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ABSTRACT 

Today, with only 4% of the world’s population, the U.S. is bearing a disproportionate share of 

COVID-19 infections.  Seeking to understand this puzzle, we investigate how mitigation strategies 

and compliance can work together (or in opposition) to reduce (or increase) the spread of COVID-

19 infection.  Drilling down to the state level, we create specific state indices suitable for the U.S.  

to measure the degree of strictness of public mitigation measures.  In this, we build on the Oxford 

Stringency Index.  A modified time-varying SEIRD model, incorporating this Stringency Index as 

well as a Compliance Indicator to reduce the transmission, is then estimated with daily data for 

a sample of 6 U.S. states.  These are New York, New Hampshire, New Mexico, Colorado, Texas, 

and Arizona.   We provide a simple visual policy tool to evaluate the various combinations of 

mitigation policies and compliance that can reduce the basic reproduction number to less than 

one; this is the acknowledged threshold in the epidemiological literature to control the 

pandemic.  States successful in combating the pandemic were able to achieve a suitable 

combination.  Understanding of this relationship by the public and policy makers is key to 

controlling the pandemic.  This tool has the potential to be used in a real-time, dynamic fashion 

for flexible policy options.  
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1. INTRODUCTION 

The COVID-19 pandemic has resulted in 20 million infections and 760,213 deaths globally (Johns 

Hopkins University & Medicine, 2020).  Of these, the U.S. has contributed over 5 million cases, 

with 167,253 deaths. This has happened while testing has accelerated in the U.S.  According to 

the WHO (World Health Organization), the positivity rate in testing (the percentage of tests 

conducted that are positive for COVID-19) should be between 3% and 5%.  However, before 

reopening is considered, the positivity rate should be 5% or below for at least 14 days (WHO, 

2020). On August 13, 2020, the U.S. had an overall positive rate of 7.5% (Ritchie, et al., 2020) 

which is well above the upper bound recommended.   Why is the U.S. then bearing such a 

disproportionate burden of infective cases when it has only 4.25% of the world’s population? 

(U.S. Census Bureau, 2020)   

Clues as to why the overall infections are so high can only be seen by disaggregating to the state 

level where we encounter considerable heterogeneity.   On August 16, only 17 states had met 

the positivity recommendations (Johns Hopkins University & Medicine, 2020).   Further 

disparities emerge from the selective adoption by the states (to varying degrees of strictness) of 

the community mitigation strategies recommended by the CDC in the absence of a proven and 

widely available therapy or vaccine (Centers for Disease Control and Prevention, 2020).  Adding 

to this confusing mosaic are the diverse degrees of compliance by the public in each state.    

The objective of this study is to investigate how mitigation strategies and compliance can work 

together (or in opposition) to reduce (or increase) the spread of infection.  To accomplish this, 

we build an epidemiological model that specifically takes into account not only the community 

mitigation strategies that slow the spread of the virus, but also compliance1 by the public.  This 

model is applied to a sample of 6 U.S. states (New York, New Hampshire, New Mexico, Colorado, 

Texas, and Arizona) chosen for three reasons.  They have had varying success in flattening the 

infection curve; they have the daily data on recoveries that is needed for estimation; they have 

the advantage of having a range of positivity ratios2.  In view of our estimation results, we offer 

some practical policy tools and recommendations to aid public policy.  

As of today, while the race for a vaccine proceeds, mitigation actions are the primary bulwark 

against COVID-193.    These measures can move from the individual level like washing hands, 

wearing face masks4, and maintaining physical distance to those imposed by authorities such as 

restrictions on gatherings, school and workplace closings etc.   The Oxford University Blavatnik 

School of Government maintains a website that has created an index to capture such strategies 

(Hale, et al., 2020). With data from more than 160 countries including the U.S., it has calculated 

a Government Response Stringency Index (GRSI) for each country using 9 indicators of mitigation 

such as school closings, restrictions on gatherings and so on (Hale et. al. 2020)   See Appendix A 

for the individual indicators. This GRSI is scaled from 0 to 100.  As of July 31, 2020, the Index for 

the U.S. is 69.0 and to give this some context, for Canada it is 67.13, Australia is 68.06, China is 
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81.94.   Very recently, it has also constructed Stringency Indices for each U.S. state (Hale, et al., 

2020B).  

The national GRSI has been used by researchers (Jaytilleke et. al. 2020) and has also been used 

in a modified version applied to Brazil (Barberia et. 2020).   We are building on the methodology 

proposed by the Oxford team for the state indices they have created.  On examining the 

individual elements that go into the state indices calculated by the Oxford index, we realized that 

certain changes were needed to construct state indices tailored to U.S. state conditions.  By 

modifying individual elements we created another set of state-specific Stringency Indices that we 

call the Bentley State Stringency Index (BSI).   We have therefore built on and extended the 

contribution by the Oxford University Martin School.     

As the purpose of mitigation measures is to slow down the spread of infection, we introduced an 

exponential Mitigation Function on the transmission term in a time-varying SEIRD model.   This 

Mitigation Function, incorporating the Bentley State Stringency Index (BSI), plays a crucial role in 

slowing down the progression of the disease, provided there is compliance.  The latter is 

represented by an estimable Compliance Indicator (CI) that captures the average degree of 

compliance in each state.   The Compliance Indicator thus modifies the effect of the BSI.   It can 

allow the BSI to work at its full potential in reducing infection or it can progressively choke off 

completely the effect of mitigation policies as compliance by the public moves to zero.  Sheikh 

et. al. 2020 outlined some indirect ways in which one may assess the degree of compliance such 

as by cell phone GPS data or traffic congestion and public transport usage.   Our approach 

provides a data-based estimation of the degree of compliance that is state specific.   To the best 

of our knowledge, our approach of employing a Mitigation Function with a tailored, state specific 

Stringency Index and a Compliance Indicator has not been done before.    

The estimated Compliance Indicator was then used with varying values of the Stringency Index 

to see how the basic reproductive number R0
5 could be brought to a level less than 16 in each of 

the states studied.  This provided some answers as to why some states have not been successful 

in controlling infections.  Our work focuses on the importance of the Mitigation Function with its 

two important components:  the BSI and the Compliance Indicator.  We argue that this, too, can 

be a useful metric to be watched by policy makers.   We have given the method by which it can 

be calculated and shown the value of tracking it to ensure that it is within acceptable limits.   This 

metric can indicate the minimum level of compliance needed to control the epidemic given a 

particular level of stringency.  The visual tool that we present also has the advantage of being 

easy for the public to understand.    

 

2. DATA, VARIABLES AND DESCRIPTIVE STATISTICS 

Our work is based on multiple data sources.  The New York Times repository of coronavirus data 

on GitHub and state level data from the various state web portals7 were used.  Though these data 
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sets begin from Jan 1 2020, COVID-19 infections were not apparent during the early period.  

March 2 is the earliest date when any observation is available.  Beginning from that date, our 

data runs through July 31 2020. Additional data on average household size8 and state population 

were gathered from the U.S. Department of the Census projections (U.S. Census Bureau, 2020).   

We calculated daily cumulative infection (infection cases) from the daily numbers of new 

confirmed cases.  Similarly, daily cumulative recovery (recovery) and daily cumulative death 

(death) were computed from daily numbers of recoveries and confirmed deaths.  All three 

variables are from the New York Times repository for each state.  States may differ on how 

recovery is defined. For example, Texas calculated recoveries from those who are hospitalized by 

estimating the proportion of those who are hospitalized for no more than 32 days.  To this 

number they add those who have not been hospitalized but have been infected with Covid-19 

for 14 days (State of Texas, 2020). Colorado bases recovery data on those discharged from Covid-

19-related hospitalization (State of Colorado, 2020).   For New Hampshire, recoveries are 

estimated from the resolution of Covid-19 fever without the use of fever-reducing medications 

and improvements in respiratory symptoms (State of New Hampshire, 2020). No definitions have 

been released by New York, Arizona or New Mexico at the time the manuscript was completed. 

Due to the uneven quality in the data, there are a few missing daily entries that occur on different 

days in each state data across the three different variables that we used:  daily new confirmed 

cases, daily recovery and daily deaths.  Together, they comprise 4% of our 2736 data points.   

These missing entries were imputed by taking the average of the previous seven days as it takes 

the CDC coders that length of time to record COVID-19 deaths (CDC, 2020); the CDC uses a 7-day 

moving average to report new daily cases (Stokes, et al., 2020).   

Overview of the six states 

According to WHO, to ensure that the testing rate is sufficient, the positivity rate should be 

between 3 to 5%.  As of August 13th, only NY, NH, NM and CO are within this threshold.   Back in 

mid-August, AZ had the highest positivity rate of all 50 states (only Puerto Rico has the highest 

possible, 100%).   The trend of new cases per 100,000 shows a wide disparity in controlling the 

infection among these states.  As seen from table 1, NY which started out with the highest rate 

of 1154.6 per 100,000 people has now the lowest (111.5).  On the other hand, Arizona started 

with 90 and is now at 1302.4.  NM and NH started with very similar rates (144.5 and 167.4 

respectively), but by June NM’s rate was almost 2 times of NH’s rate.      

TABLE 1 Overview of States   

State Pos. R   New Cases per 100,000*  State imposed Any 
Restrictions 

Average 
Household 
Size  

Population 

  April May  June  July  April May  June  July    
TX 14.99 85.6 124.8 330 900 Yes Yes Yes Yes 2.86 28,995,881 
NM 3.89 144.5 210.3 222.3 418.3 Yes Yes Yes Yes 2.64 2,096,829 
AZ 24.68 87.4 168.8 814.4 1302.4 Yes Yes Yes Yes 2.69 7,278,717 
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CO 7.11 217.5 196.9 111.4 237.8 Yes Yes Yes Yes 2.56 5,758,736 
NH 2.03 167.4 233.1 113.3 76.9 Yes Yes Yes Yes 2.46 1,359,711 
NY 1.08 1154.6 325.9 115.0 111.5 Yes Yes Yes Yes 2.60 19,453,561 

Source: New York Times Repository of COVID-19 Data.    

*This is obtained by dividing total new cases over the whole month by the state population and then multiplying by 100,000.  

 

In addition, the varying trends of infections and recoveries in each state are shown in Figure 1.   

In some states like Texas, AZ and NM, the infection rate has accelerated from a previously slower 

rate of increase.  However, in each state there is a clear point of inflection that has occurred in 

June.  On the other hand, the remaining 3 states are entering the phase where the infection is 

flattening at different rates.  This is most noticeable in NY. 

   

Figure 2: Time series plot for all six states on cumulative confirmed infections, recovery and 

death 

 
Note: To show the three trends with different scales in the same graph, we employed a dual y-axis chart.  The left 
y-axis indicates infection and recovery while the right y-axis shows cumulative deaths.  The blue line represents 
cumulative confirmed infections, the green cumulative recovery and the red cumulative deaths. 

 
Investigating this disparity is the question that we have set out to explore in this paper.    

The Stringency Index    

A Stringency Index was calculated for each state by modifying the Oxford index as shown in 

Appendix B.    Necessary adjustments had to be made in choosing the individual elements of the 

index.  Three items that could not be included by us were restrictions that were not applicable at 

the State level, or were not applicable to the U.S. in general.    These were restrictions on internal 

travel controls, international transportation, and public officials commenting or coordinating 

campaigns.   However, we needed to add three important restrictions applicable to the U.S. that 
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were not included in the Oxford Index.  These were the wearing of face masks9 , social or physical 

distancing of 6 feet10, nursing home visiting restrictions11, and state border restrictions.    We 

adopted the same methodology as given by the Oxford Martin School (Oxford University Martin 

School, 2020) which we explain in Appendix B.  

The BSI was calculated for each state for the entire period.   What do these numbers mean?   The 
two extremes of BSI would be 0 and 10.   At 0, there are no restrictions.   At 10, all the restrictions 
given in Table 2 (Appendix A) apply at the maximum of the scales applicable to that category.  In 
addition, these restrictions are also applied to the entire state.   The actual BSI therefore, will be 
a combination of the different elements and the scale at which they are applied.   For instance, 
if face masks are recommended but not required, the level of the variable H6 (see Appendix B) 
becomes 1 instead of the maximum of 2 and the BSI will go down.   Therefore, a particular BSI 
number cannot point to a unique combination of mitigation measures but may be consistent with 
different combinations of restrictions whether applied to the entire state or to targeted areas.   
 
To further clarify the significance of the BSI, we illustrate it from our calculations using the actual 
state data from New York and Arizona, two states with very different success in controlling their 
infection rates.  For instance, on the 25 April, the BSI for NY was 6.47 but the next day, 26th April, 
the BSI jumped to 7.03 because the testing policy was refined to say that anyone showing COVID-
19 symptoms should be tested.   In Arizona, the BSI on March 30 was 3.75 and the next day it 
rose to 4.72.  The big jump was due to the introduction of new requirements of staying at home 
and limiting public transportation.  On April 30, the BSI was 5.0 and the very next day, May 1, it 
dropped to 4.4.  This is because Arizona removed the restriction and stay at home order ends.   
 
The movement of the BSI for each state is shown in Figure 2.  Notice that the 6 states began 
mitigation interventions around mid-March but subsequently they diverged in terms of timing 
and extent.   By April, CO had the highest BSI, whereas AZ had the lowest number.   NY slackened 
restrictions in June and was slightly below NM, but from mid of April to May, New York had been 
more restrictive than NM.   
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Figure 2   Path of Mitigation Measures (Bentley Stringency Index) over Time in each State  

 

 

THE MODEL  

The model that we adopt is based on the SEIRD (Susceptible, Exposed, Infected, Recovered or 
Died) model that has been developed by Weitz and Dushoff (2015), Loli and Zama (2020) and 
Lattanzio and Palumbo (2020).  Diagrammatically it can be shown as follows:  
 
Figure 3 SEIRD MODEL FLOW CHART  

 

The structure of this model that is used in the literature can be described by the 

following equations:  

S 

D 

R 

I E 

𝛽 𝛼 

𝛾 
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(1) 
𝑑𝑆

𝑑𝑡
= −𝛽

𝑆∙𝐼

𝑁
  

(2) 
𝑑𝐸

𝑑𝑡
= 𝛽

𝑆∙𝐼

𝑁
− 𝛼𝐸 

(3) 
𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − 𝛾𝐼 − 𝛿𝐼 

(4) 
𝑑𝑅

𝑑𝑡
= 𝛾𝐼  

(5) 
𝑑𝐷

𝑑𝑡
= 𝛿𝐼 

Following Lolli and Zama (2020), we have the compartments S, E, I, R and D.   S is the susceptible 

group, E consists of those who are infected but may not be infectious, I contains the infectious 

group, while R and D respectively consist of those who recovered or died.  

 

𝛽: The term 𝛽, though called by slightly different names in the literature is often called the 

transmission rate of infection or the rate at which two specific individuals come into effective 

contact per unit of time12 (see Keeling and Rohani, 2011 and Vynnycky and White, 2010).  

Specifically,  𝛽 is the product of the Contact Rate (average number of contacts per person per 

unit of time) * Transmission probability or probability of disease transmission in a contact.     

𝛼: The incubation rate, 1/ 𝛼   is the average period (days) of moving from E to I. 

𝛾: The recovery rate for those infected and who have recovered.  They move from I to R.  

𝛿: The death rate of infected patients who die.  They move from I to D.  

1/(𝛾 + 𝛿): The average infectious period (days) for the infectious group I. 

 
This model assumes that there is no reinfection and so eliminates movement from R to S. In 
addition due to the short period under consideration for epidemics, the population is assumed 
to be constant with equal birth and death rates.  
 
The SEIRD model has now been modified by explicitly modeling two important drivers of 𝛽.  In 

the epidemiological literature, it is acknowledged that 𝛽 can depend on factors like age, living 

conditions, behavioral interventions such as the closing of theaters, schools, staggering of office 

hours as happened during the 1918 pandemic (Vynnycky and White, 2010;  Bootsma and 

Ferguson, 2007; Hatchett et. al., 2007).  Thus the standard 𝛽 in the literature is a kind of “black 

box” which contains a complex of factors that can affect 𝛽 and the transmission of disease.   We 

investigate two important factors that influence 𝛽:  mitigation policies that the BSI captures, and 

the compliance to these by the public.   The latter is being increasingly discussed in the media as 

being crucial to the success of the various mitigation measures. On Aug 5, in a virtual symposium 

hosted by the Harvard University’s T.H. Chan School of Public Health, Dr. Fauci, Director of the 

National Institute of Allergy and Infectious Diseases, explained that it was due to the difference 

in the states’ mitigation measures and the different ways in which the public has complied with 

these measures that the U.S. is having difficulty in controlling the pandemic13.   
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To operationalize these two factors that drive 𝛽 we now explicitly formulate a Mitigation 

Function that will act to reduce the transmission of disease.   This Mitigation Function will have 

two major components14:  the Bentley Stringency Index (BSI) and what we call the Compliance 

Indicator (CI).  The BSI has been calculated daily for each state while the Compliance Indicator 

will be estimated from our adaptive computing procedure.   

By explicitly including the Mitigation Function, we propose the following formula for 𝛽: 

𝛽 = 𝛽0 ∙ 1/𝑒𝑘∙𝑆𝐼∙𝜃 

Where, 𝛽0 connotes the transmission without policy intervention, and 𝑒𝑘∙𝑆𝐼∙𝜃 is defined as the 

mitigation function where k is 1/(average household size) and is fixed in our model estimation 

for each state, 𝑆𝐼 is the policy stringency index, and 𝜃 is the compliance indicator. 𝛽 will decrease 

at an exponential rate of 1/𝑒𝑘∙𝑆𝐼∙𝜃. 

To incorporate the transmission factor in a time-varying model, we develop a time dependent 

parameter 𝛽𝑡 in our model for estimation purposes.   

𝛽𝑡 = 𝛽0 ∙ 1/𝑒𝑘∙𝑆𝐼𝑡−ℎ∙𝜃𝑡 

The time-varying Mitigation Function is:  𝑒𝑘∙𝑆𝐼𝑡−ℎ∙𝜃𝑡   where, 𝑆𝐼𝑡 is the stringency index at time t. 

The time lag introduced by a delay in policy implementation is denoted by h.  We assume a 

modest policy lag of 1 day in our model using daily data.  𝜃𝑡  is the Compliance Indicator at time 

t.   

Note that the Compliance Indicator can vary from 0 (no one complies) to a theoretical maximum 

of 1 (everyone complies).   When the CI =0, the BSI index has no effect irrespective of its value 

and the model collapses to the standard model where the mitigation efforts do not affect  𝛽.    On 

the other hand, the BSI can also vary from 0 (where there are no restrictions) to a theoretical 

maximum of 10 (which is akin to a total lockdown).   When BSI =0, the model again collapses to 

the standard model.   When BSI is greater than 0, then the effect on 𝛽 will depend also on the 

Compliance Indicator.   Even if BSI is at its maximum, a low CI will reduce the Mitigation Function.   

In other words, it is both BSI and the Compliance Indicator that will determine (given the 

household size that varies by state) the power of the Mitigation Function which affects the 

transmission of the disease.   Incorporating this, our model structure will be as follows.    

𝑑𝑆

𝑑𝑡
= −𝛽0 ∙ 𝑒−𝑘∙𝑆𝐼𝑡−ℎ∙𝜃𝑡 ∙

𝑆𝑡 ∙ 𝐼𝑡

𝑁
 

𝑑𝐸

𝑑𝑡
= 𝛽0 ∙ 𝑒−𝑘∙𝑆𝐼𝑡−ℎ∙𝜃𝑡 ∙

𝑆𝑡 ∙ 𝐼𝑡

𝑁
− 𝛼𝐸𝑡 

𝑑𝐼

𝑑𝑡
= 𝛼𝐸𝑡 − 𝛾𝐼𝑡 − 𝛿𝐼𝑡 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼𝑡 
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𝑑𝐷

𝑑𝑡
= 𝛿𝐼𝑡 

 

METHODOLOGY AND RESULTS 
To estimate the parameters of our proposed model, we use numerical analysis methods and 

statistical approaches with COVID-19 data from 6 states beginning from Mar 2020 to July 2020. 

In this computing process, we first develop the difference equation system as per the following 

system: 

𝑆(𝑡 + 1) = 𝑆(𝑡) − 𝛽0 ∙ 𝑒−𝑘∙𝑆𝐼𝑡−1∙𝜃𝑡 ∙
𝑆𝑡 ∙ 𝐼𝑡

𝑁
 

𝐸(𝑡 + 1) = 𝐸(𝑡) + 𝛽0 ∙ 𝑒−𝑘∙𝑆𝐼𝑡−1∙𝜃𝑡 ∙
𝑆𝑡 ∙ 𝐼𝑡

𝑁
− 𝛼𝐸𝑡 

𝐼(𝑡 + 1) = 𝐼(𝑡) + 𝛼𝐸𝑡 − 𝛾𝐼𝑡 − 𝛿𝐼𝑡   

𝑅(𝑡 + 1) = 𝑅(𝑡) + 𝛾𝐼𝑡  

𝐷(𝑡 + 1) = 𝐷(𝑡) + 𝛿𝐼𝑡 

Then, we develop the overall error function: 𝐸𝑟𝑟𝑜𝑟(𝑡) = max {𝐸𝑟𝑆(𝑡), 𝐸𝑟𝐼(𝑡), 𝐸𝑟𝑅(𝑡), 𝐸𝑟𝐷(𝑡) }, 

where 𝐸𝑟𝑆(𝑡) = |�̂�(𝑡) − 𝑆(𝑡)|; 𝐸𝑟𝐼(𝑡) = |𝐼(𝑡) − 𝐼(𝑡)|; 𝐸𝑟𝑅(𝑡) = |�̂�(𝑡) − 𝑅(𝑡)|; and finally, 

𝐸𝑟𝐷(𝑡) = |�̂�(𝑡) − 𝐷(𝑡)|. 

As is commonly used, we take the absolute difference between �̂�(𝑡) and 𝑆(𝑡) to denote the error 

𝐸𝑟𝑆(𝑡) at time t.   We use a similar process to define the errors for Infection (𝐸𝑟𝐼(𝑡)), recovery 

(𝐸𝑟𝑅(𝑡)) and death (𝐸𝑟𝐷(𝑡)) at time t. 

�̂�(𝑡), 𝐼(𝑡), �̂�(𝑡), �̂�(𝑡) are the model estimations at time t for susceptible cases, confirmed 

infections, recovered individuals and those who died. Correspondingly,  𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝐷(𝑡) are 

the observed data for each compartment at time t. To find the estimated values of the 

parameters at time t which give the minimum of 𝐸𝑟𝑟𝑜𝑟(𝑡), we applied the interior-point 

algorithms with dynamically modified constraints on the parameter estimations.  

MATLAB 2020a was used for the computation.  With the numerical estimation of the parameters, 

the 4th order Rouge-Kouta method was used for predictions on �̂�, 𝐼, �̂�, �̂� in all six states. 

The model provides insights into the relationship between three crucial factors in controlling an 
epidemic:  the Bentley Stringency Index (embodying the policy measures recommended or 
required by Federal or State authorities), the Compliance Indicator (embodying the extent of 

compliance by the public to these policy measures) and 𝑅0
15 (the basic reproduction number).    
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With the estimated parameters, our next step explores the interaction of the time-varying values 
of the Stringency Index as well as the Compliance Index in each state with the movement of the 
infection rates.  

To examine this, we did two sets of simulations to explore interacting effect of BSI and 
compliance rate on 𝑅0. Both simulations are based on the formula above, with fixed parameters 
of average household size (2.6 US average in 2019), 𝛾 and 𝛿 (from US data). 𝛽0 in this simulation 
is estimated from CDC’s report as of Aug 13th (CDC, 2020) .    

 

Simulation 1. Comparing the Oxford and Bentley Stringency Indices  

Using our model, we calculated the movement of 𝑅0 using both the Bentley and the Oxford 
indices.   In our model, the basic reproduction number  

𝑅0 =
𝛽

𝛾 + 𝛿
= 𝛽0 ∙

1

𝑒𝑘∙𝑆𝐼∙𝜃
∙

1

𝛾 + 𝛿
 

For an epidemic to die out, 𝑅0must be less than one.   

We ran the comparative simulations with fixed parameters, including the Compliance Indicator 
on all 6 states.   The results (Figure 4) are reported for New York and Texas16. In this simulation, 
we assumed the CI to be a fixed value 0.5 for both states (Corona Board, 2020); average house 
hold size as 2.6; 𝛾 as 0.52 and 𝛿 as 0.03. Comparing the two Stringency Indices, the Bentley 
Stringency Index is overwhelmingly (with a few exceptions) more conservative in that the 
simulated 𝑅0 is higher than that obtained by using the Oxford Index.   
 
FIGURE 4:  Comparison of Oxford Stringency Index (OSI) and Bentley Stringency Index (BSI) 

 

These simulations gave us further confidence about using the Bentley Stringency Index.   Recall 

that the BSI was constructed specifically for each state using the various components as 

described.  In taking individual states separately, we were able to start with the first statewide 

announcement regarding mitigation measures (State of Texas, 2020) (State of New York, 2020).   
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Simulation 2: Interaction of Compliance Indicator and 𝑹𝟎 at different levels of BSI 

Based on 𝑅0 = 𝛽0 ∙
1

𝑒𝑘∙𝑆𝐼∙𝜃
∙

1

𝛾+𝛿
, we simulated the Compliance Indicator and 𝑅0 at different 

levels of the BSI, assuming a recovery rate 𝛾 of  0.52 based on the U.S. average and an average 

household size of 2.6 (United Nations, 2019; Corona Board, 2020).  See Figure 5.  

 

Figure 5: The Combination of Stringency and Compliance needed at various 

levels of R0   

 

In Figure 5, the vertical axis is 𝑅0 while the horizontal axis shows the range of the Compliance 

Indicator.    Each colored line shows the relationship between 𝑅0 and the Compliance Indicator 

at different levels of the Stringency Index (The highest level of Stringency is 10 and is shown by 

the lowest line). The horizontal line denotes 𝑅0 =1 which is accepted in the literature as the 

threshold above which the epidemic will keep spreading. When 𝑅0 is less than one (the lower 

part of the graph can be denoted as “desirable” and the upper portion as “undesirable”) then the 

epidemic will die out.  

Our simulations show the different levels of compliance that would be compatible with different 

degrees of stringency in order for 𝑅0 to go below the threshold.   For instance, when the BSI is at 

1, then notice that even if the Compliance Indicator is at the maximum, 𝑅0 will not be lower than 

one.   On the other hand, with the highest value of the BSI, the Compliance Indicator has to be at 

least 25% for 𝑅0 to be at the threshold.    
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Since the above figure is based on the average household size in the U.S., it must be remembered 

that when the household number increases, then to reach the same 𝑅0, the combination of the 

Stringency Index and the Compliance Indicator has to be at higher levels.   

New York state began in the “undesirable” portion as the higher red dot indicates.  That was 

during Day 65 (Mar 5th) to Day 75 (Mar 15th).  However, between Day 120 (April 29th) to Day 130 

(May 9th), New York moved to the “desirable” portion of the graph as the lower red dot shows.  

Similarly, Texas (blue dot) also moved from an undesirable point between Day 170 (June 18th) to 

Day 180 (June 28th) to the lower portion during the period Day 190 (July 8th) to Day 200 (July 18).   

We will be taking up these periods in more detail below.  

This figure can be of use to guide policy regarding the extent of mitigation measures and 

compliance needed by the public. Let us illustrate what we mean by going back to the two states 

we showed in Figure 5, namely New York and Texas.  These two states have had very different 

success in combating COVID-19.   In Figures 6a and 6b we show plots of the estimated mitigation 

function against daily infections.     

Figure 6a New York: Plots of mitigation function estimation (daily) vs daily infections (7-day 

average) 

 

In Figure 6a for New York, the inverse relation between the Mitigation Function (blue line) 

and daily infections (red line) can be clearly seen.  It must be remembered that the Mitigation 

Function only captures a portion of all the factors that drive 𝛽, the transmission rate. When the 
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infection was raging, the Mitigation Function was increasing and we find that the BSI increased 

from, essentially, 0 to 0.8 with a mean value of 0.358 during the 10-day period Mar 5th to Mar 

15th (Days 65 to 75).   This was because New York recommended against nursing home visits, 

restricted public gatherings and cancelled public events.   The mean estimated CI was 46%. This 

placed New York in the upper “undesirable” portion of the graph in Figure 5.  When the state 

initiated the face mask requirement around April 15th (Day 106) and the testing policy was 

introduced and defined on April 26 Day 117), infections which had hit a peak began a trajectory 

downwards until it plateaued around mid-June. By the beginning of May the infection had 

abated and the mean values of BSI and CI were 7.028 and 67% respectively during the 10-day 

period between April 29th and May 9th. This trend corresponded with the announcement of 

New York’s COVID-19 Testing Policy. With this combination of BSI and Compliance Index, New 

York moved to the lower “desirable” range (Figure 5) as the infection rate came under control.  

Figure 6b Texas: Plots of mitigation function estimation (daily) vs daily infections (7-day 

average)      

 

 
For Texas, on June 3rd (day 155 in the figure) Governor Abbott signed an executive order on Phase 

III reopening, to allow more businesses to reopen and to reduce restrictions on gatherings.  The 

Mitigation function decreased accordingly.  Note in Figure 6b that as the Mitigation Function 

decreased with the relaxation of state restrictions, Covid-19 infections also began to climb.   
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Further, between Day 170 (June 18th) to Day 180 (June 28th), the BSI increased from 3.9 to 5.0 

with a mean value of 4.5. The mean value of the estimated CI is 31%.  Even though the state had 

increased the mitigation policies, it was not enough.  The fact that the compliance also is far too 

low can be seen with a little thought experiment using Figure 5.   Suppose the BSI were 5 (more 

stringent), then the compliance indicator would need to be at least 50% for the infection to die 

out as Texas moves to the desirable upper portion of the graph.   On the other hand, with this 

low level of compliance, it can be confidently predicted that the infection will rise.  In fact, in the 

following weeks between June 22 and July 17 the confirmed COVID-19 cases reached 14,916, the 

highest one-day mark for Texas.  

Our results also indicate that when stringency measures are constant, changes in the Compliance 

Indicator is associated with changes in the infection rates.  In Texas, from June 4th to June 21st 

(Day 156 to 173 since Jan 1st), the BSI stayed constant at 3.96. On the other hand, the estimated 

CI showed a dramatic 5-day average drop from approximately 88% to 39%. On June 4, Texas 

reduced restrictions on gatherings by allowing for indoor assemblies such as at places of worship, 

among local government operations, child care services and recreational sports for youths and 

adults.  The daily infections during the corresponding period also jumped from 1649 to 4430.   

This is clearly visible in Figure 6b.   

 

DISCUSSION AND CONCLUSION    

The objective of this paper was to examine how mitigation policies and compliance to these 
polices can combine to advance or frustrate the fight against the COVID-19 pandemic.    Our 
concern arose due to states with similar community mitigation measures having very divergent 
trends in infection rates.   To the best of our knowledge, there is no epidemiological model that 
would help us understand this phenomenon.   In this paper we propose a simple modification to 
bring both mitigation policies and compliance into a standard epidemiological model and, in 
exploring their interaction, understand what would be the minimum levels of each that would 
lead each state to a point where the epidemic would die out.   

 
To accomplish our purpose, we use a SEIRD model incorporating both mitigation measures and 

public compliance that are present in the “black box” that is 𝛽.   In doing this, we build upon the 

work of Kurcharski et. al. 2020 where they suggest that a combination of methods (testing, 

tracing, physical distancing, self-isolation and quarantine) may to needed to reduce effective 

transmission so that the epidemic is contained.   We go further by taking a vector of mitigation 

policy measures and encapsulating them into a Bentley Stringency Index (BSI) similar to that built 

by Oxford.  We use their methodology and thus build on and extend their work. Tailoring our 

state stringency indices by incorporating directives like wearing face masks, restrictions on 

nursing home visits that are appropriate to U.S. states, we contribute to the literature.   
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The best of mitigation measures need to be actually followed if they are to be successful.  To 

capture public compliance, a state-specific Compliance Indicator was estimated from the model 

using the daily COVID-19 data from each state.   In this context, Cano et.al 2020 have modelled 

scenarios with different levels of what they have termed social distancing.  However this term is 

also used interchangeably with lockdown.  They show that the less seriously the public takes the 

lockdown measures, the longer the epidemic will take to resolve and the number of deaths will 

increase.   By quantifying public compliance through the Compliance Indicator, we build the 

Mitigation Function that encompasses both the BSI and the CI.  We demonstrate the association 

of the movement of infections with movements in the Mitigation Function, ceteris-paribus.  

Thus, it is the combined effect of the mitigation measures and the compliance that is key.   

Without either, there can be no containing the epidemic.  

Compliance by the public to mitigation measures is largely exogenous in democratic societies.  

However, by coordinated and effective public information campaigns, through example, by 

helping people understand that obeying these restrictions is crucial to reclaiming their lives, 

compliance may be enhanced.   In this regard, Arriola and Grossman’s work, though in the 

context of Africa, may be interesting (Arriola & Grossman, 2020).  They wanted to see how the 

social identity of individuals could affect their compliance with advice from public health officials.  

In the U.S., some states have adopted the “stick” approach; California is cutting off power to 

those who are defying restrictions (Treisman, 2020).   However, if the public understands that it 

is in their own self-interest, the degree of compliance can be increased with their cooperation.   

We have also contributed by suggesting a practical, real-time, visual policy tool that can be used 
flexibly not only to monitor the progress in controlling the disease but also to adjust policy in a 
dynamic fashion.   It can be used to support decisions in adjusting mitigation policies by taking 
into consideration the level of public compliance as well.  This tool is also simple enough to be 
used to educate the public on the importance of compliance.    
 
The chief limitation of our analysis is a problem that all researchers on COVID-19 have to contend 
with at this time with an ongoing deadly and fast-moving pandemic.  Even though we had only 
4% of our observation points that were missing or questionable, there are concerns regarding 
the overall quality of the data (General Accounting Office, 2020 ).   
 
 Our work has opened up several avenues of future research.   Our method of using the Mitigation 
Function in SEIRD can be applied to other epidemiological models as well. In addition, this 
methodology can also be translated to other countries, thereby providing another tool to the 
authorities in combating this epidemic.  We have also made the first step in attempting to 
quantify the factors that go into “black box” of 𝛽 and hope that our work will stimulate further 
exploration.  
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ENDNOTES  

1 The importance of full compliance, though generally acknowledged,  can be seen in the control of the Ebola outbreak (Do & 
Lee, 2016) where even a day’s delay in full compliance could double the number of infections. 
 
2 The positivity rates as on August 16,2020 are:  New York (0.83); New Hampshire (1.34), New Mexico (2.59), 
Colorado (3.83), Texas (15.32) and Arizona (10.79). 

 
3 (Anderson, Heesterbeek, Klinkenberg, & Hollingsworth, 2020) discuss the importance of various country-wide 

mitigation measures. (Kucharski, et al., 2020) investigate the effect of isolation, contact tracing, testing and 

physical distancing on reducing transmission.  See also (Hellewell, et al., 2020) and (Prem, et al., 2020).  (Hatchett, 
Mecher, & Lipsitch, 2007) and (Bootsma & Ferguson, 2007) inform us on public health intervention measures 
during the 1918 pandemic to give us a historical context.   
 
4 (Teslya, et al., 2020) showed the importance of mask wearing and hand washing in conjunction with social 
distancing.  Mask wearing and handwashing are two measures entirely within the control of the individual, 
whereas other measures may need the cooperation of others.   However, individuals may also decide not to 
comply with these measures and that is why our compliance index is so important.   
 
5 See (Heesterbeek, 2002) and (Delamater, Street, Leslie, Yang, & Jacobsen, 2019) for a history of the basic 
reproductive number and its complexities. 
 
6 As explained by (Chowell & Nishiura, 2008) a fundamental result in epidemiology is the “threshold” value of the 
basic reproduction number Ro:  “ There is a difference in epidemic behavior when the average number of 
secondary infections caused by an average infective during his/her period of infectiousness, called the basic 
reproduction number, is less than one and when this quantity exceeds one”. 
 
7 (State of New Hampshire, 2020) (State of Colorado, 2020) (State of New Mexico, 2020) (State of Texas, 2020) 
(State of Arizona, 2020) (State of New York, 2020) 
 
8 (Nande, Adlam, Sheen, Levy, & Hill, 2020) found that within-household transmission was an important element 
for success in controlling the infection.  In this context, see also (Li, et al., 2020).  (Emeruwa, et al., 2020) in a study 

of nearly 400 pregnant women in New York City did not find an association between infection and population 

density but did find a higher risk of COVID-19 infection due to increased household crowding.   
 
9 (Stutt, Retkute, Bradley, Gilligan, & Colvin, 2020) showed the effectiveness of wearing face masks in managing 
the Covid-19 pandemic. 
 
10 (CDC, 2020) Some are advocating the term “physical distancing” to clarify the difference between physical and 
social distancing where social connectivity is to be encouraged while yet maintaining physical distancing. See 
(Allen, Ling, & Burton, 2020) 
 
11 As per CDC guidelines (CDC, 2020) 
 
12 it is important to clarify that we are talking of a frequency-dependent transmission in that the number of 
contacts does not depend on population size. See (Keeling & Rohani, 2011).   
 
13 In the words of the Harvard Gazette, “In addition, he (Dr. Fauci) said, state reopening plans proceeded at 
different paces. Some states reopened slowly, similar to the pace of European nations, while others went much 
faster. Another variable, he said, was the extent to which residents of different states adhered to reopening 
guidelines, with some following recommendations while others ignored the restrictions, sometimes in notably 
large groups”. (Powell, 2020) 
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14 The third component is household size that we will be taking as constant over the period under consideration. 
 
15 Ro is the basic reproductive rate and is defined in the literature as the average number of people an infectious 
person will infect assuming that the rest of the population is susceptible. 
 
16 This is in the interest of space.  Results for other states are available on request. 
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APPENDIX A 

Table XX. Items included in the Oxford and Bentley state specific Stringency Indices. 

 

Oxford State SI Item* In 

Oxford 

SI 

Model 

(Y/N) 

In 

Bentley 

SI 

Model 

(Y/N) 

Coding Categories  Consider 

Statewide 

Implementation17 

C1- School Closing 

Requirement 

 

Y Y 0 -No measures 

1 -recommend closing 

2 -Require closing(only 

some levels or 

categories, e.g. just high 

school, or just public 

schools) 

3 -Require closing all 

levels 

0 – Targeted 

Areas 

1- Statewide 

C2 – Workplace Closing 

Requirement 

Y Y 0 - No measures 

1 - recommend closing 

(or work from home) 

2 - require closing (or 

work from 

home) for some sectors 

or categories of 

workers 

3 - require closing (or 

work from home) all-

but-essential 

workplaces (eg grocery 

stores, doctors) 

No data - blank 

0 – Targeted 

Areas 

1- Statewide 

C3-Cancelling of Public 

Events 

Y Y 0- No measures 0 – Targeted 

Areas 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.20189449doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.07.20189449
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

Oxford State SI Item* In 

Oxford 

SI 

Model 

(Y/N) 

In 

Bentley 

SI 

Model 

(Y/N) 

Coding Categories  Consider 

Statewide 

Implementation17 

 1 - Recommend 

cancelling 2 - Require 

cancelling 

1- Statewide 

C4-Restrictions on 

Gatherings to 1,000 or 

fewer people 

Y Y 0 - No restrictions 

1 - Restrictions on very 

large gatherings (the 

limit is above 1000 

people) 

2 - Restrictions on 

gatherings between 

100-1000 people  

3 - Restrictions on 

gatherings between 10-

100 people 

4 - Restrictions on 

gatherings of less than 

10 people 

0 – Targeted 

Areas 

1- Statewide 

C5-Closing of Public 

Transportation 

 

Y Y 0 - No measures 

1 - Recommend closing 

(or significantly reduce 

volume/route/means of 

transport available) 

2 - Require closing (or 

prohibit most citizens 

from using it) 

0 – Targeted 

Areas 

1- Statewide 

C6 – Stay-at-Home or 

“Shelter-in-Place” 

Requirement 

Y Y 0 - No measures 

1 - recommend not 

leaving house 

0 – Targeted 

Areas 

1- Statewide 
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Oxford State SI Item* In 

Oxford 

SI 

Model 

(Y/N) 

In 

Bentley 

SI 

Model 

(Y/N) 

Coding Categories  Consider 

Statewide 

Implementation17 

2 - require not leaving 

house with exceptions 

for daily exercise, 

grocery shopping, and 

‘essential’ trips 

3 - Require not leaving 

house with minimal 

exceptions (e.g. allowed 

to leave only once 

every few days, or only 

one person can leave at 

a time, etc.) No data - 

blank 

C7-Restrictions on Internal 

Movement through Public 

Transportation 

Y N 0 - No measures 

1 - Recommend closing 

(or significantly reduce 

volume/route/means of 

transport) 

2 - Require closing (or 

prohibit most people 

from using it) 

0 – Targeted 

Areas 

1- Statewide 

C8 – Internal Travel 

Controls through 

Screening or Quarantine 

from High Risk Regions 

Y N 0 - No measures 

1 - Screening 

2 - Quarantine arrivals 

from high-risk regions 

3 - Ban on high-risk 

regions  

4 - Total border closure  

0 – Targeted 

Areas 

1- Statewide 
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Oxford State SI Item* In 

Oxford 

SI 

Model 

(Y/N) 

In 

Bentley 

SI 

Model 

(Y/N) 

Coding Categories  Consider 

Statewide 

Implementation17 

E1 – Income Support for 

those who lose their jobs 

or cannot work 

Y N 0 - no income support  

1 - government is 

replacing less than 50% 

of lost salary (or if a flat 

sum, it is less than 50% 

median salary)  

2 - government is 

replacing more than 

50% of lost salary (or if 

a flat sum, it is greater 

than 50% median 

salary)  

  

No data - blank  

 

0 - formal sector 

workers only  

1 - transfers to informal 

sector workers too No 

data - blank  

Not Considered 

statewide 

implementation 

E2 – Debt/Contract Relief 

for Households by freezing 

financial obligations 

(utilities, loans and 

evictions) 

Y N 0 - No  

1 - Narrow relief, 

specific to one kind of 

contract  

2 - broad debt/contract 

relief 

Not Considered 

statewide 

implementation 

H1 – Public Officials 

Commenting or 

Coordinating Public 

Y N 0 -No COVID-19 public 

information campaign 

0 – Targeted 

Areas 
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Oxford State SI Item* In 

Oxford 

SI 

Model 

(Y/N) 

In 

Bentley 

SI 

Model 

(Y/N) 

Coding Categories  Consider 

Statewide 

Implementation17 

Information Campaigns 

about COVID-19 

1 - public officials 

urging caution about 

COVID-19 

2 - coordinated public 

information campaign 

(e.g. across traditional 

and social media) 

1- Statewide 

H2 -Communicating policy 

on COVID-19 Testing 

Y Y 0 – No testing policy 

1 – Only those who 

both (a) have 

symptoms AND (b) 

meet specific criteria 

(eg key workers, 

admitted to hospital, 

came into contact with 

a known case, returned 

from overseas) 

2 – testing of anyone 

showing COVID-19 

symptoms 

3 – open public testing 

(eg “drive through” 

testing available to 

asymptomatic people)  

0 – Targeted 

Areas 

1- Statewide 

H3 – Implementing 

Contact Tracing  

 

Y Y 0 - No contact tracing 

1 - Limited contact 

tracing - not done for all 

cases 

Not Considered 

statewide 

implementation 
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Oxford State SI Item* In 

Oxford 

SI 

Model 

(Y/N) 

In 

Bentley 

SI 

Model 

(Y/N) 

Coding Categories  Consider 

Statewide 

Implementation17 

2 - Comprehensive 

contact tracing - done 

for all cases 

New Items Added to current Study  

C9 – State Border 

Restrictions Requiring 

Self-Quarantine  

N Y 0 - No Measure 

1- Recommend 

Individuals arriving 

from other states to 

self-quarantine 

2-Require individuals 

arriving from other 

states to self-

quarantine 

0 – Targeted 

Areas 

1- Statewide 

C10 – Limiting Nursing 

Home Visitation 

N Y 0 - No Measure 

1 - Recommend limit 

nursing home visitation 

2 - Require limit nursing 

home visitation 

0 – Targeted 

Areas 

1- Statewide 

C11 – Social Distancing 

Practice of Six Feet or 

Farther Apart 

N Y 0 - No Measure 

1 - Recommend limiting 

to six feet distance in 

public 

2 - Require limiting to 

six feet distance in 

public 

0 – Targeted 

Areas 

1- Statewide 

H6 – Face Mask Worn in 

Public Requirement 

N Y 0 - No Mention of face 

masks 

0 – Targeted 

Areas 

1- Statewide 
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Oxford State SI Item* In 

Oxford 

SI 

Model 

(Y/N) 

In 

Bentley 

SI 

Model 

(Y/N) 

Coding Categories  Consider 

Statewide 

Implementation17 

1 - Recommend 

wearing face mask in 

public 

2 - Require wearing 

face mask in public 

 *C refers to containment or closure strategies, E refers to economic response policies and H refers to 

health systems strategies. 
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Appendix B  

Creation of new items in the Bentley modification of the Oxford Stringency Index. 

Our state stringency index (SI) is compiled from 12 items. The Oxford state SI is based on 13 items (Hale, 
et al., 2020; Hale, et al., 2020B).  We modified the Oxford state stringency index by dropping five items 
and adding four. We dropped item C7 (restriction on internal movement through public transportation) 
because this policy was already included in item C5 (closing of public transportation). We also dropped 
C8 (internal travel controls through screening or quarantine from high risk regions) because we were not 
aware of states closing borders entirely or banning the entry of individuals from high risk regions. Even 
Rhode Island’s attempt to target cars with New York state license plates in order to impose a 14 day 
quarantine on visitors from New York was rescinded (Moroney, 2020). We also set aside items E1 
(income support for those who lose their jobs), E2 (debt/contract relief for households) and H1 (public 
official commenting or coordinating public information campaigns about Covid-19) because we felt they 
did not pertain to containment or closure. We added a total of four items to the stringency index. These 
items pertain to states imposing a mandatory self-quarantine on visitors from other states (C9), limiting 
nursing home visitation (C10), recommending a social distancing practice in public of at least six feet 
(C11) and policy on face mask covers (H6).  
 
The daily stringency index score is tabulated as an average of 12 sub-indices drawn from the 
containment and closure and health systems items in the Oxford inventory scaled from 0 to 100. 
Additional weight is given to 10 of the 12 policy items that could potentially be implemented statewide. 
Because the four items we created (see Appendix A Table) resulted in two more items than the original 
Oxford SI that could be implemented statewide, we modified the weight on which the final stringency 
index score is based. This is done by weighing the Likert scale points of the 10 indicators that are 
designated for statewide or targeted implementation using the formula outlined by the Oxford group. 
 

   
 

Our weight of 0.30 was very close to the ones calculated by Oxford (0.29), based on eight items, for use 

in the original index. The weights are then employed to create sub-indices of those items scaled to 100 

in the same manner indicated from Oxford. 

 

For the two items without statewide implementation as an option, sub-indices were calculated simply as 

a scaled function of 100 multiplied by the ratio of the raw scores to their maximum point value. 

 

The final Stringency Index score is then an average of the all sub-indices. 
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17 Targeted refers to specific areas of the state the policy applies, while general indicates the policy is implemented 
statewide. 
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