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We model and calculate the fraction of infected population necessary for herd immunity to occur,
taking into account the heterogeneity in infectiousness and susceptibility, as well as the correlation
between the two parameters. We show that these cause the reproduction number to decrease with
progression, and consequently have a drastic effect on the estimate of the necessary percentage of
the population that has to contract the disease for herd immunity to be reached. We discuss the
implications to COVID-19 and other pandemics.
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I. INTRODUCTION

The COVID-19 pandemic has had a dramatic impact
on the world in recent months, setting in motion a huge
effort in diverse research disciplines in an attempt to un-
derstand the nature of the disease and the dynamics of
the virus’s spread. A question of utmost importance in
this context is how many infected individuals it takes to
reach herd immunity, where by herd immunity one means
that the virus is unable to find enough susceptible hosts
to continue its spread and consequently the disease fades
out.

Herd immunity is typically expected to be reached
when a large fraction of the population becomes im-
mune to the disease and the effective reproduction num-
ber (which quantifies the spread) drops below one. The
standard estimate for the necessary fraction for herd im-
munity to be reached is about 60% of the susceptible
individuals. This estimate, however, assumes a homoge-
neous structure of the epidemic spread network, where
both the infectiousness and susceptibility of individuals
are assumed to be homogeneously distributed.

It is well recognized, however, that the epidemic spread
network is not homogeneous but rather heterogeneous,
with distinct people being infectious (likely to infect
others) and susceptible (likely to become infected them-
selves) to different degrees (for reviews see e.g. [1, 2]).
The class of individuals with very high secondary infec-
tion rates are referred to as superspreaders [3]. An es-
timate for the COVID-19 pandemic [4] asserts that be-
tween 5% to 10% of the infected individuals cause 80%
of the secondary infections.

The reasons that different people are infectious and
susceptible to different degrees may be, for instance, in-
creased contact with others that can increase both pa-
rameters, or hygiene and better protective equipment
that can decrease both. Thus, infectiousness and sus-
ceptibility are potentially highly correlated. A correla-
tion between infectiousness and susceptibility can signif-
icantly affect our estimate for the percentage of the pop-
ulation that must contract the disease for herd immunity
to be reached.

If more infectious people are also more susceptible,

then our initial estimates of the basic reproduction num-
ber (the mean value of secondary infections caused by
an infected individual) will be biased leading us to be-
lieve that it is much larger than it really is—we are
oversampling the infectiousness of more susceptible peo-
ple. Deviations in the susceptibility can lead to us seeing
an early spike in the number of cases as the susceptible
are infected, with a sudden drop later on as the disease
spreads to less susceptible populations. Furthermore, if
more infectious people are also more susceptible, then
they will also be infected and develop natural immunity
much sooner.

Our aim in this work is to model and calculate the
fraction of infected in the population that gives rise to
herd immunity while taking into account the heterogene-
ity in infectiousness and susceptibility, their correlation
and the superspreading effect.

In order to analyze the spread of the disease we assign
to each individual a a susceptibility parameter S(a) and
an infectiousness parameter I(a) drawn from some prob-
ability distributions. S(a) and I(a) quantify how likely
a is to be infected and infect others, respectively. The
probability that a will transmit the disease to b—should
a be infected—is I(a)× S(b) and this is the effective pa-
rameter in our analysis. The product of I and S scales
like the inverse of the susceptible population, where typ-
ically S scales like its inverse and I is independent of
it.

We measure the progress of the disease as a function of
the number of individuals who contracted it. This is the
natural governing parameter when considering questions
of the type: will the disease fade out as a function of the
fraction of the population that got infected. We begin
the evolution process of the disease at step n = 0 with
a certain number of infected individuals and increase the
number of infected by one at each step. The initial num-
ber of infected individuals does not influence the analysis
and we will take it to be one. Our calculation is done by
taking an expectation value over all possible scenarios of
infection.

We model the system for any distribution of I, S, and
present a general formula for the behaviour of heteroge-
neous diseases. We also consider the special case where
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each individual is infectious and susceptible to the same
degree, that is, where the distributions from which I and
S are drawn are highly correlated. We derive a simple
analytical result when the infectiousness and susceptibil-
ity parameters are, in particular, chosen from a Gamma
distribution with scaling and shape parameters k and θ,
respectively—a distribution previously attributed to the
infectiousness of COVID-2 [3].

Consider first the general case. Define the average con-
ditional infectiousness ϕ(s):

ϕ(s)
def
= E

S(a)=s
[I(a)] , (I.1)

and the normalized susceptibility distribution at the step
n in the evolution of the disease ρ(s, n):

ρ(s, n)
def
= Pr [(S(a) = s) | a is healthy after n steps] .

(I.2)
Denote the susceptibility distribution at the beginning

by ρ(s) = ρ(s, 0) . The average conditional infectiousness
(I.1) is independent of the number of infected individuals
while the susceptibility distribution does depend on it—
individuals with higher susceptibility are more likely to
be chosen first, hence their rate decreases as the process
progresses. We will prove the following general claim
about the fraction of the population necessary to reach
herd immunity:

Claim I (General Case): for any δ when

1−
∫
ρ(σ)exp(−δσ)dσ (I.3)

fraction of the population is infected, the effective repro-
duction number will be reduced by a factor of∫

ϕ(σ)ρ(σ)σ exp (−δσ) dσ∫
ϕ(σ)ρ(σ)σdσ

. (I.4)

The threshold for herd immunity is when the value of the
effective reproduction number is 1.

Consider next the particular case of the Gamma dis-
tribution with shape and scale parameters k and θ, re-
spectively. We will prove the following claim:

Claim II (Gamma distribution): Under the above as-
sumptions, herd immunity will be reached when

ε = 1−R
−k

(k+2) (I.5)

fraction of the population is infected. R is the reproduc-
tion number at the beginning of the disease spread and k
is the shape (spread) parameter of the Gamma distribu-
tion.

Note, that the necessary fraction of the population
(I.5) does not depend on the scale parameter of the dis-
tribution θ. Substituting the estimates for COVID-19:
R ≈ 3 and k ≈ 0.1 [5, 6], we get ε ≈ 5%. This result
is far more optimistic than the recent estimate [7] that

requires about 40% of the population to contract the dis-
ease before herd immunity is achieved. It also suggests a
possible explanation for the observation that the COVID-
19 pandemic appears to be slowing down despite the rel-
atively low number of infections so far [4]. The Gamma
distribution has been used in order to model the data
of COVID-2 with k = 0.19 [3] and in this case we get
ε ≈ 9%.

The letter is organized as follows. In section II we will
define precisely the effective reproduction number that
we will use in our analysis. In section III we will study
the dynamics of the disease spread and prove claim I. In
section IV we will prove claim II and study numerically
claim I for various types of infection and susceptibility
distributions. Section V is devoted to a discussion.

II. EFFECTIVE REPRODUCTION NUMBER

Consider the effective value of the reproduction num-
ber at step n in the evolution of the pandemic which
we will denote by R(n), R = R(0). We define it as the
expectation value of secondary infections conditional on
the individuals that have been infected. Denote by Λn
the distribution over the nth individual to be infected
(namely, linear in susceptibility at that stage)—we thus
have:

R(n)
def
= E

a∼Λn

[number of people a infects] . (II.1)

Mathematically we have:

R(n) = E
a∼Λn

I(a)
∑
b 6=a

S(b)

 =

=
∑
a

S(a)∑
a′ S(a′)

I(a)
∑
b 6=a

S(b) =

'
∑
a

S(a)I(a) ,

(II.2)

where the summation over a in the last two lines is on the
healthy individuals at step n−1 and in the approximation
at the last line we added the infected individual a to the
summation. Note, that since I ×S scales like the inverse
of the susceptible population at the nth step N(n), R
(II.2) does not scale with it. Using (I.1) and (I.2) we get:

R(n) = N(n)

∫
ϕ(s)ρ(s, n)sds . (II.3)

We denote the susceptible population at the beginning
by N = N(0).

In the next section we will study the dynamics of the
spread of the disease and how the effective reproduction
number R(n) depends on the number of infected individ-
ual.
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III. DISEASE SPREAD DYNAMICS

The process starts at step n = 0 with one infected
individual. At each step that someone is infected, the
probability that a was infected is proportional to S(a).
Thus,

Pr [a is healthy at step n] =

=

(
1− S(a)∑

b : b is healthy at step n−1 S(b)

)
·

· Pr [a is healthy at step n− 1] .

(III.1)

We therefore get:

log( Pr (a is healthy at step n))−
− log (Pr (a is healthy at step n− 1)) =

= − S(a)

N(n− 1)Eb∼Λn−1
[S(b)]

−O

( S(a)∑
b|b is healthy at step n−1 S(b)

)2


= −α(n)S(a)−O

((
maxb S(b)

NEbS(b)

)2
)
,

(III.2)
Where

α(n) =
1∑

b|b is healthy at step n−1 S(b)
. (III.3)

Since at each step someone is infected, there can be at
most N steps:

log(Pr [a is healthy at step n]) =

= −

∑
τ≤n

α(τ)

S(a)−O

((
maxb S(b)

NEbS(b)

)2

n

)
=

= −

∑
τ≤n

α(τ)

S(a)−O

((
maxb S(b)

EbS(b)

)2
n

N2

)
.

(III.4)

Therefore, as long as maxb S(b)
EbS(b) �

√
N we have:

log(Pr [a is healthy at step n]) ≈

≈ −

∑
τ≤n

α(τ)

S(a) .
(III.5)

Denote δ(n) =
∑
τ≤n α(τ), we get a relation between

the susceptibility distributions at steps n and zero:

ρ(s, n)

ρ(s, 0)
=

exp(−δ(n)s)∫
ρ(σ, 0)exp(−δ(n)σ)dσ

, (III.6)

between the susceptible populations:

N(n)

N(0)
=

(∫
ρ(s, 0)exp(−δ(n)s)ds

)
, (III.7)

and between the effective reproduction numbers (II.3):

R(n)

R(0)
=

∫
ϕ(s)ρ(s, 0)exp(−δ(n)s)sds∫

ϕ(s)ρ(s, 0)sds
. (III.8)

This proves Claim I with (I.3) being 1− N(n)
N(0) .

We can derive the condition for reaching herd immu-
nity at step nherd by:

1 = R(nherd) = N(nherd)

∫
ϕ(σ)ρ(σ, nend)σdσ =

= N(nherd)

∫
ϕ(σ)ρ(σ, 0) exp(−δ(nherd)σ)σdσ ,

(III.9)
where N(nherd) is related to N(n = 0) by (III.7).

IV. HERD IMMUNITY

Consider first the particular case where the infectious-
ness and susceptibility I ∼ S and both are drawn from a
Gamma distribution:

ρk,θ(s, 0) =
1

Γ(k)θk
sk−1 exp

(
−s
θ

)
, (IV.1)

where k and θ are shape and scale parameters of the
distribution at n = 0. Using (III.6) we get:

ρk,θ(s, n) = ρk,θ(n)(s, 0), θ(n) =
θ

1 + θδ(n)
. (IV.2)

Thus, while the shape of the distribution does not change
during the evolution of the disease its scale does.

We denote β(n) = θ(n)
θ , then using (III.7) and (III.8)

we get:

N(n)

N(0)
= β(n)k,

R(n)

R(0)
=

(
N(n)

N(0)

) k+2
k

, (IV.3)

where

R(n) = N(n)

∫
ρ(s, n)s2ds =

(
k2 + k

)
θ2(n)N(n) .

(IV.4)
Herd immunity is reached when R(n) drops below one

and this happens when

N(n)

N(0)
= R

−k
k+2 , (IV.5)

thus proving claim II.
Calculating the fraction of the population ε leading to

herd immunity, following claim I, can be carried out an-
alytically for the case of a Gamma distribution, while
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for general distributions it has do be performed numer-
ically. In figures 1 and 2 we plot ε as a function of the
coefficient of variation, i.e. the ratio of the standard de-
viation and the mean, Cv = σ

µ . We plot the results for

three distributions: Gamma, Folded Normal (Truncated
Gaussian) and Power Law when R equals three and six,
respectively.

We set ϕ(s) = s, hence R is the second moment of
the distribution. We can see that as Cv approaches 0,
the distributions behave similarly. However, for larger
values, the behaviour of the system depends upon the
distribution with the power law distribution approaching
ε = 0 much faster. The coefficient of variation of the

truncated Gaussian distribution converges to
√

π−2
2 ≈

0.755, that is its value for the Half-Normal distribution
to which the distribution converges as µ

σ → 0+.
In general, we see that the higher the variance of the

infectiousness and susceptibility the lower the fraction of
the population that needs to be infected in order to reach
herd immunity.

FIG. 1: The percentage of infected in the population necessary for
herd immunity to occur as a function of the coefficient of variation for
R = 3. The results are shown for three distributions: Gamma, Folded
Normal and Power Law. The higher the variance of the infectiousness
and susceptibility the lower the fraction of the population necessary.

V. DISCUSSION

The spread of the COVID-19 pandemics is character-
ized by high variance of the infection and susceptible
distributions. In addition to the high degree of hetero-
geneity in infectiousness and susceptibility, one expects
a significant correlation between them stemming, for in-
stance, from the social aspect of the spread of diseases.
We studied the implications of this structure on the con-

dition to reach herd immunity.
We proved two claims, one for general distributions

and one for the Gamma distribution and showed that the
heterogeneity and correlation have a drastic effect on the
estimate of the percentage of the population that must
contract the disease before herd immunity is reached.

FIG. 2: The percentage of infected in the population necessary for
herd immunity to occur as a function of the coefficient of variation for
R = 6. The results are shown for three distributions: Gamma, Folded
Normal and Power Law. In comparison to figure 1 we see, as expected,
that the required fraction is higher for a given coefficient of variation.

Under the assumption of Gamma distribution we found
that for COVID-19 a fraction ε ≈ 5% of infected popu-
lation suffices to reach herd immunity while a fraction
ε ≈ 9% is needed for COVID-2. While writing the paper
we became aware of two recent works [9, 10] that, us-
ing different mathematical fraemeworks, reached similar
conclusions for the fraction of infected population that
is required for herd immunity under the assumption of
Gamma distribution.

Our mathematical analysis of the disease spread dy-
namics can be viewed as a random walk on a complete
graph. It is of interest to study other graph structures
and quantify the differences [11].
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