based separation 

of metabolites. The column temperature was kept at 25 °C for HILIC-MS analysis and 30 °C for 

RPLC-MS analysis. The solvent flow rate was 0.5 mL/min, and the sample injection volume was 

4 μL for HILIC-MS and RPLC in positive mode analysis, 2 μL for HILIC-MS in negative mode, 

and 6 μL for RPLC-MS negative mode. For HILIC-MS analysis, mobile phase A was 25 mM 

NH4OH and 25 mM NH4OAc in water, while the mobile phase B was acetonitrile, for both 

electrospray ionization (ESI), positive and negative mode, respectively. The linear gradient was 

set as follows: 0~0.5 min: 95% B; 0.5~7 min: 95% B to 65% B; 7~8 min: 65% B to 40% B; 8~9 

min: 40% B; 9~9.1 min: 40% B to 95% B; 9.1~12 min: 95% B. For RPLC-MS analysis, the mobile 
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phases A was 0.1% formic acid in H2O, while the mobile phases B was 0.1% formic acid in 

acetonitrile, respectively, for ESI+. Mobile phase A was 5 mM NH4OAc in H2O, while the mobile 

phases B was acetonitrile for ESI−. The linear gradient was set as follows: 0~1 min: 1% B; 1~8 

min: 1% B to 100% B; 8~10 min: 100% B; 10~10.1 min: 100% B to 1% B; 10.1~12 min: 1% B. 

Pooled samples were analyzed every eight injections during the UPLC-MS analysis to monitor the 

stability of the data acquisition and used for subsequent data normalization. 

QTOF scan data (300 ms/scan; mass scan range 50–1000 Da) were initially acquired for each 

biological sample for metabolite quantification. Then, both DDA (data-dependent acquisition) data 

(QTOF scan time: 100 ms/scan, MSMS scan time 500 ms/scan, collision energy 20 eV, top 5 most 

intense ions were selected for fragmentation, exclude former target ions (4 s after 2 occurrences)) 

and MSE data (low energy scan: 300 ms/scan, collision energy 6 eV; high energy scan: 300 

ms/scan, collision energy 20 eV, mass scan range 25–1000 Da) were acquired for QC samples to 

enable metabolite identification. ESI source parameters on the Xevo GS-XS QTOF were set as the 

following: capillary voltage 1.8 kV, sampling cone 30 V, source temperature 100 °C, desolvation 

temperature 550 °C, cone gas flow 40 L/h, desolvation gas flow 900 L/h. 

UPLC-MS data processing 

The raw MS data (.raw) were converted to mzML files using ProteoWizard MSConvert (version 

3.0.6150, www.proteowizard.sourceforge.net/). The parameters of min SNR and min peak spacing 

were set as 0.1 for peak picking in ProteoWizard. The files were then processed in R (version 

3.4.3), using the XCMS package for feature detection, retention time correction, and alignment36. 

The XCMS processing parameters were optimized and set as follows: mass accuracy for peak 

detection = 20 ppm; peak width c = (2, 30); snthresh = 6; bw = 10; mzwid = 0.015; minfrac = 0.5. 

The CAMERA package was used for subsequent peak annotation. The resulting data were 

normalized using the support vector regression algorithm in R, to remove an unwanted system 

error that occurred among intra- and inter-batches37. Initial metabolite identification was 

performed using the MetDNA algorithm38. Metabolites were further identified by matching 

retention time with an in-house metabolite standard library. In addition, metabolite identification 

was carried out by matching accurate mass and experimental MS/MS data against online databases 

(METLIN and HMDB). 
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Multivariable logistic regression 

Multivariable logistic regression analyses were performed on the R platform (version 3.4.3) using 

an R function “glm ()” The model for each metabolite was adjusted for age, BMI and sex to 

discover metabolites associated with COVID-19 disease. Levels of metabolites are log10 

transformed ion intensity. p values were adjusted for multiple testing with Benjamini-Hochberg-

based FDR using an R function “p.adjust ()”.  

Spearman correlation analysis 

Spearman correlation analyses were performed on R platform (version 4.0.2) using an R package 

“psych”. Correlation coefficient R and p values were calculated using an R function “corr.test ()” 

Using previously defined interpretations of correlation coefficients, we used an |R| value of 0.5-

1.0 to mark moderate-to-very high correlations39. Heatmaps were plotted using an R package 

“pheatmap”. 

Chord diagram  

The chord diagrams were plotted on R platform (version 4.0.2) using an R package “circlize”. 

Correlations between metabolites and immune responses with R > 0.5 or < -0.5, and p value <0.05 

were plotted out. 

Gene expression analysis 

Gene TPMs, subject phenotypes, and sample attributes data were downloaded from GTEX Portal 

(gtexportal.org, accession phs000424.v8.p2). After TPM values were transformed as 

log10(TPM+1), composite expression scores were calculated by adding individual expression 

values together. Patients who were 60 years or older were coded as “Older,” while patients 30 

years or younger were coded as “Young.” After loading the expression data into R with the CePa 

package, Pearson correlation coefficients were calculated for pairs of target genes within each 

tissue of each sex, and data was visualized as a heatmap displaying the difference between male 

and female coefficients using the ComplexHeatmap package. Male-specific correlations were 

validated by scatter plots and linear regressions, which were generated using the ggplot2 R 

package. 
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Data Availability and Code Availability 

Untargeted metabolomics data, metabolomics protocols, and code is available on the 

MetaboLights data repository accession number MTBLS1987 

(https://www.ebi.ac.uk/metabolights/). Clinical and immunological data is available from previous 

publication2. Data processing R code is available in Supplementary Information. 
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Boards (FWA00002571, Protocol ID. 2000027690). Informed consent was obtained from all 

enrolled patients and healthcare workers. 
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Additional Information 

Supplementary Information 

This file contains Supplementary Table 1. Correlations between metabolites and immune markers 

in patients with COVID-19. Supplementary Table 2. Correlations between metabolites and 

immune markers in healthcare workers. The two tables include the calculated spearman correlation 

coefficient and p value. Supplementary Information contains data processing code for use in R.  
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Extended Data Figures 

 

 

Extended Data Figure 1. Scatter plots of correlation coefficient against -log10 (p value) between 

metabolites and immune markers in all patients with COVID-19, males with COVID-19, and females with 

COVID-19, respectively. 
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Extended Data Figure 2. Correlations between metabolites and immune markers in patients with 

COVID-19 and healthcare workers stratified by sex. a, Correlation between age and kynurenic acid 

levels in patients with COVID-19 (left) and HCWs (right). b, Correlation between indole-3-lactic acid and 

IL4+CD4, CD38+HLA-DR+CD8, G-CSF, M-CSF and CXCL10 in males with COVID-19 and females 

with COVID-19, respectively. 95% confidence intervals (CIs) for the correlation coefficients were 

indicated as the shadowed area colored according to sex. 
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Extended Data Figure 3. Correlations between KYAT gene expression and cytokines positively 

associated with either high KA or KA:K. Pearson correlation coefficients were calculated for gene pairs 

within the indicated tissue for each sex using GTEx data. Differences in the correlations (RMale–RFemale) are 

presented as heatmaps, with red indicating a more positive correlation in males and blue indicating a more 

positive correlation in females (n=729 males, 1914 females). 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 8, 2020. ; https://doi.org/10.1101/2020.09.06.20189159doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.06.20189159
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Extended Data Figure 4. Correlations between KYAT3, immune markers, and AhR activation in 

younger and older individuals, stratified by sex. a, Correlations between KYAT3 expression and IL6, 

IL10, CXCL9, TNF, and M-CSF in GTEx brain samples. b, Correlations between KYAT3 and AhR 

activation score in brain, muscle and colon. c, Correlation between KYAT3 and classic AhR target gene 

CYP1B1 in brain.  
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Extended Data table titles and footnotes 

Extended Data Table 1. Demographic and clinical characteristics of patients with COVID-19 and 

healthcare workers 

 

 Patients with COVID-19 (n=39) Healthcare workers (n=20) 

 Female n (%) Male n (%) Female n (%) Male n (%) 

Total  22 (56) 17 (44) 10 (50) 10 (50) 

Ethnicity*     

Black/African American 4 5 0 1 

White  13 9 10 7 

Hispanic  4 2 0 1 

BMI*     

< 18  1 0 0 0 

18-24.9 6 4 3 3 

25 – 29.9 5 7 4 2 

30 – 34.9 8 3 0 3 

≥35  2 3 3 2 

Age – mean (SD)  60.2 (16.6) 59.2 (17.8) 45.7 (8.9) § 44.2 (14.9) § 

Days from symptom onset – mean (SD) 12.3 (9.0) 9.2 (5.5) N/A N/A 

Clinical Score – mean (SD)  1.27 (0.46) 1.47 (0.62) N/A N/A 

On Hydroxychloroquine† 18 (81.8) 11 (64.7) N/A N/A 

On Remdesivir† 2 (9.1) 1 (5.9) N/A N/A 

N/A, not available for the data 

*Data included when available 

†Status at first sample collection 

§Student’s t-test, p<0.05, comparing with patients with COVID-19 
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Extended Data Table 2. Positively identified metabolites from both COVID-19 patients and healthcare 

workers. 

m/z; mass to charge ratio, RT; retention time, MSI; metabolomics standards initiative, HILIC; hydrophilic 

interaction liquid chromatography, RPLC; reversed phase liquid chromatography, LPA; lysophosphatidic 

acid, LPE; lysophosphatidylethanolamine, LPC; lysophosphatidylcholine, GCDCA-7-sulfate; 

Name m/z 
RT 

(seconds) 
Analysis 
mode* 

MSI Name m/z 
RT 

(seconds) 
Analysis 

mode 
MSI 

Homoserine 84.0445 351.66 HILIC (+) 1 Uridine 245.0760 150.07 HILIC (+) 1 

Lactate 89.0230 209.01 HILIC (-) 1 Palmitoleic acid 253.2169 430.09 RPLC (-) 1 

Sarcosine 90.0560 324.69 HILIC (+) 1 Inosine 267.0725 198.95 HILIC (-) 1 

Uracil 111.0194 82.96 HILIC (-) 1 Aspartame 275.1031 172.78 HILIC (-) 1 

Creatinine 112.0511 158.32 HILIC (-) 1 Guanosine 282.0830 242.79 HILIC (-) 1 

Proline 116.0703 286.25 HILIC (+) 1 Xanthosine 283.0677 294.85 HILIC (-) 1 

Succinate 117.0179 374.18 HILIC (-) 1 Deoxyguanosine 288.0766 244.36 HILIC (-) 1 

Betaine 118.0875 252.35 HILIC (+) 1 Methylguanosine 296.1032 175.93 HILIC (-) 1 

Taurine 124.0067 274.34 HILIC (-) 1 Sphingosine 300.2892 345.32 RPLC (+) 1 

Leucine 130.0870 254.11 HILIC (-) 1 Linoleic acid 301.2151 446.65 RPLC (-) 1 

Aspartate 132.0296 394.38 HILIC (-) 1 Arachidonic acid 303.2329 438.21 RPLC (-) 1 

Malate 133.0136 392.16 HILIC (-) 1 Dimethylguanosine 310.1149 177.18 HILIC (-) 1 

Homocysteine 134.0281 276.82 HILIC (-) 1 Palmitoylcarnitine 400.3411 451.71 RPLC (+) 1 

Hypoxanthine 135.0313 155.80 HILIC (-) 1 LPA (18:2) 433.2346 391.19 RPLC (-) 1 

Glutamate 146.0443 384.25 HILIC (-) 1 LPE (16:1) 450.2629 440.03 RPLC (-) 1 

Glutamine 147.0761 351.55 HILIC (+) 1 LPA (20:4) 457.2336 390.28 RPLC (-) 1 

Methionine 150.0582 262.92 HILIC (+) 1 LPA (20:2) 461.2640 421.74 RPLC (-) 1 

Creatine 152.0431 324.68 HILIC (-) 1 LPE (P18:0) 464.3127 469.59 RPLC (-) 1 

2,3-Dihydroxybenzoic acid 153.0191 24.34 HILIC (-) 1 LPC (14:1) 466.2936 338.73 RPLC (+) 1 

Carnitine 162.1138 329.69 HILIC (+) 1 LPC (14:0) 468.3080 366.14 RPLC (+) 1 

Phenylalanine 164.0712 243.41 HILIC (-) 1 LPE (16:0) 476.2734 410.72 RPLC (+) 1 

3-Methylxanthine 165.0422 117.62 HILIC (-) 1 LPE (18:2) 478.2940 390.22 RPLC (+) 1 

Acetyl-aspartic acid 174.0392 385.51 HILIC (-) 1 LPE (18:1) 480.3083 420.86 RPLC (+) 1 

Citrulline 174.0878 368.82 HILIC (-) 1 LPE (18:0) 482.3233 459.26 RPLC (+) 1 

Arginine 175.1193 481.99 HILIC (+) 1 LPA (22:5) 483.2481 390.83 RPLC (-) 1 

Formylmethionine 176.0382 181.34 HILIC (-) 1 LPE (20:3) 502.2914 405.06 RPLC (-) 1 

Hydroxyphenyllactic acid 181.0499 175.93 HILIC (-) 1 LPE (20:4) 502.2923 389.41 RPLC (+) 1 

Tyrosine 182.0801 279.34 HILIC (+) 1 LPC (16:1) 516.3054 377.56 RPLC (+) 1 

Kynurenic acid 188.0341 175.14 HILIC (-) 1 LPC (18:3) 518.3234 368.19 RPLC (+) 1 

Indole-3-lactic acid 188.0699 158.15 RPLC (+) 1 LPC (18:0) 524.3717 451.71 RPLC (+) 1 

Kynurenine 190.0497 242.16 HILIC (-) 1 LPE (22:6) 526.2919 387.06 RPLC (+) 1 

Glucuronic acid 193.0352 375.13 HILIC (-) 1 GCDCA-7-sulfate 528.2630 225.13 HILIC (-) 1 

Cysteine-S-sulfate 199.9688 287.69 HILIC (-) 1 LPC (20:4) 544.3391 391.22 RPLC (+) 1 

Hydroxykynurenamine 203.0815 222.28 HILIC (+) 1 LPC (20:3) 546.3547 460.98 RPLC (+) 1 

Acetylcarnitine 204.1230 284.99 HILIC (+) 1 LPC (22:6) 568.3403 388.33 RPLC (+) 1 

Tryptophan 205.0965 239.27 HILIC (+) 1 LPC (22:5) 592.3366 399.69 RPLC (+) 1 

Myristic acid 227.2002 415.44 RPLC (-) 1 PE (38:6) 762.5074 512.62 RPLC (-) 1 

Pseudouridine 243.0622 224.53 HILIC (-) 1      
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glycochenodeoxycholate 7-suleate, PE; phosphatidylcholine.* Liquid chromatography-mass spectrometry 

analysis mode, detailing chromatography type (HILIC or RPLC) and electrospray ionization mode (+) or 

(-). MSI: metabolomics standards initiative level of metabolite identification41. 
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Extended Data Table 3. Multivariable logistic regression analysis of metabolite levels from healthcare 

workers and COVID-19 patients.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Models were adjusted by age, sex, and BMI. q-values Benjamini-Hochberg adjusted p value. LPA; 

lysophosphatidic acid, LPE; lysophosphatidylethanolamine, LPC; lysophosphatidylcholine 

 

 

Metabolite β p value q value 

Glutamate 6.43 0.0018 0.0228 

Glutamine -12.1 0.0014 0.0228 

Cysteine-S-sulfate 3.67 0.0014 0.0228 

3-Methylxanthine -2.10 0.0015 0.0228 

Palmitoleic acid 4.72 0.0008 0.0228 

Arachidonic acid 6.35 0.0015 0.0228 

Tryptophan -5.04 0.0044 0.0296 

Proline -5.77 0.0049 0.0296 

Citrulline -3.82 0.0051 0.0296 

Homoserine -6.43 0.0041 0.0296 

2,3-Dihydroxybenzoic acid -3.11 0.0032 0.0296 

LPA (18:2) -4.79 0.0050 0.0296 

LPE (22:6) 4.74 0.0040 0.0296 

LPA (20:2) -4.40 0.0058 0.0313 

Uracil 5.04 0.0095 0.0467 

Myristic acid 3.88 0.0100 0.0467 

LPC (14:0) -7.23 0.0106 0.0467 
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