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Masks are a vital tool for limiting SARS-CoV-2 spread in the population. Here we utilize a 

mathematical model to assess the impact of masking on transmission within individual 25 

transmission pairs and at the population level. Our model quantitatively links mask efficacy to 

reductions in viral load and subsequent transmission risk. Our results reinforce that the use of 

masks by both a potential transmitter and exposed person substantially reduces the probability of 

successful transmission, even if masks only lower exposure viral load by ~50%. Slight increases 

in mask adherence and/or efficacy above current levels would reduce the effective reproductive 30 

number (Re) substantially below 1, particularly if implemented comprehensively in potential 

super-spreader environments. Our model predicts that moderately efficacious masks will lower 

exposure viral load 10-fold among people who get infected despite masking, potentially limiting 

infection severity. Because peak viral load tends to occur pre-symptomatically, we also identify 

that antiviral therapy targeting symptomatic individuals is unlikely to impact transmission risk. 35 

Instead, antiviral therapy would only lower Re if dosed as post-exposure prophylaxis and if given 

to ~50% of newly infected people within 3 days of an exposure. These results highlight the 

primacy of masking relative to other biomedical interventions under consideration for limiting 

the extent of the COVID-19 pandemic prior to widespread implementation of a vaccine. 

  40 
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Introduction 

 

 Masks are a barrier method to prevent the spread of respiratory viral infections. A mask 

essentially serves as a filter that prevents passage of some portion of viruses from the airway of 

the transmitter to the airway of exposed contacts. Mask efficacy is therefore mediated by a 45 

reduction in exposure viral load (1, 2). If a potential transmitter as well as an exposed contact are 

masked, then this filtering process occurs twice potentially amplifying protection.  

Mask efficacy is inferior to that of other, less permeable barrier methods to prevent 

infections such as condoms (1, 3, 4). The most commonly used cloth and hospital masks do not 

provide a perfect facial seal and mask fabric does not block emission or inhalation of all 50 

aerosolized viral particles (5, 6).  N95 masks may bypass these shortcomings but are in short 

supply and difficult to wear for long periods of time (7, 8). As a result of these imperfections, 

recommendations for mask use have varied over the course of the COVID-19 pandemic. 

Nevertheless, widespread mask use is recognized as a critical component of any viable public 

health strategy against COVID-19 (9-11). Recent models demonstrate that slight increases in 55 

mask utilization could be the single most important factor that prevents exponential growth in 

incident cases (12-14). 

Quantifying mask efficacy in real-world settings remains challenging. Elegant 

experimental work demonstrated the efficacy of masks in animal models (15).  Many studies 

have been performed in hospital settings where mask compliance is uniform and other 60 

complementary infection prevention methods are more commonly employed than in other public 

gathering or work locations (16, 17). To the best of our knowledge, no study has captured the 

impact of masking on the likelihood of super-spreader events, with specific consideration of 

intermittent compliance. 

 Here we develop a mathematical model capturing viral load-mediated effects of mask use 65 

on transmission probability within transmission pairs and at the population level. We use this 

approach to estimate the efficacy of masks in real world settings, and to characterize effects on 

super-spreader events as well as exposure viral loads of those who get infected despite masking. 

Finally, we compare the preventative impact of masking to the use of antiviral therapies given 

early during symptomatic infection, or when used as post-exposure prophylaxis (PEP). 70 
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Results 

 

Baseline mathematical model of SARS-CoV-2 viral load dependent transmission. We 

employed a previously developed mathematical model which links viral load shedding at the 75 

individual level with population level epidemic spread (18, 19), to determine the impact of masks 

on epidemics. Briefly, the model is built upon the assumptions that each transmitter has a 

specific number of exposure contacts per day and that each exposure contact has a certain 

probability of successful transmission based on the viral load of the transmitter. This probability 

is based on a transmission dose (TD) response curve. We fit the model to frequency histograms 80 

describing heterogeneity of individual R0, or the number of secondary infections attributed to 

each infected person (20-24). The individual R0 distribution for SARS-CoV-2 transmission is 

highly over-dispersed, meaning that most infected people do not spread infection while a 

minority infect a large number of people. We also fit the model to distributions of individual 

serial intervals, the time from the onset of symptoms in the transmitter to symptom onset in the 85 

secondarily infected person (25). The overall qualitative conclusions of this model were that the 

period of contagiousness for SARS-CoV-2 is quite short, typically less than a day, and that 

super-spreader events are largely attributable to high variability in the number of exposure 

contacts per day among infected people. 

  90 

Predicted impact of transmitter or exposure contact masking on transmission probability 

within transmission pairs. We added masking to this model by assuming that a mask decreases 

the exposure viral load in a transmission pair by a value that we refer to as the combination mask 

efficacy (eC). This efficacy represents the proportion of viruses filtered by masks worn by both 

the transmitter and exposed person. If the transmitter is wearing mask with efficacy eT and the 95 

exposed person is wearing a mask with efficacy eE, then the exposure viral load VE can be related 

to the transmitter viral load VT by: VE = VT (1-eT)(1-eE). The combination mask efficacy is then 

eC=1-(1-eT)(1-eE), which takes on a value of zero when both parties are not wearing a mask or 

wearing masks that are totally ineffective (Fig 1).  

As in our prior model, the exposure viral load impacts contagiousness, which is the 100 

probability that virus is passaged to the exposed person’s airway, as well as infectiousness, the 

probability of cellular infection given the presence of virus in the airway. Each of these 
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properties is associated with a dose response curve (contagiousness dose (CD) response curve 

and infectiousness dose (ID) response curve), the product of which is the TD response curve. 

 In this context, we first establish a baseline probability of transmission given no use of 105 

masks on both sides of a potential transmission pair (Fig 2a). The absolute & relative reductions 

in transmission probability with more effective masks vary as VT increases. At lower viral loads 

(<107.5 viral RNA copies), a moderate to highly effective mask worn by either a transmitter 

(0.9>eT≥0.5) or an exposed contact (0.9>eE≥0.5) is sufficient to partially lower the absolute 

probability of transmission (Fig 2b-c, Sup fig 1a). The relative reduction in transmission 110 

probability increases linearly with increasing mask efficacy at 107 viral RNA copies with an 

increasingly concave, curvilinear relationship at higher viral loads (Sup fig 1c). 

At higher transmitter viral load (107.5–109 viral RNA copies), a moderate to highly 

effective mask worn by either a transmitter (0.9>eT≥0.5) or an exposed contact (0.9>eE≥0.5) 

insignificantly lowers the absolute probability of transmission (Fig 2b-c, Sup fig 1a). At high 115 

viral loads, the relative reduction in transmission probability increases dramatically with 

extremely effective masks of efficacy ≥0.9, when the mask is worn by either a transmitter or an 

exposed contact (Sup fig 1c). 

 

Predicted impact of dual masking on transmission probability within transmission pairs. If 120 

both the transmitter and exposed person wear masks (dual masking), then lower mask efficacies 

are sufficient to significantly lower transmission risk at a wider range of exposure viral loads 

(Fig 2d). At viral loads <108 viral RNA copies, masks worn by both transmitter and exposed 

contact of more than moderate efficacy (eT≥0.5, eE≥0.5 resulting in eC≥0.75), is sufficient to 

partially lower the absolute probability of transmission (Fig 2d, Fig 3, Sup fig 1b). The relative 125 

reduction in transmission probability according to mask efficacy increases more rapidly with 

dual (Sup fig 1d) compared to single (Sup fig 1c) masking. If both transmitter and exposed 

contacts wear masks with eT= 0.9 and eE = 0.9 (eC=0.99), then transmission probability is 

reduced to <5% for viral loads <108.5 viral RNA copies and to ~20% for transmitter viral load of 

109 viral RNA copies (Fig 2d, 3d & Sup fig 1c).   130 

 

Predicted impact of transmitter and exposure contact masking on effective reproduction 

number (Re) at different levels of implementation. We next explore the impact of general 
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masking adherence rates on population level metrics of infection by simulating 3000 potential 

transmitters assuming heterogeneity in viral load trajectories and exposure contact networks 135 

among individuals. Reduction in the effective reproductive number (Re) depends on both the 

mask efficacy levels (eT and eE) and the level of adherence to masking (Fig 4). If we assume 

25% of people wear masks 25% of the time, then most variability in results occur due to the 

stochastic nature of the model (Fig 4a). If we assume that 50% of people wear masks 50% of the 

time, then the use of masks with high efficacy of ~0.9 results in a drop of Re from ~1.8 to ~1.0 140 

(Fig 4b). With 75% of people wearing masks 75% of the time, a mask efficacy of ~0.5 allows 

for a reduction of Re from ~1.8 to ~1.0 (Fig 4c). With 100% of people wearing masks 100% of 

the time, then a mask efficacy of ~0.3 is sufficient to achieve Re ~1.0, and efficacy of 0.5 in both 

transmitter and exposed contacts lowers Re to less than 0.6 (Fig 4d). 

 Current estimates of daily mask use over the last 2 months vary between states in the 145 

United States between 40 and 60% (http://www.healthdata.org/acting-data/maps-mask-use), and 

Re has varied between 0.8 and 1.2 (https://covid19-projections.com/us). These results suggest 

that panel Fig 4c is likely the closest to current U.S. epidemic conditions and that eT and eE likely 

fall roughly between 0.4 and 0.6 in a real-world setting, if mask efficacy is equivalent between 

transmitter and exposed contacts. While a combined efficacy eC of 0.65-0.85 can be roughly 150 

estimated from the model, the possibility of superior efficacy of masks in transmitters versus 

exposed, or vice versa, cannot be excluded. 

  

Proportions of infections attributable to masked and unmasked transmission pairs. We next 

project the proportion of transmission events attributable to different masking profiles among 155 

transmission pairs assuming equally effective mask (e) used by both transmitters and exposed 

contacts. In circumstances with low mask utilization (25% of people wearing masks 25% of the 

time), nearly all transmissions occur from an unmasked person to an unmasked person (Fig 5a). 

A similar trend is noted for moderate mask utilization (50%), particularly as mask efficacy 

increases (Fig 5b).  160 

For high (75%) and extremely high (90%) mask utilization scenarios, if mask efficacy is 

moderate (e~0.6) as is currently believed, then a higher proportion of transmissions occur to or 

from a person wearing a mask, despite the fact that the total number of transmissions 

dramatically decreases (Fig 5c, d).  
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We project that at current epidemic conditions in the United States, including ~50% mask 165 

use (similar to 75% of people wearing masks 75% of the time) and mask efficacy of 0.3-0.6, that 

fewer than half of ongoing transmissions occur within unmasked pairs and that transmission 

between masked transmitters or masked exposed contacts likely contributes significantly to Re 

(Fig 5c). 

 170 

Predicted impact of transmitter and exposure contact masking on super-spreader events. We 

next identified that increased mask compliance and efficacy dramatically decreases the 

proportion of infected people who successfully transmit to another person (Fig 6a-d). If 50% of 

people were to wear 50% effective masks half of the time, then the likelihood of an individual 

transmitting decreases from 30% to 20% (Fig 6b). If mask compliance is increased to 75% of 175 

people 75% of the time, then the likelihood of a person transmitting decreases to ~15% (Fig 6c). 

 When masking is applied homogeneously across the population, the proportion of 

infectors (transmitters who infect at least one person) who pass the infection to 5 or more people 

decreases, as mask utilization and efficacy increase (Sup fig 2a-d). Increased mask utilization 

and increased mask efficacy leads to an even reduction of all types of transmission events, 180 

including transmissions to small numbers (1-3) of people, or super-spreader events to >5, >10, 

>20 or >50 people (Fig 7a-d). Improvements in mask efficacy have a larger impact as utilization 

of mask use increases, including against super-spreader events (Fig 7c, d). Under all simulations, 

super-spreader events with transmission to >5 people persist and make a nearly equivalent 

contribution proportionally to overall Re, though their absolute impact is considerably lessened 185 

with higher mask compliance and efficacy.  

Our results suggest that with current levels of masking in the United States (Fig 7c, e= 

0.3-0.6), most of the contribution to Re still comes from super-spreader events involving >5 

secondary infections. We therefore simulated masking applied to 100% of people with >10 

exposure contacts per day (Sup fig 3a-d) and found that even modest uptake of moderately 190 

effective masks (~0.5) in the remainder of the population appeared to be sufficient to maintain Re 

<1. 

 

Predicted impact of transmitter and exposure contact masking on viral inoculum at time of 

infection. Another theoretical benefit of masks is reduction in exposure viral load which in 195 
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animal models of SARS-CoV-1 and MERS, leads to less severe infection (26-28). Simulating 

under the assumption that 75% of people wear masks 75% of the time (i.e., a situation 

representing current levels of masking in the United States), we identified that viral load of a 

transmitter required to generate secondary infections increases slightly with higher 

implementation of more efficacious masks, particularly with dual masking of transmitters and 200 

exposed contacts (Fig 8a). Viral load exposure at the time of a successful transmission decreased 

according to efficacy of mask, particularly if both transmitters and exposed contacts are masked 

(Fig 8b). With dual masking in place with efficacies of 0.6, exposure viral load decreased by ~1 

log (Fig 8b). With dual masking in place with efficacies of 0.9, exposure viral load decreased by 

~2 logs (Fig 8b). 205 

 

Predicted impact of antiviral therapy during early symptomatic infection on Re. Treatment as 

prevention is a highly effective means for reducing person-to-person transmission of HIV (29, 

30). Our models predict that initiation of potent antiviral therapy early after symptom onset is 

likely to have therapeutic benefit (18). We therefore tested whether early symptomatic therapy 210 

which rapidly eliminates shedding might also decrease secondary transmissions. Owing to the 

fact that symptomatic therapy would almost invariably occur after peak viral shedding (Sup Fig 

4a), our simulations suggest that even widespread implementation of early symptomatic therapy 

would not lower Re (Fig 9a), percentage of infected people who transmit to at least one other 

person (Fig 9c) or percentage of infectors who transmit to at least 5 other people (Fig 9e). 215 

 

Predicted impact of PEP on Re. PEP is also a potential method for lowering SARS-CoV-2 

transmissions. Because PEP is given in the pre-symptomatic phase and would usually fall before 

or near peak viral shedding (Sup Fig 4b), our simulations suggest an inverse linear relationship 

between uptake of PEP and Re (Fig 9b), percentage of infected people who transmit to at least 220 

one other person (Fig 9d) or percentage of infectors who transmit to at least 5 other people (Fig 

9f). To achieve Re <1 would require PEP efficacy of 50% and ~75% uptake in the population, 

which would in turn require 75% of SARS-CoV-2 cases to be contact traced. Increases in PEP 

efficacy beyond 0.5 would provide minimal to no enhancement of this benefit (Fig 9b).  
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 We further determine that the timing of PEP is critical. If PEP is initiated within 2 days of 225 

exposure, then the percent of people receiving effective treatment is highly predictive of Re (Fig 

10). However, from day 3 onwards, the impact of effective PEP diminishes (Fig 10). 

Overall, these results highlight the fact that masking is likely to have more of an impact 

on Re than any form of licensed antiviral therapy that emerges during the course of the pandemic. 

 230 
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Discussion 

 Relative to other barrier methods for preventing the spread of infectious diseases such as 

condoms, masks are imperfect (31). Surgical and cloth masks, which are now used commonly by 

members of the public, do not completely eliminate droplet and airborne emission of viral 235 

particles by a transmitter (1). Nor do they prevent viral exposure to airway cells among exposed 

contacts. Their effectiveness in real world settings is further limited by intermittent compliance 

and improper masking technique. As a result, masks only prevent a proportion of person-to-

person transmissions. 

 Nevertheless, our results demonstrate that in the absence of a licensed vaccine, based on 240 

moderate efficacy, low cost, high availability, and ease of use, masks are the most effective 

currently available biomedical intervention. If implemented widely and strategically, on top of 

baseline levels of physical distancing, masking would be sufficient to suppress ongoing spread of 

SARS-CoV-2 until widespread deployment of a vaccine is possible. More specifically, our 

model suggests that increased masking would lower the effective reproduction number (Re), 245 

lower the percentage of infected people who transmit the virus, decrease the total number of 

super-spreader events, and lower the exposure viral loads among infected people, possibly 

leading to less severe infections overall (26).  

Importantly, there appears to be a critical threshold of compliance. We predict massive 

additional benefits accrued with an increase in masking compliance from 75% of people masking 250 

75% of the time to 90% of people masking 90% of the time. Masking also highlights the critical 

nature of suppressing super-spreader events. If nearly 100% compliance could be achieved 

among persons with 10 or more exposure contacts per day, then this would be sufficient for 

maintaining Re less than one. This result highlights that policies mandating the proper use of 

masks at all times by all persons at sites of known super-spreader events including high risk 255 

work environments, locker rooms, weddings, social gatherings, and schools should be 

considered.  

Slight increases in mask efficacy could also drive Re to much lower levels. We believe 

that different types of masks should be comparatively tested with the same scientific rigor 

applied to clinical trials of small molecular agents and vaccines. 260 

An important artifact of widespread masking is that while the total number of incident 

cases is expected to decrease dramatically, the proportion of transmissions in which at least one 
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member of the transmission pair is masked will be higher. Therefore, anecdotal documentation 

of successful infections between masked individuals, or even super-spreader events in which 

many infected people were masked, should not be misinterpreted as failure of masking policy.  265 

The counterfactual, that masks limited the severity of these events, is likely to be true. Only 

longitudinal incidence data, along with shifts in level of masking in a given region, are 

appropriate for inferring the effectiveness of masks. 

It is unlikely that antiviral therapy will prove nearly as useful as widespread masking for 

preventing transmissions. We previously demonstrated that antiviral therapy given during the 270 

early symptomatic phase of infection has the potential to limit duration of shedding and infection 

associated inflammation and is likely to be more efficacious than therapy given later during 

COVID-19 to hospitalized patients (18).  Unfortunately, early symptomatic therapy would likely 

occur after peak viral load in a majority of cases. Our simulations suggest that even 100% 

penetrance of extremely potent antiviral therapies would have a negligible impact on population 275 

level spread of the virus.  Therefore, while treatment as a prevention is a vital piece of HIV 

public health policy (30), it is unlikely to impact the COVID-19 pandemic. 

On the other hand, treatment in the earliest pre-symptomatic phase of infection, which 

could only realistically occur in the setting of PEP, happens prior to peak viral load and therefore 

could limit secondary transmissions. However, the gains from this approach diminish with each 280 

day following exposure. In order to meaningfully impact Re, over 50% of exposed contacts 

would need to receive fully effective therapy within 3 days of an exposure. Given that no 

available agent yet achieves this level of efficacy and that identifying 50% of post-exposure 

contacts is unrealistic in most countries, it is clear that relative to masking, PEP will only have an 

adjunctive role in managing the pandemic. Potential areas of implementation are among high risk 285 

populations such as skilled nursing facility residents or cancer center patients and among 

populations where masking is difficult or impossible. 

Our prior work strongly suggests the presence of a transmission dose response curve in 

which exposure viral load is a key determinant of transmission risk (32, 33). Our current analysis 

is built upon this assumption.  We project that masks will lead to a lower exposure viral load 290 

among newly infected people, particularly if both the transmitter and exposed individual are 

successfully masked. Animal models of SARS-CoV-1 and MERS (27, 28, 34),  as well as 

challenge studies with influenza H1N1 in humans (35), all demonstrate that lower exposure dose 
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is associated with less severe disease, and human data from the Hong Kong SARS-CoV-1 

outbreak in Hong Kong suggest a similar trend (36). While data for SARS-CoV-2 in humans is 295 

lacking, it is notable that age-adjusted hospitalization and death rates may be decreasing since 

more widespread utilization of masks. A mask related reduction in exposure viral load is a 

plausible but unproven reason for this observation. 

Our work has key limitations. First, based on available data, it is impossible to know the 

true average efficacy of a mask worn by a transmitter or an exposed contact. Many epidemics at 300 

the state level have demonstrated a reduction in the effective reproductive number ranging from 

0.2-0.5 when more widespread masking was implemented, even as physical distancing levels 

waxed and waned. Our model suggests that if 50-75% of people wear masks 50-75% of the time, 

which is roughly in accordance with state level observations of mask compliance, then a broad 

estimate for real world mask efficacy is ~0.4-0.6, assuming that efficacy is equal between 305 

transmitters and exposed contact, and that masks are properly used to optimize their efficacy. If 

transmitter masking is more efficacious, while exposed contact masking is proportionally less 

efficacious, then similar results can be expected. The real-world estimate is inclusive of multiple 

factors including variability in mask type and masking technique. Regardless of the precise 

estimate, it is clear that wider implementation would yield significant reductions in spread of 310 

SARS-CoV-2 at the population level. 

Second, our generalized model is not region-specific for the current pandemic. The 

relative impact of super-spreader events, intensity of transmission and proportion of symptomatic 

cases may vary from region to region based on contact network structure and age demographics. 

Nevertheless, the general qualitative conclusions about masking are insensitive to these 315 

differences and are likely to be generalizable across the globe. 

Finally, our model does not include a standard SIR format and therefore does not capture 

other dynamic features that might alter the force of infection such as herd immunity or time-

variant shifts in degree of physical distancing. Another missing feature that could be captured 

with an SIR modeling framework is the possibility of an assortative mixing pattern, in which 320 

individuals with lower adherence to masking might preferentially interact with others who have 

low adherence to masking (12). Such an effect could allow persistence of SARS-CoV-2 within 

this sub-population, even if masking is sufficient for containment in the rest of the population.   

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 5, 2020. ; https://doi.org/10.1101/2020.09.13.20193508doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.13.20193508
http://creativecommons.org/licenses/by/4.0/


In conclusion, we developed a mechanistic model to demonstrate how masks reduce 

exposure SARS-CoV-2 viral load and transmission probability. Widespread use of even 325 

modestly effective masks is predicted to severely limit epidemic spread and represents the key 

available intervention along with physical distancing, to mitigate the number of infections, and 

perhaps the proportion of infections that are severe, while the world awaits a widely available 

and effective vaccine.  

  330 
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Methods 

 

SARS-CoV-2 within-host model. We used the within-host model describing the SARS-CoV-2 

infection from our previous study (18). This model assumes that the contact of SARS-CoV-2 (V) 

with susceptible cells (S) produces infected cells at rate !"# which then generates new virus at a 335 

per-capita rate $. The model also incorporates the death of infected cells mediated by (1) the 

innate responses (%&!) and (2) the acquired immune responses ( "#!

#!+%!	) by SARS-CoV-2-specific 

effector cells ('). The magnitude of the innate immunity is dependent on the infected cell density 

and the exponent (. The nonlinearity of the acquired responses is captured by the Hill coefficient 

) that allows for rapid saturation of the killing. Finally, the parameter * defines level of SARS-340 

CoV-2-specific effector cells at which the killing of infected cells becomes half maximal. In the 

model, the rise of SARS-CoV-2-specific effector cells rise is described in a two-stage manner. 

The first stage defines the proliferation of the first precursor cell compartment (+1) at rate	-&+( 

and differentiation into a second precursor cell compartment (+2) at a per capita rate .. Finally, 

second precursor cells differentiate into effector cells at the same per capita rate . and are 345 

cleared at rate %#.  

The model is expressed as a system of ordinary differential equations:  
*+
*,
= −!"#

*-
*,
= !"# − %&.& −1 #!

#!+%!	 &
*/
*,
= 	$& − 2"

*01
*,
= -&+1 − .+1

*02
*,
= .(+1 −+2)

*#
*,
= .+2 − %#'

   (1) 

 

The initial conditions for the model were assumed as #(0) = 101 cells/mL, &(0) = 1 350 

cells/mL, "(0) = 23(5)

7
 copies/mL, +1(0) = 1, +2(0) = 0 and '0 = 0. For simulations we 

sampled parameter values from a nonlinear mixed-effect model as described in (19), with the 

following fixed effects and standard deviation of the random effects (in parenthesis): Log10!: -

7.23 (0.2) virions-1 day-1; %: 3.13 (0.02) day-1 cells-k; (: 0.08 (0.02); Log10($): 2.59 (0.05) day-1; 
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1: 3.21 (0.33) days-1cells-1; Log10(-): -4.55 (0.01)  days-1cells-1. We also assumed ) = 10; 355 

%9 = 1 day-1; . = 2.4 × 10:; day-1 and ; = 15 day-1.  

 

Dose-response model.  We employed our previously developed dose-response model to estimate 

the probability of virus entering the airway given a transmitter viral load (i.e., contagiousness) 

and the probability of cellular infection given a transmitter viral load, (i.e., infectiousness) 360 

=<["(?)] (response) based on viral loads "(?) (dose) (19).  The relation between the response 

and the dose follows, =<["(?); B, D] =
=(<)$

>$?=(<)$
 , being B the viral load that corresponds to 50% 

infectiousness and 50% contagiousness and D the Hill coefficient that controls the sharpness in 

the dose-response curve. We assumed that the viral load-dependent contagiousness (i.e., the 

probability that virus is passaged to the exposed person’s airway) is the same as infectiousness. 365 

We estimate the transmission risk as the product of the infectiousness and contagiousness (19).  

 

Transmission model and reproduction number. As in our previous model (19), we determined 

the total exposed contacts of a transmitter within a time step (Δ<) using a gamma distribution, i.e. 

F@%~H I
A
B
, JK Δ<, where L and J represent the average daily contact rate and the dispersion 370 

parameter, respectively. The true number of exposure contacts (with viral airway exposure) was 

then obtained by multiplying the total exposed contacts and the contagiousness of the transmitter 

(i.e., M< = F@%=<).  We modelled infectiousness as a Bernoulli event with mean =<, yielding the 

number of secondary infections within a time step as N@% = OP)(=<)=<F@%. Finally, we summed 

up the number of secondary infections over 30 days since the time of exposure to obtain the 375 

individual reproduction number, i.e.	Q5 = ∑ N@%@% .  For each successful transmission, we further 

assumed that it takes S days for the first infected cell to produce virus.  

In simple steps, we followed the procedure below to estimate Re, 

1. Simulate viral load "(?) of a simulated infected individual using the within-host 

model.  380 

2. For a given combination of (B, S, D, L, J)  

a. For each time step Δ< 

i. Compute =<["(?); B, D] 
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ii. Draw F@%~H I
A
B
, JK Δ< 

iii. Calculate N@% = OP)(=<)=<F@% 385 

b. Calculate QC = ∑ N@%@%  

3. Repeat Steps 1 and 2 to estimate QC for 3,000 infected individuals. The population 

level Q5 can then be calculating by taking the mean of 3,000 individual QC values. 

 

Parameter values for the transmission model. For simulations, we used the parameter set [D, B, 390 

S, L, J] = [0.8, 107, 0.5, 4, 40]) as they most closely reproduces empirically observed individual 

Q5 and serial interval histograms as well as mean Q5 across individuals ( Q5 ∈ [1.4, 2.5]) and 

mean serial interval across individuals (SI ∈ [4.0, 4.5]) early during the pandemic (20-22, 24, 

25).  

 395 

Modeling mask use. To evaluate the impact of the use of mask on epidemics, we first assumed 

that a mask decreases the exposure viral load by a fraction (1 − U), being U the mask efficacy or 

the proportion of viruses filtered by the mask of transmitter or exposed individuals. If the 

transmitter is wearing mask with efficacy UD and the exposed person is wearing a mask with 

efficacy U9, then the combined mask efficacy UE , is	given	by 1 − (1 − UD)(1 − U9). 400 

Infectiousness or contagiousness reduction by the use of mask can be computed as: 

^ = 1 − F%(G	H	5)
F%(GI5)

= (:((:G&)$((:G')$

(?((:G&)$((:G')$
(%$
)$

  (2) 

Similarly, the transmission risk reduction using mask can be computed as: 

^J = 1 − F%(GH5)F%(GH5)
F%(GI5)F%(GI5)

= ^K + 2^ ((:G&)
$((:G')$(=%$?>$)

((:G&)$((:G')$=%$?>$
.  (3) 

Finally, we modeled the compliance of an individual wearing mask in the population as a 405 

Bernoulli event with mean ` and the adherence of wearing it at time step Δ< as a Bernoulli event 

with mean a. Compliance is defined as whether the person ever wears a mask. Adherence is the 

percentage of time that a mask wearer wears a mask. 

 

Simulating secondary transmissions with mask use. For a specific scenario with selected ` and 410 

a, we followed the procedure below to estimate the population level Q5: 

1. Simulate "(?) for a transmitter using the within-host model in eq. 1.  
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2. Simulate transmitter mask compliance using OP)(b = `).  

3. Discretize the time-space of 30 days over time steps Δ<. For each time step, 

a. If the transmitter is compliant in using a mask:  415 

i. Simulate transmitter mask adherence at time step Δ< using OP)(	b = 	a) 

ii. If transmitter is wearing a mask at time step Δ< 

1) Draw F@%~H I
A
B
, JK Δ<.  

2) Determine masking adherence among exposed contacts at time step Δ< 

using c~OP)(b = 	`a). If c = 1, then there is 100% adherence 420 

among exposed contacts and if c = 0, then there is 0% adherence 

among exposed contacts. 

3) Determine the number of exposed contact wearing a mask (i.e., 

F@%_+,-. = F@%c) and the number of exposed contact not wearing a 

mask (i.e., F@%_/01,-. = F@%(1 − c). 425 

A. Compute =<+,-.%2+,-.[(1 − UD)(1 − U9)"(?); B, D] 

B. Calculate N@%+,-.%2+,-. =

OP)d=<+,-.%2+,-.e=<+,-.%2+,-.F@%+,-.  

C. Compute =<+,-.%2/01,-.[(1 − UD)"(?); B, D] 

D. Calculate N@%+,-.%2/01,-.
=430 

OP)d=<+,-.%2/01,-.e=<+,-.%2/01,-.F@%_/01,-. 

iii. If the transmitter is not adhering with the use of a mask at time step Δ<, which 

is determined at step (i). 

1) Draw F@%~H I
A
B
, JK Δ<.  

2) Determine masking adherence among exposed contacts at time step Δ< 435 

using c~OP)(b = 	`a). 

3) Determine the number of exposed contact wearing a mask (i.e., 

F@%_+,-. = F@%c) and the number of exposed contact not wearing a 

mask (i.e., F@%_/01,-. = F@%(1 − c)  

A. Compute =</01,-.%2+,-.[(1 − U9)"(?); B, D] 440 
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B. Calculate N@%/01,-.%2+,-.
=

OP)d=</01,-.%2+,-.e=</01,-.%2+,-.F@%+,-.  

C. Compute =</01,-.%2/01,-.["(?); B, D] 

D. Calculate N@%/01,-.%2/01,-.
=

OP)d=</01,-.%2/01,-.e=</01,-.%2/01,-.F@%_/01,-. 445 

 

b. If the transmitter is not compliant in wearing a mask  

1) Draw F@%~H I
A
B
, JK Δ<.  

2) Determine masking adherence among exposed contacts at time step Δ< 

using c~OP)(b = 	`a). 450 

3) Determine the number of exposed contact wearing a mask (i.e., 

F@%_+,-. = F@%c) and the number of exposed contact not wearing a 

mask (i.e., F@%_/01,-. = F@%(1 − c)  

A. Compute =</01,-.%2+,-.[(1 − U9)"(?); B, D] 

B. Calculate N@%/01,-.%2+,-.
=455 

OP)d=</01,-.%2+,-.e=</01,-.%2+,-.F@%+,-.  

C. Compute =</01,-.%2/01,-.["(?); B, D] 

D. Calculate N@%/01,-.%2/01,-.
=

OP)d=</01,-.%2/01,-.e=</01,-.%2/01,-.F@%_/01,-. 

 460 

c. Calculate N@% = N@%/01,-.%2/01,-.
+ N@%/01,-.%2+,-.

+ N@%+,-.%2/01,-.
+

N@%+,-.%2+,-. . 

4. Calculate QC = ∑ N@%@% . 

5. Repeat Steps 1 to 4 to estimate Q5 for 3,000 infected individuals (transmitters). Re can then 

be calculating by taking the mean of 3,000 individual Q5 values. 465 

 

Modeling antiviral treatment. We simulate the antiviral treatment by assuming that the antiviral 

treatment reduces the viral production ($) by (1 − U<LCM<), where U<LCM< is the efficacy of 
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treatment. Here, U<LCM< = 0 and U<LCM< = 1 represent the case of completely ineffective and 

100% effective treatment, respectively. For the transmission simulations we model coverage to 470 

treatment with as a Bernoulli event with mean f. 

In the presence of treatment with mean coverage f and efficacy U<LCM<, we follow the 

procedure below to estimate the population level QC: 

1. Determine adherence to treatment using OP)(	b = f) 

2. Determine the time of start of antiviral treatment (N<LCM<) for treatment in symptomatic phase 475 

and pre-symptomatic phase by randomly drawing a number from Uniform distributions 

(g(0.5 + &3 , 5_&3)) and (g(0.5,5)), respectively, where &3 is the incubation period of the 

infected individual. 

3. Simulate viral load "(?) of a simulated infected individual using the within-host model in  

eq. 1 with U<LCM< = 0 for ? ≤ N<LCM< and 0 < U<LCM< ≤ 1 for ? > N<LCM<.  480 

4. For a given combination of (B, S, D, L, J)  

a. For each time step Δ< 

i. Compute =<["(?); B, D] 

ii. Draw F@%~H I
A
B
, JK Δ< 

iii. Calculate N@% = OP)(=<)=<F@% 485 

b. Calculate QC = ∑ N@%@%  

5. Repeat Steps 1 and 4 to estimate QC for 3,000 infected individuals. The population level QC 

can then be calculating by taking the mean of 3,000 individual QC values. 

 

 490 
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Figure 1. Mathematical model of mask impact on SARS-CoV-2 exposure viral load a. The viral 
load emitted by a potential transmitter (Vt) can be filtered, resulting in lower exposure viral loads due 
to a single mask worn by a transmitter or exposed individual with efficacy eT or eE respectively. Dual 
masking lowers exposure viral load further by filtering virus twice. b. Dual masking may prevent 
super-spreader events to a greater extent than a masked transmitter or masked exposed individual.
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Figure 2. Impact of masking of the transmitter alone, the exposed contact alone or both 
members of the transmission pair, on transmission risk given a single exposure contact. a-
d. Each panel is based on simulations of 1000 transmission pairs. a. No masking, b. Transmitter 
is masked, c. Exposed contact is masked, d. Both members are masked.
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Figure 3. Impact of masking of both members of a transmission pair on transmission risk 
according to transmitter viral load. a-d. Each panel is based on simulations of 1000 
transmission pairs. a. Low viral load, b. Moderate viral load, c. High viral load, d. Extremely high 
viral load.
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Figure 4. Effect of mask utilization and efficacy on mean SARS-CoV-2 R0. Each heat map is 
based on simulations of 3000 transmitters with varying daily exposure contacts. a. Low mask 
utilization, b. Moderate mask utilization, c. High mask utilization, d. Extremely high mask 
utilization.
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Figure 5. Effect of mask utilization and efficacy on proportion of masked transmissions 
contributing to total R0. Each histogram bar in each panel is based on simulations of 3000 
transmitters with varying daily exposure contacts. a. Low mask utilization, b. Moderate mask 
utilization, c. High mask utilization, d. Extremely high mask utilization.
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Figure 6. Effect of mask utilization and efficacy on percent of infected people who transmit 
to others. Each heat map is based on simulations of 3000 transmitters with varying daily 
exposure contacts. a. Low mask utilization, b. Moderate mask utilization, c. High mask 
utilization, d. Extremely high mask utilization.
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Figure 7. Effect of mask utilization and efficacy on proportion of super-spreader 
transmissions. Each histogram bar in each panel is based on simulations of 3000 
transmitters with varying daily exposure contacts. a. Low mask utilization, b. Moderate 
mask utilization, c. High mask utilization, d. Extremely high mask utilization.
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Figure 8. Effect of mask efficacy on exposure viral load during successful transmissions.
Each boxplot in each panel is based on simulations of 3000 transmitters with varying daily 
exposure contacts. Boxplots are median and interquartile range (IQR) and lines are 1.5 the 
IQR. a. Viral load of transmitters, b. Viral load exposure in secondarily infected persons. 
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Figure 9. Projected impact of antiviral therapy on 
SARS-CoV-2 R0. Each line in each panel is based on 
simulations of 3000 transmitters with varying daily 
exposure contacts. Panels a, c and e are for early 
symptomatic therapy. Each simulation assumes 100% 
efficacy. Panels b, d and f are for post-exposure 
prophylaxis given during pre-symptomatic infection. 
Colored lines assume different antiviral efficacies 
(inset). a, b. Projected R0 given different amounts of 
uptake in the population. c, d. Projected percent of 
transmitters who infect at least one person given 
different amounts of uptake in the population. e, f. 
Projected percent of infectors who infect at least five 
people given different amounts of uptake in the 
population. 
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Figure 10. Projected impact of post-exposure 
prophylaxis on SARS-CoV-2 according to the 
day of implementation. Each line in is based on 
simulations of 3000 transmitters with varying 
daily exposure contacts and are colored by 
percent of transmitters receiving therapy. 
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Supplementary figure 1. Impact of masking of the transmitter or 
exposed contact alone or both members of the transmission pair, on 
transmission risk given an exposure viral load. Each panel is based on 
simulations of 1000 transmission pairs. a-b. Absolute reduction in 
transmission risk. c-d. Relative reduction in transmission risk. a,c. 
Transmitter is masked only b, d. Both transmitter and exposed contact are 
masked
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Supplementary figure 2. Effect of mask utilization and efficacy on percent of infectors who 
supers-spread to others. Each heat map is based on simulations of 3000 transmitters with 
varying daily exposure contacts. a. Low mask utilization, b. Moderate mask utilization, c. High 
mask utilization, d. Extremely high mask utilization.
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Supplementary figure 3. Effect of mask utilization and efficacy on mean 
SARS-CoV-2 R0 assuming all persons with >10 exposure contacts per day are 
masked. Each heat map is based on simulations of 3000 transmitters with varying 
daily exposure contacts. a. Low mask utilization, b. Moderate mask utilization, c. 
High mask utilization, d. Extremely high mask utilization.
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Supplementary figure 4. Viral load simulations on antiviral therapy. a-b. Solid lines 
trajectories are assumed with therapy, whereas dashed lines are counterfactuals with no therapy. 
a. Simulated early symptomatic therapy. b. Simulated PEP.
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