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What is already known about this subject:  

� Pharmacokinetics of phenobarbital (PB) have been reported large inter-individual 

difference and treatment with PB required therapeutic drug monitoring. 

� Population pharmacokinetic models for PB have been studied by several researchers but 

predictive performance of these models has not been well documented. 

 

What this study adds: 

� Predictive performance of pharmacokinetic models of phenobarbital (PB) was various and 

required validation for extrapolation to different clinical settings. 

� Bayesian forecasting could improve the predictability for individual drug concentrations. 

� Imputation of both size and maturation functions could help to enhance the predictability of 

pharmacokinetic models for pediatric patients. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.09.10.20192005doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.10.20192005
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.09.10.20192005doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.10.20192005
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

ABSTRACT 

Aim: Several studies have reported population pharmacokinetic models for phenobarbital (PB), but 

the predictive performance of these models has not been well documented. This study aims to do 

external validation of the predictive performance in published pharmacokinetic models. 

Methods: Therapeutic drug monitoring data collected in neonates and young infants treated with PB 

for seizure control, was used for external validation. A literature review was conducted through 

PubMed to identify population pharmacokinetic models. Prediction- and simulation-based 

diagnostics, and Bayesian forecasting were performed for external validation. The incorporation of 

size or maturity functions into the published models was also tested for prediction improvement. 

Results: A total of 79 serum concentrations from 28 subjects were included in the external 

validation dataset. Seven population pharmacokinetic studies of PB were selected for evaluation. 

The model by Voller et al. [27] showed the best performance concerning prediction-based 

evaluation. In simulation-based analyses, the normalized prediction distribution error of two models 

(those of Shellhaas et al. [24] and Marsot et al. [25]) obeyed a normal distribution. Bayesian 

forecasting with more than one observation improved predictive capability. Incorporation of both 

allometric size scaling and maturation function generally enhanced the predictive performance, but 

with marked improvement for the adult pharmacokinetic model. 

Conclusion: The predictive performance of published pharmacokinetic models of PB was diverse, 

and validation may be necessary to extrapolate to different clinical settings. Our findings suggest 

that Bayesian forecasting improves the predictive capability of individual concentrations for 

pediatrics. 
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INTRODUCTION 

Phenobarbital (PB) is an antiepileptic drug (AED) targeting the γ-aminobutyric acid type A 

(GABAA) receptor, which provides a strong inhibitory response in the brain and controls seizures 

[1]. It is the gold standard treatment for partial onset of seizures and generalized seizures [1–4]. 

Particularly, it is recommended as the first-line treatment for neonatal seizure, which is a common 

neurological event in both term and preterm newborn infants and can be associated with 

neurological dysfunction or adverse cognitive outcomes requiring adequate treatment or 

management [1, 2, 5]. 

The half-life of PB is approximately 100 h in adults and 141 h in preterm infants, decreasing to 67 h 

in infants at 4 weeks old [6]. There is no clear consensus regarding the target therapeutic range of 

PB [7], but 10–40 mg/L has been reported to be effective and safe [8–13]. Serum concentrations of 

PB up to 100 mg/L are needed in some infants with refractory seizures [9]. Guidelines for the 

dosing regimen of PB for pediatric and neonatal patients are available based on body weight, and 

generally a loading dose of 20 mg/kg with a maintenance dose of 2.5–5 mg/kg/day by slow 

intravenous injections or by mouth in neonates are suggested [8]. However, optimal dose for 

neonates is still debating. Calvier et al. [14] reported that scaling of the pharmacokinetic parameters 

based on body weight is reasonable only for patients over 5 years old, and prediction error increases 

in those below this age. Bettino et al. [15] recommended a lower dose per kilogram during the 

neonatal period due to the longer mean terminal half-life, while other groups have recommended a 

higher intravenous loading dose of 30 mg/kg/day followed by a maintenance dose of 4–6 mg/kg/day 

in neonates [16, 17]. 

Therapeutic drug monitoring (TDM) or clinical pharmacokinetic consultation services (CPCS) are 

commonly used for seizure care with PB [18], due to the substantial variability of its 

pharmacokinetic characteristics [15]. Despite individualization of dosing by TDM or CPCS for PB, 
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clinically significant differences between the dose and blood concentration in individual patients 

have still been reported.  

Population pharmacokinetic (popPK) analysis is a practical method for accurate and precise 

estimation of blood concentrations in pediatric patients [19–22]. The most important issue in 

modeling approaches is whether the established model can predict the pharmacokinetics in a 

prospective study or can be extrapolated to different clinical settings, such as patients at another 

institution, particularly when the purpose of modeling is prediction of optimal individual dose [29]. 

Recently, numerous studies have evaluated the predictive capability of popPK models [30–37]. 

Several papers have indicated that the estimation with at least one prior observation using the 

population information (Bayesian forecasting) could make better predictive capability for individual 

predictions [30, 36–38]. 

In this study, we performed external validation of the published popPK models of PB to evaluate 

their predictive performance based on prediction-based diagnostics, simulation-based diagnostics, 

and Bayesian forecasting methods. In addition, incorporation of size or maturity functions into the 

published models was evaluated to improve their predictive capability in neonatal and pediatric 

populations. 

 

METHODS 

 Data collection for external validation 

External validation of PB was performed using the dataset of Back et al. [39] utilizing TDM data of 

pediatrics in the neonatal intensive care unit (NICU) of Kyunghee University hospital in patients 

receiving treatment with PB for seizure control. In that study, PB was administered in accordance 

with the general guidelines at an initial dose of 15–20 mg/kg followed by a maintenance dose of 3–

5 mg/kg/day from 12–24 h after the initial dose [8, 43]. Blood samples were taken between 5 min 
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and 3 h before the subsequent dose and drug concentrations were analyzed using a turbidimetric 

immunoassay (COBAS 6000; Roche, Grenzach-Wyhlen, Germany). Clinical and demographic 

records of the patients were collected to cover covariates in published popPK models. Gestational 

age (GA), postnatal age (PNA), postconceptional age (PCA), height, weight, body mass index 

(BMI), and weight at birth were recorded. Laboratory test results, such as serum levels of 

creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin, urine 

output, and Apgar scores at 1 min and 5 min, were extracted. Fat-free mass (FFM) was calculated as 

described previously [44]. In the case of missing covariate information for SCR, the next value 

observed in the subject was carried backward. Approval for this study was provided by the 

institutional ethics committee of Kyunghee University Hospital (IRB file no. 2015–01–026–002, 

May 29. 2016). 

 

 Selection of published popPK models 

A literature review was conducted through PubMed to screen for all published papers describing 

popPKs of PB between January 1980 and December 2019. The search was performed using the 

terms (“phenobarbital”) AND (“population”) in the abstract field. After scrutinizing the abstracts, 

reports were included if they developed popPK models of PB reporting pharmacokinetic model 

parameters and were written in English. Studies in patients of any age group, including adults, 

were included as incorporation of the size and maturation functions into the reported model would 

be performed. Reviews or studies with overlapping data or external validation of another model 

were excluded. 

 

 External validation of predictive capability of popPK models 

Published pharmacokinetic models for external validation were regenerated by nonlinear mixed 

effects modeling using NONMEM 7.4 (Icon Development Solutions, Ellicott City, MD) assisted by 
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Per-Speaks-NONMEM (PsN) 4.8.1 (https://uupharmacometrics.github.io/PsN/) and Pirana 2.9.9 

(http://www.pirana-software.com). Each popPK model was reconstructed as described in the 

literature, and the parameters were set to the published values. The NONMEM subroutine 

ADVAN6 was used for all candidate models as the external dataset contained data from both 

intravenous (IV) and oral administration. For models that used only IV data, and where the first-

order absorption constant (Ka) was not reported, it was arbitrarily fixed at 50 h–1. For the next step, 

individual serum concentrations of PB were predicted for each time point in the validation dataset 

based on the reconstructed popPK models on a one by one basis. Prediction-based diagnostics, 

simulation-based diagnostics, and Bayesian forecasting were performed to evaluate the predictive 

capability of the candidate models.  

 

 Prediction-based diagnostics 

Predictive performance was evaluated as the bias and precision using the prediction error 

percentage (PE[%]), mean prediction error (MPE), median absolute prediction error (MAPE), and 

root mean squared prediction error (RMSE) [45]. The population predicted concentration (Cpred) of 

the external dataset was estimated by simulation of the reconstructed models with reported 

parameter estimates and compared to corresponding observed concentrations (Cobs). PE(%), MPE, 

MAPE, and RMSE were calculated as follows. 

 

PE�%� � ���������	
�

��	

 ⅹ100   (1) 

MPE � �



∑ �
��
���       (2) 

MAPE � median of |�
|   (3) 
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RMSE � ��



∑ �
���
���     (4) 

The PE(%) values that fell within the range of 20% (F20) and 30% (F30) were compared as proposed 

previously [36]. 

 

Simulation-based diagnostics 

The normalized prediction distribution error (NPDE) was computed using the add-on R package, 

NPDE (https://CRAN.R-project.org/package = NPDE), in R 3.5.1 software (https://www.r-

project.org) and R studio 1.1 (www.rstudio.com) [46]. Simulated data files were generated using 

NONMEM with 1000 simulations with the fixed final parameters in the reported models. When the 

reported model adequately describes the external validation dataset, NPDE will follow a standard 

normal distribution, with a mean of zero and variance of 1. The assumption of N (0, 1) distribution 

was tested using Wilcoxon’s signed rank test for means, Fisher’s variance test, and Shapiro–Wilks 

test for normality. To visualize the distribution, quantile-quantile (Q-Q) plots, histograms of NPDE, 

scatter plots of NPDE versus each time point, or predicted concentrations were plotted in a 

predefined output format provided by the NPDE package in R.  

 

 Bayesian forecasting 

Bayesian estimation with maximum a posteriori estimation was performed to investigate whether 

predictive capability of the popPK models on the external dataset could be improved by updating 

the model with observed concentrations [47]. Fixed and random effects were set to the reported 

final values in the literature, but individual pharmacokinetic parameters were updated based on the 

first one, two, three, or all prior measurements for all subjects via first-order (FO) estimation with 

the POSTHOC option in NONMEM. Then, individual predicted concentrations (Cipred) were 
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obtained for all of the measured time points and compared to the corresponding observed 

concentrations (Cobs) to calculate the individual prediction error (IPE, Equation 5). 

 

��
�%� � ����������	
�

��	

 ⅹ100   (5) 

 Incorporation of size and maturation function 

The influences of the size and maturation function on neonates and infants were assessed by 

incorporating them into the candidate models if they did not originally include these terms. 

Exponents of 1 and 0.75 were used for allometric scaling on the body weight to reflect the size for 

clearance (CL) and volume of distribution (Vd), respectively (Equation 6). A sigmoidal Emax 

function on PCA was applied to the CL with the reported Hill coefficient and maturation half-life 

(TM50) as suggested by Back et al. [39] (Equation 7). 

 

V� � ����    ! ��

��������
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��������
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"   #�   (7) 

 

 RESULTS 

 External validation dataset 

A total of 79 trough serum concentrations from 28 neonates were included in this study. A summary 

of the demographic and clinical characteristics of the patients is presented in Table 1. The mean 

postnatal age was 32.4 days, ranging from 3 to 150 days. The mean body weight was 3.3 kg (1–6.9 

kg). The mean daily dose of PB was 1.08 mg/kg/day (0.21–4.24 mg/kg/day) given either 
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intravenously or orally. The mean serum concentration was 20.3 mg/L (5.3–42.3 mg/L) with a 

median sample time of 11.5 h after the previous dose. 

 

 Review of published popPK models 

Among 564 articles with the terms “phenobarbital” and “population” appearing in their 

summaries published between 1980 and 2019, 10 dealt with modeling or popPK analyses of PB. 

A detailed flow chart of inclusion and exclusion of papers is shown Figure S1. After processing to 

select suitable articles, a total of seven studies with nonlinear mixed effect models were included 

in this study. Grasela et al. [28] was performed in 1985 and others were reported between 2011 

and 2018. Three studies were conducted in the USA [17, 24, 28], three were conducted in Europe 

(the Netherlands [27], Serbia [26], and France [25]), and one was conducted in Japan [23]. One 

model was developed with data from adults [26] and one was from pediatric patients < 19 years 

old [17]. The remaining five models were established with data from neonates or infants [23–25, 

27, 28]. Only two studies were conducted with sample sizes of more than 100 patients [17, 26]. 

The demographic and pharmacokinetic characteristics of the published models are summarized in 

Table 2. 

All of the studies were fitted using a one-compartment model. Five had both IV and oral 

administration data, and estimations were performed using the ADVAN2 TRANS2 subroutine in 

NONMEM. Two other models were constructed with only IV data, for which the absorption rate 

constant (Ka) was fixed to an arbitrary value of 50. In the remaining models that reported Ka or 

bioavailability (F), the reported values in the literature were used for external validation. 

Interindividual variability was described with an exponential model [17, 24–27] or in proportional 

error model [23, 28]. The residual variation was described with a proportional model [17, 23, 26–

28], additive model [25], or a combined proportional and additive model [24]. 

All models that were constructed with pediatric patients indicated that body size was a predictor 
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of both CL and Vd. Meanwhile, body weight was not relevant in the model for adult subjects [26]. 

As a maturation factor, PNA or PMA was incorporated into four models to reflect physiological 

development in neonates [17, 23, 24, 27]. The detailed information for the popPK models in each 

published paper is summarized in Table 3. 

 

 Prediction-based diagnostics 

Diagnostic plots of the population predictions of each model with fixed final parameters versus 

measured concentrations of the external validation dataset showed that the model results of Voller 

et al. [27] were considerably well aligned with the unit line (y = x, red line in Figure S2). 

Meanwhile, those of Shellhaas et al. [24] and Yukawa et al. [23] were underestimated. The model 

of Vucicevic et al. [26], which was constructed for an adult population, showed a skewed 

distribution due to differences in age from our external validation dataset (Figure S2). 

To quantify predictive performance, MPE and MAPE were calculated for bias and precision, 

respectively [45]. The model proposed by Marsot et al. [25] showed superior accuracy (MPE 

0.17%) followed by that of Voller et al. [27] (MPE –2.61%). For precision, the model of Voller et 

al. [27] showed the best MAPE of 29.86% followed by those of Shellhaas et al. [24] and Yukawa 

et al. [23] with MAPEs of 32.08% and 32.32%, respectively (Figure 1, Table S1). The model of 

Vucicevic et al. [26] is not shown in Figure 1 because of the skewed distribution.  

The percentages of PE falling into the range of 20% (F20) or 30% (F30) were calculated. The 

model proposed by Voller et al. [27] was superior to the others with an F20 of 35.44% and F30 of 

50.63%. Among the others, only the model of Moffett et al. [17] showed F20 > 30%, and four 

models (those of Shellhaas et al. [24], Yukawa et al. [23], Marsot et al. [25], and Moffett et al. 

[17]) showed F30 > 40% (Table S1). Overall, the model of Voller et al. [27] showed the best 

performance in terms of prediction-based evaluation. 
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 Simulation-based diagnostics 

The NPDEs of the models of Marsot et al. [25] and Shellhaas et al. [24] obeyed a normal 

distribution with a global test p > 0.01 (Figure 2, Table S2). However, those of the others, including 

Voller et al. [27], which showed the best predictive performance in the prediction-based diagnosis, 

did not (Figure S3). 

 

 Bayesian forecasting 

Bayesian forecasting demonstrated that the individual predictive capability was improved by the 

information of more than one prior measurement in most of the models (Figure 3). Two or three 

prior observations did not result in further significant improvements except in the models of 

Marsot et al. [25] and Grasela et al. [28], where the improvement was obvious with more than 

three prior samples. The individual predictions for the pediatric population even in the adult 

model were markedly improved by Bayesian estimation, as for the model of Vucicevic et al. [26] 

(Figure S4). 

 

 Size and maturation function 

All of the published models were tested for the effects of allometric size and sigmoidal 

maturation function to improve predictive capability for pediatric populations. As three studies 

already included allometric size scaling in the original models, only the maturation function was 

tested as an added function [17, 24, 25]. Allometric size scaling and the sigmoidal maturation 

function were substituted for the originally imputed size and maturation effect in the remaining 

models. 

The model of Vucicevic et al. [26] was markedly improved by the incorporation of allometric size 

function as this study was performed with adult patients only (Figure 4). The influence of the 

application of maturity factors varied: one improved significantly [25], two improved marginally 
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[24, 28], but three models showed slight worsening [17, 23, 27] (Figure S5). Generally, four of 

the seven models investigated showed improvement with the incorporation of size and maturation 

function [24–26, 28]. 

 

 DISCUSSION 

External validation was performed for seven published popPK models of PB to evaluate their 

predictive performance using an independent TDM dataset from 28 neonates, including 11 preterm 

infants. Those studies validated the models using internal and/or external validation methods. 

Internal validation using diagnostic plots, including predicted concentrations versus observations, 

was performed most frequently (6 of 7 papers). Bootstrap techniques comparing the final parameter 

estimates with their corresponding bootstrap estimates and 95% confidence intervals of 1000 

replicates of the dataset were also used frequently (5 studies). As advanced internal validation, 

NPDE, prediction- and variability-corrected visual predictive check (pvcVPC), or predictive 

performance check via mean prediction error (ME) or mean absolute prediction error (MAE) were 

also performed. Grasela et al. [28] and Voller et al. [27] included external validation with a separate 

dataset that was not used in building the popPK models. Considering that a systematic review 

indicated that 45% of the pharmacokinetic models from all population models published between 

2002 and 2004 were only subjected to basic internal validation (GOF) and not more than 7% were 

subjected to external validation [29], the validation method involved in the candidate models was 

assumed to be comparably good. 

In the prediction-based diagnostics, the model of Voller et al. [27] showed the best predictive 

capability. Voller et al. [27] studied 53 preterm or term neonates in a TDM setting to build a popPK 

model and performed external validation with 17 preterm neonates from an ongoing prospective 

study. They reported an MPE of –8.4% in their external validation; our results are comparable 

(5.98%). In the present study, the precision (RMSE) was 8.2 μg/mL, which was the best figure 
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among the candidate models. In addition, F20 and F30 were superior to the other models (35% and 

51%, respectively). Two external validation studies set the acceptability criteria to 35% and 50% for 

F20 and F30, respectively [36, 37]. This was the only model that met these criteria and showed the 

best predictive capability determined according to the prediction-based evaluation. This is 

reasonable as the demographic characteristics of the study population, treatment period, 

loading/maintenance dosages, and bioassay method were comparable to those of the external 

validation dataset. Grasela et al. [28] reported an MPE and RMSE of 1.0 μg/mL and 5.2 μg/mL, 

respectively, for a model that included its own external validation with 15 additional patients. In the 

present study, these values were 5.05 μg/mL and 13.17 μg/mL, respectively. The considerable 

heterogeneity in the population groups between the two studies could account for these 

discrepancies and poor predictive capability. The average study periods in the literature are 8.2 days 

(range 1–16 days) and 7.3 days (range 4–9 days) for the study group and the validation group, 

respectively, while it was 26.8 days (range 1.9–99.0 days) in our data. There were also large 

differences in body weight and GA of the study populations. In addition, the serum concentration 

was measured using HPLC in previous studies, while we used an immunoassay.  

In the simulation-based evaluation, the models of Marsot et al. [25] and Shellhaas et al. [24] 

described the external validation dataset adequately, accepting the null hypothesis that the NPDE 

followed the normal distribution. Although it had the best predictive capability in prediction-based 

diagnostics, the NPDE of the model by Voller et al. [27] did not follow a normal distribution. 

Inconsistencies between prediction-based evaluation and simulation-based evaluation have also 

been reported by other groups [36, 37]. As noted by Karlsson and Sevic [48], the generation of 

appropriate simulations for NPDE analyses could be an issue in the TDM setting. The treatment 

period for our dataset ranged from 1.9 days to 99.0 days, and the sampling number varied from 1 to 

8. This implies that there was considerable heterogeneity in the dose–pharmacokinetic–response 

relations between subjects and may have resulted in inadequate simulations for NPDE evaluation. 
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In Bayesian forecasting, the individual predictive capability was improved in most of the 

models with at least one prior observation. This result is reasonable, as the benefits of Bayesian 

forecasting are well documented [30, 36–38, 49]. Meanwhile, the model of Marsot et al. [25], 

which showed comparable predictive capability without posterior information, was not markedly 

improved. The variability in individual prediction error was increased after adding posterior 

observations in the model by Grasela et al. [28]. As expected, the model of Vucicevic et al. [26] 

was markedly improved by incorporating allometric size scaling on CL and Vd because the model 

was built with adult data, and the pharmacokinetic parameters of CL and Vd for adults are related to 

allometric size scaling when applied to pediatric populations. The improvement of predictive 

capability was further driven by incorporation of PCA in the Michaelis–Menten (MM) equation on 

CL as an index of maturation, consistent with Back et al. [39]. 

Among the other models for pediatric populations, two were improved by the addition of size or 

maturation factors. Adding maturation factor in the model of Marsot et al. [25] rendered a slight 

improvement by decreasing MPE and MAPE from 14.8% to 3.6% and from 50.6% to 36.3%, 

respectively. The predictive capability of the model of Grasela et al. [28] improved with the 

inclusion of the size and maturation functions although the authors found no effects of GA on CL. 

They explained that no influence on clearance was detected as their subjects had GA < 34 weeks. 

Yukawa et al. [23] and Shellhaas et al. [24] identified PNA as an important maturation marker, 

Moffett et al. [17] reported PMA as a marker of maturity and Voller et al. [27] suggested that PNA 

and birthweight were correlated with CL. For these four models, substitution of the reported 

covariates with PCA based on the MM equation did not yield benefit with regard to predictive 

capability. Our results suggest that adding the maturation factor into pharmacokinetic models for 

pediatric populations could be beneficial for predictive performance, but it was not necessary to 

substitute PCA based on MM equation in place of the other maturation covariates. 

The methodology used for Bayesian forecasting in our study could have limitations. In the present 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.09.10.20192005doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.10.20192005
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

study, all 28 subjects were included in the Bayesian estimation step and each subject contributed 

one, two, or three observations as long as available. Based on the updated individual 

pharmacokinetic parameters through Bayesian estimation, the individual predictions were obtained 

for all time points for the subjects. In studies that have reported successful Bayesian forecasting, 

only the last observations had been predicted for subjects who met the criterion for the certain 

number of prior observations [30, 36, 37]. Nonetheless, our results suggest that even a less 

parsimonious Bayesian forecasting methodology could be useful to predict more precise individual 

concentrations. The absence of history regarding concomitant drugs in our data may represent 

another limitation. There is potential for multiple medications during PB therapy [6]. Since PB is 

largely metabolized by CYP2C9 isozymes and can also act as an inducer of CYP3A4, it shows 

drug–drug interactions with other CYP substrates [6, 17]. Among the studies included in the 

investigation, two reported significant drug–drug interactions with valproic acid, phenytoin, 

midazolam, or pantoprazole [17, 26]. Due to the absence of information on concomitant drugs in 

our study, the influence of drug–drug interactions could not be examined as a factor affecting the 

predictive performance of corresponding studies, which may have resulted in misspecification to 

some extent. 

 

 CONCLUSIONS 

Published popPK models of PB showed a wide degree of variation in predictive performance, and 

validation may be necessary for extrapolation to different clinical settings. The model of Voller et 

al. [27] showed the best performance from the viewpoint of prediction-based evaluation with 

considerable accuracy and precision. Our findings suggest that Bayesian forecasting could be useful 

to improve the predictive capability of individual concentrations for pediatric populations. In 

addition, incorporation of both size and maturation function could help to enhance the predictive 

performance of PK models for pediatric patients. 
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TABLES 

Table 1. Demographic characteristics of external validation dataset 

Characteristics Mean ± SDs Range 

No. of patients (preterm infants) 28 (11)  

No. of concentrations 79  

Gender   

Male/Female 11/17  

Age   

GA (weeks) 36.7 ± 4.4 23.6−41.7 

PNA (days) 32.4 ± 30.9 3−150 

PCA (weeks) 38.6 ± 3.3 31−51.1 

Body weight (kg) 3.3 ± 1 1−6.9 

Birth weight (kg) 2.64 ± 0.87 0.4−3.81 

Height (cm) 50.6 ± 5.8 31−63.2 

Daily dose (mg/kg/day) 1.08 ± 0.61   0.21-4.24 

Serum concentration (mg/L) 20.3 ± 9.2 5.3−42.3 

Sampling time (hours)a 11.5 7.5-24 

Time to last sampling (days) 26.8 ± 29.0 1.5-99.0 

5-min Apgar score 4.8 ± 3.3 1-10 

GA, gestational age; PNA, postnatal age; PCA, post-conceptional age; SD, standard deviation; 
a sampling time was expressed in a median time after dose 
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Table 2 Demographic characteristics of population PK models in published papers 

Study (Year) Country 
 

No. of Patients/ 
Observations 

Subjects 
(Age) 

Dosing Concentrations(mg/L) Assay Method 

Moffett et al 
(2018) 

USA 355/NA Pediatric, <19 years 
(14.6 weeks, 
IQR[3.1, 42.8]) 

LD 10-20mg/kg 
MD 3-8mg/kg 

41.1±23.9 Chemiluminescent 
microparticle immunoassay 
(VITROS) 

Voller et al 
(2017) 

Netherlands 53/229 Neonates 
(4.5days, [0-22]) 

LD 20mg/kg(4-40.7) 
MD 3.9 mg/kg (1.3-20) 

Range 3.2-75.2 Fluorescence polarization 
immunoassay (COBAS 
INTEGRA) 

Vucicevic et al 
(2015) 

Serbia 136/205 Adults 
(42.04 years, SD 13) 

130.2±58.37mg/day 19.26±9.003 Homogeneous enzyme 
immunoassay (Emit 2000) 

Marsot et al 
(2014) 

France 48/94 Neonates and infants 
(3.8weeks, [0-29.4]) 

LD 10-20mg/kg 
MD 5mg/kg 

26±9.8 Immunoassay (Microgenic 
reagents, Olympus AU400) 

Shellhaas et al  
(2013) 

USA 39/164 Term neonates with 
HIE 
(13.1days) 

NA NA NA 

Yukawa et al  
(2011) 

Japan 70/109 Neonates and infants 
(15.8days [1-73]) 

23.5±16.3 
mg(suppository) 
7.8±2.1 mg(powder) 

29.7±19.0 (suppository) 
10.7±4.6 (powder) 

Immunoassay (Emit 2000 
Phenobarbital assay reagent, 
COBAS-FARA) 

Grasela et al 
(1985) 

USA 59/160 Preterm infants 
(8.2days [1-16]) 

NA NA HPLC 

NA, not available; IQR, interquartile range; IV, intravenous; HIE, hypoxic ischemic encephalopathy; LD, loading dose; MD, maintenance dose; HPCL, high-pressure liquid 
chromatography; Ages are expressed either in median or mean postnatal age with range in bracket if not specified; Concentrations are expressed in mean ± standard deviation (SD) if 
not specified. 
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Table 3. Population PK models in published papers 

Study (Year) Parameters BSV(%) Residual error Covariates explored 

Moffett et al.  
(2018) 

CL = 0.372·(FFM/70)0.75·(0.3/SCR)0.265·(1/(1+(PMA/41)4.22) 

·0.596PHENY·0.761MIDAZ·1.25PANTOP 

Vd = 62.5·(FFM/70)·0.981LN(AGEYRS/0.28) 
Ka = 0.8 
F = 0.89 

CL 44.6 
Vd 33.3 

14.8% WT, FFM, PMA, SCR, AGEYRS, DDI(FSP, 
PANTOP, MTN, OXC, LNS, FCZ, ZNS, 
TPM, MIDAZ, PHENY, LTG, VLP, CBZ, 
RFP, FLB, VGB), Temperature 

Voller et al. 
 (2017) 

CL = 0.0091·{1+0.0533·(PNAi-4.5)}·{1+0.369·(bBWi-2.6)} 

Vd = 2.38·{1+0.309·(aBWi-2.7)} 

Ka = 50 FIX 
F = 59.4% 

CL 30.0 
Vd 22.4 

2.58% aBW, bBW, PNA, PMA, GA, sex, HT, Apgar 
score, SCR, umbilical artery pH 

Vucicevic et al. 
(2015) 

CL/F = 0.314·(1-0.248·DVPA/1000) 

V/F = 0.6 L/kg FIX 
Ka = 3 FIX 

CL 0.199 0.147 Sex, co-therapy(LTG, TPM), WT, age, SCR, 
AST, ALT, DCBZ, DVPA 

Marsot et al.  
(2014) 

CL = 0.191·(WT/70)0.75 

V=44.6·(WT/70) 

F=0.489 
Ka =50 FIX 

CL16.6 
V49.5 
F 39.4 

7.22mg/L WT, Sex, PNA, GA 

Shellhaas et al.  
(2013) 

CL = 0.672·(WT/70)0.75·{PNAc/(22.1+PNAc)} 

V = 64.9·(WT/70) 

CL 0.175 0.197 
6.12  

WT, GA, Apgar scores, AST, ALT, PNAc, 
TH 

Yukawa et al.  
(2011) 

CL/F = (5.95·TBW+1.41·PNA (weeks))·Conc-0.221 

Conc-0.221 = 1 (if Conc<50ug/mL) 

V/F=1.01·TBW 

F=0.483(oral) 
F=1(suppository) FIX 
Ka =50 FIX 

CL 26.0 
Vd 61.2 

22.5% TBW, GA, PNA, PCA, sex, Conc 

Grasela et al. 
(1985) 

CL=0.0047·WT 

Vd =0.96·WT·(1+0.135·APGAR) 

CL 19 
Vd 16 

10.7% APGAR, GA, Sex, Age, birth weight 
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BSV, between subject variability; CL, clearance; FFM, fat-free mass; SCR, serum creatinine; PMA, postmenstrual age; PHENY, phenytoine (yes/no); MIDAZ, midazolam (yes/no); PANTOP, 
pantoprazole (yes/no); AGEYRS, age in years; Vd, volume of distribution; LN, natural log; Ka, absorption rate constant; F, bioavailability; PNA, post-natal age; aBW, actual body weight; bBW, birth 
body weight; DVPA, valproic acid daily dose (mg); WT, weight; PNAc, continuous post-natal age; TBW, current total body weight; Conc, serum concentration of PHB; APGAR, Apgar score at 5 
minute, either 1 (<5) or zero (≥5); DDI, drug-drug interaction; FSP, fosphenytoin; MTN, metronidazole; OXC, oxcarbazepine; LNS, lansoprazole; FCZ, fluconazole; ZNS, zonisamide; TPM, 
topiramate; LTG, lamotrigine; VLP, valproate; CBZ, carbamazepine; RFP, rifampin; FLB, felbamate; VGB, vigabatrin; DCBZ, carbamazepine daily dose; GA, gestation age; AST, aspartate 
aminotransferase; ALT, alanine aminotransferase; TH, therapeutic hypothermia; PCA, post-conceptual age  
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Table S1. Results of prediction based diagnostics 

Model 
MPE 

(ug/mL) 
MAPE 

(ug/mL) 
RMSE 

(ug/mL) 
MPE(%) MAPE(%) F20% F30% 

Moffett et al 5.24 9.16 11.82 21.9 39.76 31.65 40.51 

Voller et al al -0.49 6.56 8.20 -2.61 29.86 35.44 50.63 

Vucicevic et al 
al 

-19.57 19.57 21.63 -95.08 95.08 0 0 

Marsot et al 0.91 8.17 10.16 0.17 36.42 29.11 44.30 

Shellhaas et al -5.11 7.21 9.35 -21.19 32.08 25.32 46.84 

Yukawa et al -4.45 7.55 9.38 -21.55 32.32 27.85 45.57 

Grasela et al 5.05 10.57 13.17 23.47 35.92 25.32 37.97 

MPE, mean prediction error; MAPE, median absolute prediction error; RMSE, root mean squared error; MPE(%), Median 
percentage prediction error; MAPE(%), Median absolute percentage error; F20%, percentage of prediction error that falls within 
±20%; F30%, percentage of prediction error that falls within ±30%. 
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Table S2. Results of simulation based diagnostics using normalized prediction distribution errors, NPDE 

Model 
Mean Variance Skewness Kurtosis 

value P value* value P value† value P value‡ value P value¶ 

Moffett et al -0.54 0.004 2.59 <0.001 0.39 0.066 -0.09 <0.001 

Voller et al -0.42 0.126 5.93 <0.001 0.20 <0.001 -1.35 <0.001 

Marsot et al -0.03 0.836 1.34 0.048 0.04 0.598 -0.46 0.145 

Shellhaas et al 0.34 0.009 1.25 0.139 0.50 0.06 -0.28 0.028 

Yukawa et al 0.42 0.006 1.73 <0.001 0.19 0.029 0.47 <0.001 

Grasela et al -0.83 <0.001 5.46 <0.001 0.49 <0.001 -1.21 <0.001 

 

Table S2. Under the null hypothesis that the population pharmacokinetic model describes adequately the data in the external validation data set, the npde will follow a normal distribution N 

(0,1). The statistical tests were performed with a Wilcoxon signed rank test (*), a Fisher test (†), a Shapiro-Wilks test (‡), and global test reported as the minimum of the three p-values 

multiplied by 3 (¶). 
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FIGURES 

Figure 1. Box plots of prediction errors of population PK models of phenobarbital. Thick solid line 

represents the mean error of zero and dot dashed line corresponds to the range of -30% and 30% difference 

from mean error. 

 

Figure 2. Normalized prediction distribution error (NPDE) plots of external validation data set for the models 

by Marsot et al. (A) and Shellhaas et al .(B): Quantile-quantile (q-q) plot of NPDE versus the expected 

standard normal distribution (upper left). Histogram of npde with the density of the standard normal 

distribution (upper right). The blue prediction intervals are obtained from the theoretical normal distribution. 

Scatterplot of the npde versus time after first dose in hour (lower left). The pink areas are the prediction 

interval for the median, while the blue areas show the prediction areas for the boundaries of the 95% 

prediction intervals. Scatterplot of npde versus predicted concentrations in ug/mL (lower right). 

 

Figure 3. Box plots of individual prediction errors of population pharmacokinetic models of phenobarbital 

with Bayesian forecasting in different number of prior measurements; 0, 1 2, 3 and all the observed 

measurements. Thick solid line represents the mean error of 0 and dotdashed line corresponds to the range of 

-30% and 30%. For the Bayesian estimation of the model by Yukawa et al., 5 subjects with negative 

individual PK parameters estimated were excluded from the analysis. 

 

Figure 4. (A) Box plots of prediction errors without or with incorporation of size or maturation function of 

the model by Vucicevic et al. Box plots were plotted from the predicted concentrations with estimated thetas 

with the external dataset, without size or maturation function, with size function, with maturation function, or 

with both size and maturation function, respectively. Thick solid line represents the mean error of 0 and 

dotdashed line corresponds to the range of -30% and 30%. (B) Diagnostic plots of predicted versus observed 

measurement before (left) and after (right) incorporation of size or maturation function into the model by 

Vucicevic et al. The led line represents the identity line. 
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Figure S1 Overview of literature search 

 

Figure S2. Goodness–Of-Fit plot of population predicted concentrations (ug/mL) versus observed 

concentrations (ug/mL) of phenobarbital for the external validation dataset and population pharmacokinetic 

models. The red line represents the identity line (y=x). 

 

Figure S2. Normalized prediction distribution error (NPDE) plots of external validation data set for the 

investigated models, Moffett et al. (A), Yukawa et al. (B), Voller et al. (C), Vucicevic et al. (D), Grasela et 

al. (E): Quantile-quantile (q-q) plot of NPDE versus the expected standard normal distribution (upper left). 

Histogram of npde with the density of the standard normal distribution (upper right). The blue prediction 

intervals are obtained from the theoretical normal distribution. Scatterplot of the npde versus time after first 

dose in hour (lower left). The pink areas are the prediction interval for the median, while the blue areas show 

the prediction areas for the boundaries of the 95% prediction intervals. Scatterplot of npde versus predicted 

concentrations in ug/mL (lower right). 

Figure S4. Box plots of individual prediction errors of population pharmacokinetic models by Vucicevic et 

al. with Bayesian forecasting in different number of prior measurements; 0, 1 2, 3 and all the observed 

measurements. Thick solid line represents the mean error of 0 and dotdashed line corresponds to the range of 

-30% and 30%. 

 

Figure S5. Box plots(upper) and diagnostic plots(bottom) of prediction errors without or with incorporation 

of size or maturation function of each candidate models. Box plots were plotted from the predicted 

concentrations with estimated thetas with the external dataset, without size or maturation function, with size 

function, with maturation function, or with both size and maturation function, respectively. Thick solid line 

represents the mean error of 0 and dotdashed line corresponds to the range of -30% and 30%. In the 

goodness-of-fit plots, predicted concentration versus observed measurement were shown before (left) and 

after (right) incorporation of size or/and maturation function into the model. The red line represents the 

identity line. 
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Figure 1. Box plots of prediction errors of population PK models of phenobarbital. Thick solid line represents 

the mean error of zero and dot dashed line corresponds to the range of -30% and 30% difference from mean 

error.  
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Figure 2. Normalized prediction distribution error (NPDE) plots of external validation data set for the models 

by Marsot et al. (A) and Shellhaas et al. (B): Quantile-quantile (q-q) plot of NPDE versus the expected standard 

normal distribution (upper left). Histogram of npde with the density of the standard normal distribution (upper 

right). The blue prediction intervals are obtained from the theoretical normal distribution. Scatterplot of the npde 

versus time after first dose in hour (lower left). The pink areas are the prediction interval for the median, while 

the blue areas show the prediction areas for the boundaries of the 95% prediction intervals. Scatterplot of npde 

versus predicted concentrations in ug/mL (lower right). 
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Figure 3. Box plots of individual prediction errors of population pharmacokinetic models of phenobarbital with 

Bayesian forecasting in different number of prior measurements; 0, 1 2, 3 and all the observed measurements. 

Thick solid line represents the mean error of 0 and dotdashed line corresponds to the range of -30% and 30%. 

For the Bayesian estimation of the model by Yukawa et al., 5 subjects with negative individual PK parameters 

estimated were excluded from the analysis. 
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Figure 4. (A) Box plots of prediction errors without or with incorporation of size or maturation function of the 

model by Vucicevic et al. Box plots were plotted from the predicted concentrations with estimated thetas with 

the external dataset, without size or maturation function, with size function, with maturation function, or with 

both size and maturation function, respectively. Thick solid line represents the mean error of 0 and dotdashed 

line corresponds to the range of -30% and 30%. (B) Diagnostic plots of predicted versus observed measurement 

before (left) and after (right) incorporation of size or maturation function into the model by Vucicevic et al. The 

led line represents the identity line. 

 

(A) 

(B) 
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