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Abstract 

To provide novel insight regarding the inter-population diversity of loci associated with complex 

traits, we integrated genome-wide data from UK Biobank (UKB) and 1,000 Genomes Project (1KG) 

data representative of the genetic diversity among worldwide populations. We investigated genome-

wide data of 4,359 traits from 361,194 UKB participants of European descent. Using 1KG data, we 

explored the allele frequency differences and linkage disequilibrium (LD) structure of UKB genome-

wide significant (GWS) loci across worldwide populations. Functional annotation data were used to 

identify regulatory elements and evaluate the tagging properties of GWS variants. No significant 

difference was observed in allele frequency between UKB and 1KG GBR (British in England and 

Scotland). Considering other population groups, we identified genome-wide significant alleles with 

frequencies different from what expected by chance: UKB vs. 1KG Europeans without GBR 

(rs74945666; allele=T [0.908 vs. 0.03], standing height pGWAS=1.48×10-17), UKB vs. 1KG African 

(rs556562; allele=A [0.942 vs. 0.083], platelet count pGWAS=4.84×10-15),  UKB vs. 1KG Admixed 

Americans (rs1812378; allele=T [0.931 vs. 0.089], standing height pGWAS=4.23×10-12), UKB vs. 1KG 

East Asian (rs55881864; allele=T [0.911 vs. 0.001], monocyte count pGWAS=7.29×10-13), and UKB 

vs. South Asian (rs74945666; allele=T [0.908 vs. 0.061], standing height pGWAS=1.48×10-17). LD-

structure analysis and computational prediction showed differences in how these alleles tag functional 

elements across human populations. In conclusion, the human diversity of certain GWS loci appear 

to be affected by local adaptation while in other cases the associations may be biased by residual 

population stratification. 
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Introduction 

Genome-wide association studies (GWAS) are a powerful tool to identify genetic variants associated 

with human traits and diseases (Visscher et al. 2017). Since the first GWAS conducted in 2005 (Klein 

et al. 2005), 4,671 GWAS reporting >19,813 associations have been listed in the GWAS Catalog 

(Buniello et al. 2019) as of August 13, 2020. This unprecedented amount of information has 

revolutionized our understanding of the predisposition to complex phenotypes, demonstrating that a 

large portion of the heritability of complex traits resides in common genetic variation (i.e., 

polymorphisms in the human genome that show a minor allele frequency (MAF) greater than 1%) 

(Visscher et al. 2017). In recent years, the investigations of massive cohorts from 100,000 to more 

than 1,000,000 participants were possible because of large collaborative projects combining 

numerous studies (Colodro-Conde et al. 2017; Kim et al. 2017; Sullivan et al. 2018; Thompson et al. 

2014), the availability of biobanks enrolling an unprecedented number of participant (Fan et al. 2008; 

Kubo and Guest 2017; Sudlow et al. 2015), and collaboration with direct-to-consumer genetic testing 

companies (Check Hayden 2017). These large-scale GWAS identifying ever-greater numbers of risk 

loci with ever-smaller individual effects demonstrated that the genetic architecture of common 

diseases is highly polygenic and their heritability is likely due to the contribution of several thousand 

(or even more) risk loci across the human genome (Evangelou et al. 2018; Karlsson Linner et al. 

2019; Lee et al. 2018; Timmers et al. 2019). One of the main GWAS promises is that the knowledge 

gained can be used to develop genetic instruments useful to predict disease risk, treatment response, 

and disease prognosis. Leveraging data generated by large-scale GWAS, a growing number of studies 

are developing approaches to test the utility of polygenic information with respect to the human 

phenotypic spectrum  (Inouye et al. 2018; Khera et al. 2019; Sparano et al. 2019; Weigl et al. 2018). 

Although these successful experiments strongly support the movement towards the application of 

GWAS data to develop new strategies to prevent and treat human diseases, important challenges 

remain. Among them, one of the most pressing is related to the limited ancestry and ethnic diversity 
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of large-scale GWAS that have created a large gap between the genetic data available for populations 

of European descent and non-European human groups (Sirugo et al. 2019). Applying GWAS data 

generated from European-ancestry cohorts to non-European individuals raise serious issues, 

including much lower predictive power than that observed in comparisons between like populations 

(Martin et al. 2019; Mostafavi et al. 2019) and possible biases (e.g., reflecting an accounted 

population stratification rather than the phenotype of interest) due to the genetic diversity among 

human populations (Duncan et al. 2019; Martin et al. 2017). The most reliable solution to this problem 

is to conduct large-scale GWAS in populations with non-European ancestry. Ongoing efforts such as 

the Million Veteran Program (Gaziano et al. 2016) and the AllofUS Research Program (Sankar and 

Parker 2017) are investigating multiple ancestry groups representative of the US population to reduce 

this gap. Although these kinds of projects are expected to eliminate the population disparities in 

human genetic research, this is likely to be a long-term outcome. To date, to contribute to a more 

comprehensive understanding of human genetic diversity, we can leverage the data available, 

combining large-scale genome-wide association datasets generated from cohorts including mainly 

participants of European descent with reference panels representative of the genetic diversity among 

worldwide populations (Daub et al. 2013; Hofer et al. 2009; Iorio et al. 2017; Polimanti et al. 2015).  

In the present study, we focused our attention on the UK Biobank (UKB). This large cohort including 

more than 500,000 participants with approximately 90% of them as British individuals of European 

descent (Bycroft et al. 2018). Based on UKB participants of European descent, GWAS have been 

conducted with respect to the human phenome spectrum, identifying a large number of risk loci 

surviving the genome-wide significance threshold (p<5×10-8). Using 1,000 Genomes Project (1KG) 

data, we explored the diversity of these loci, comparing allele frequency differences across worldwide 

populations. The results obtained showed that allele frequency differences in certain risk loci are 

significantly different from that expected from randomly selected variants with similar genomic 

characteristics (i.e., minor allele frequency (MAF), gene density, distance to nearest gene, and linkage 

disequilibrium (LD) proxies). In some cases, these population differences appear to be due to the 
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evolutionary events related to local adaptation (i.e., adaptation in response to selective pressure 

related to the local environment), while other cases may be related to the residual effect of population 

stratification in UKB GWAS. 

 

Materials and Methods 

UK Biobank 

The present study was conducted leveraging UKB genome-wide association data. UKB is a large 

population-based prospective study to explore different life-threatening disorders using information 

about environment and genes in order to improve diagnosis and treatment (Sudlow et al. 2015). A 

wide variety of phenotypic information, including socio-demographic and lifestyle factors, electronic 

health records data, and physiological conditions have been collected for more than 500,000 UKB 

participants (Bycroft et al. 2018). The genotypes of the whole cohort were defined by applying a 

bespoke genome-wide DNA microarray that contains about 850,000 genetic variants (including rare, 

intermediate, and common variants) (Allen et al. 2014). Genetic data were then used to generate 

genome-wide association datasets that can be employed to explore the genetics of complex traits. The 

genome-wide datasets used in the present study were derived from the analysis of 361,194 unrelated 

British participants of European descent. Genome association analyses for over 4,000 phenotypes 

was conducted using appropriate regression models available in Hail (available at https 

://github.com/hail-is/hail) including the first 20 ancestry principal components, sex, age, age2, sex × 

age, and sex × age2 as covariates. The principal components included in the regression model were 

generated by the UKB investigators using fastPCA algorithm (Galinsky et al. 2016) and considering 

unrelated subjects and genetic markers pruned for linkage disequilibrium (Bycroft et al. 2018). Details 

regarding QC criteria, GWAS methods, and the original data are available at 

https://github.com/Nealelab/UK_Biobank_GWAS/tree/master/imputed-v2-gwas.  
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1000 Genomes Project Phase3  

To dissect the genetic differences of UKB participants with respect to other European samples and 

other worldwide populations, we used data derived from 1KG Phase3. The 1KG project aims to 

provide information about common and rare human genetic variation by applying whole-genome 

sequencing to a large cohort of individuals derived from different populations (Genomes Project et 

al. 2010; Genomes Project et al. 2012; Genomes Project et al. 2015). The 1KG Phase 3 of the project 

includes data about 2,504 individuals sampled from 26 populations representative of Africa (AFR), 

East Asia (EAS), Europe (EUR), South Asia (SAS), and the Americas (admixed; AMR) (Genomes 

Project et al. 2015). Details regarding alignment, mapping algorithm, SNP (single nucleotide 

polymorphism) calling, and the data of the project are available at 

https://www.internationalgenome.org/analysis.  

 

Variants filtering and clumping 

We considered genetic association results generated from 361,194 UKB participants of European 

descent tested with respect to 4,359 phenotypic outcomes including physiological, health, and 

lifestyle conditions (Supplementary File 1). We focused our attention on variants with a GWAS p-

value significance threshold of P ≤ 5×10-8 and MAF ≥ 5 %. Furthermore, to control the potential 

inflation in the test statistics, as suggested by the investigators that generated the data (details 

at http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-gwas), we 

selected high-confidence associations results generated from variants with at least 25 minor alleles in 

the smaller group between case or control. To find independent association signals among variants 

selected, we conducted a P-value-informed clumping with a LD cut-off of R2 = 0.1 within a 1000 kb 

window.  
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Allele frequency differences among human populations 

We calculated the allele frequency of the index variants identified from the LD-clumping in AFR, 

EAS, EUR, SAS, and the AMR 1KG superpopulations.  Specifically, we tested the following 

comparisons: i) UKB vs. 1KG GBR (British in England and Scotland) reference sample; ii) UKB vs. 

1KG EUR reference panel (excluding GBR sample); iii) UKB vs. each of the non-European 1KG 

superpopulations (AFR, AMR, EAS, and SAS). For the subsequent analyses, we considered the loci 

showing allele frequency differences in the top 1% of all index variants investigated with respect to 

each comparison conducted.  

 

Comparisons with respect to randomly-selected variants matched by genomic characteristics 

To verify whether the allele frequency of each variant identified was different from what expected 

by chance, we generated a control set of matched variants using SNPsnap tool (Pers et al. 2015). 

This permitted us to identify sets of randomly selected variants SNPs matched to the index variants 

on the basis of four genomic characteristics: i) MAF, ii) LD proxies, iii) distance to nearest gene, 

and iv) gene density. Thus, variants identified in the first percentile were used as inputs considering 

the following parameters:  1KG EUR population (which is the closest reference panel among those 

available in SNPsnap); LD distance cut-off of R2=0.5; ±5% point deviation; ±50% of gene density 

relative deviation;  ±50% of relative deviation of the distance to nearest gene; ±50% of relative 

deviation of LD proxies. For each index variant identified in the initial screening described in the 

section above, we extracted up to 10,000 matched SNP, excluding the HLA region due to its 

complex LD structure. Based on the corresponding randomly-selected genomically-matched sets, 

we calculated empirical p values for each index variant tested and considered type I error rate at 1% 

as the significance threshold. Finally, we checked whether the significative index variants showed 
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allele frequency mismatches and mismapping using previously generated data available at 

http://kunertgraf.com/data/biobank.html (Kunert-Graf et al. 2020).  

 

Cross-Ancestry LD comparison and Functional Annotation  

For the index variants with empirical p values surviving statistical significance, we conducted 

computational analyses to explore their functional consequences. Using LDlink (Machiela and 

Chanock 2015, 2018), we tested the effect of the LD structure variability across human populations 

on the ability of differentiated index variants to tag (measured as LD R2) functional variants in the 

surrounding regions (±500Kb). RegulomeDB (Boyle et al. 2012) was used to score the regulatory 

effect of the tagged variants on the basis of high-throughput, experimental data sets as well as 

computational predictions and manual annotations. LD R2>0.50 and RegulomeDB score = 1a-f 

(Supplementary File 2) were used as criteria to identify functional tag SNPs.  

 

Enrichment analysis for significant phenotypic traits 

To test whether traits related to differentiated loci were overrepresented with respect to certain 

phenotypic domains, we performed χ2 test comparing whether the proportions of the phenotypic 

distribution observed with respect to the identified loci are significantly different from the ones of 

the overall distribution observed across the 4,000+ UKB phenotypes analyzed. 

   

Pan-UK Biobank data  

To investigate the loci identified in non-European ancestral groups, we used the newly-released 

Pan-UKB genome-wide association statistics related to 7,221 phenotypes: 6,636 of AFR 

individuals; 980 AMR individuals; 8,876 individuals of Central/South Asian ancestry (CSA); 2,709 
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EAS individuals. A detailed description of the methods used to generate these data is available at 

https://pan.ukbb.broadinstitute.org/. Using these data, we investigated whether the EUR 

associations of the index variants were also concordant in AFR, AMR, CSA, and EAS. Pan-UKB 

data are available at https://pan.ukbb.broadinstitute.org/downloads.  

 

Results 

Based on genome-wide significant associations (p< P ≤ 5×10-8) across the UKB phenotypic spectrum 

assessed (4,359 traits), we identified a total of 15,327 LD-independent risk alleles. Among these, we 

identified 154 index variants showing allelic frequency differences in the top 1% with respect to the 

three comparisons conducted: i) UKB vs. 1KG GBR; ii) UKB vs. 1KG EUR (excluding GBR sample); 

iii) UKB vs. each of the non-European 1KG superpopulations (AFR, AMR, EAS, and SAS) (Figure 

1; Supplementary File 3). To test whether the allele frequency differences were significantly different 

from what expected by chance, we generated a control set of 10,000 variants matched by genomic 

characteristics (i.e., gene density, distance to the nearest gene, and the number of LD proxies) for 

each of the index variants (Supplementary File 4).  For all significative index variants, we reported 

their phenotypic associations and those related to the variants in LD with them in Supplementary File 

5. In line with the fact that both samples are representative of the genetic variability of British 

populations, no significant difference was observed in the allele frequency of index variants between 

the UKB cohort and 1KG GBR panel (Supplementary File 4). Conversely, when comparing UKB 

with other population groups, allele frequency differences were observed in loci associated with 

several traits. The differentiated loci appear to be associated mainly with observed that 

anthropometric traits and hematologic parameters. Across multiple populations comparisons, we 

observed that the phenotypic enrichments were significantly different from what expected by chance 

(5.39×10-7<p<2.75×10-79; Figure 2). 
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UKB British participants vs. 1,000 Genomes Project non-British Europeans  

Considering UKB vs. 1KG EUR reference sample (excluding GBR sample), we identified several 

significant different risk loci associated with different traits (Table 1; Figure 2). Among them, we 

observed some traits related to anthropometric measurements and white blood cells and platelet 

parameters: standing height (rs74945666, allele=T [0.909 vs. 0.030], p=1.48×10-17); Heel Broadband 

ultrasound attenuation direct entry (rs200033476, allele= C [0.917 vs. 0.018], p=4.01×10-9); 

immature reticulocyte fraction (rs34690548, allele= CA [0.904 vs. 0.0303], p=2.85×10-320); 

eosinophil percentage (rs200725444, allele= A [0.927 vs. 0.047], p=8.60×10-14); platelet count 

(rs201088941, allele= TA [0.922 vs. 0.029], p=6.72×10-10). Because of the similar LD structure, we 

did not observe differences between UKB and EURnoGBR populations with respect to the ability of 

the index variants to tag functional elements (Supplementary File 6). 

 

UKB British participants vs. 1,000 Genomes Project Africans 

Comparing UKB with 1KG AFR superpopulation, we identified loci associated with several 

conditions (Table 1, Figure 2, Supplementary File 5). Particularly, these were related to 

anthropometric traits: leg impedance (rs3749748, allele=T [0.944 vs. 0.017], p=1.75×10-123);  

standing height (rs157573, allele=A [0.876 vs. 0.015], p=8.06×10-33,; rs35497246, allele=C [0.058 

vs. 0.893], p=2.53×10-13; rs1812378, allele=T [0.931 vs. 0.031], p=4.23×10-12; rs42525, allele=C 

[0.877 vs. 0.021], p=1.90×10-10; rs625670, allele=A [0.998 vs. 0.002], p=4.29×10-8); arm impedance 

(rs1881131, allele=A [0.942 vs. 0.031], p=3.34×10-16); whole body water mass (rs475591, allele=T 

[0.998 vs. 0.110], p=1.56×10-12); Heel Broadband ultrasound attenuation direct entry (rs200033476, 

allele=C [0.917 vs. 0.046], p=4.01×10-9). Additionally, we observed several associations with 

hematologic parameters: lymphocyte count (rs451367, allele=T [0.950 vs. 0.014], p=1.08×10-27; 

rs3748022, allele=T, p=9.19×10-13); immature reticulocyte fraction (rs603620, allele=A [0.948 vs. 

0.019], p=1.55×10-27); monocyte percentage (rs456798, allele=T [0.059 vs. 0.918], p=3.70×10-22,; 
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rs625465, allele=G [0.932 vs. 0.082], p=2.27×10-8); mean platelet (thrombocyte) volume (rs171042; 

p=3.97×10-18); red blood cell (erythrocyte) distribution width (rs374361, allele=T [0.900 vs. 0.012], 

p=3.03×10-15; rs55959450, allele=C [0.947 vs. 0.013], p=1.84×10-9); platelet count 

(Phesant:30080_irnt; rs556562, allele=A [0.943 vs. 0.084], p=4.84×10-15); eosinophil percentage 

(rs200725444, allele=A [0.927 vs. 0.007], p=8.60×10-14; monocyte count (rs55881864, allele=T 

[0.912 vs. 0.006], p=7.29×10-13); reticulocyte percentage (rs57236847, allele=G [0.891 vs. 0.037], 

p=2.53×10-8). We observed also other traits that are related to anthropometric and hematologic 

phenotypes: palmar fascial fibromatosis  (rs651985, allele= G [0.903 vs. 0.044], p=2.29×10-42); 

systolic blood pressure, automated reading (rs604723, allele= T [0.899 vs. 0.008], p=6.73×10-40; 

rs55815739, allele=A, p=2.23×10-8); 6mm asymmetry index (; rs55971426, allele=G [0.887 vs. 

0.007], p=1.60×10-10).  

Regarding cross-ancestry LD analysis, we observed that several index variants showed different 

tagging properties with respect to functional elements. Indeed, while only  rs3749748 tag functional 

elements in both populations (Supplementary File 7, Supplementary File 8-Figure S8.1), several 

index variants (i.e.,  rs157573, rs451367, rs475591, rs625465) are in LD with functional loci in EUR 

populations but not in AFR populations (Supplementary File 7, Supplementary File 8-Figure S8.2-

5). 

 

UKB British participants vs. 1,000 Genomes Project Admixed Americans 

The allele frequency differences  between UKB and 1KG AMR are related to loci mainly associated 

to hematologic traits (Figure 2; Table 1): immature reticulocyte fraction (rs34690548, allele=CA 

[0.904 vs. 0.052], p=2.85×10-320); reticulocyte percentage (rs321600, allele=A [0.997 vs. 0.123], 

p=1.54×10-30); lymphocyte count (rs451367, allele=T [0.950 vs. 0.091], p=1.08×10-27); neutrophill 

count (rs571497, allele=A [0.943 vs. 0.109], p=2.58×10-23; rs4544340, allele=T [0.949 vs. 0.087], 

p=1.86×10-10); mean platelet (thrombocyte) volume (rs171042, allele=T [0.951 vs. 0.127 p=3.97×10-
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18); eosinophil percentage (rs200725444, allele=A [0.927 vs. 0.055], p=8.60×10-14); platelet 

distribution width (rs1875103, allele=T [0.998 vs. 0.075], p=4.43×10-12); red blood cell (erythrocyte) 

distribution width (rs55959450, allele=C [0.947 vs. 0.074], p=1.84×10-9); standing height 

(rs1812378, allele=T [0.931 vs. 0.089], p=4.23×10-12); heel broadband ultrasound attenuation, direct 

entry (rs200033476, allele=C [0.917 vs. 0.012], p=4.01×10-9); systolic blood pressure, automated 

reading (rs55815739, allele=A [0.928 vs. 0.052], p=2.23×10-8). Comparing the LD structure of UKB 

and AMR populations, we observed two variants (rs571497, rs4544340) tagging functional elements 

in both populations (Supplementary File 9, Supplementary File 10-Figure S10.1-2). Conversely, 

rs451367 associated with lymphocyte count is in LD (R2=0.61) with a functional SNP (rs4808485; 

RegulomeDB=1a) in British individuals but not in AMR populations (Supplementary File 9; 

Supplementary File 10-FigureS10.3). 

 

UKB British participants vs. 1,000 Genomes Project East Asians 

We observed allele frequencies differences between UKB vs. 1KG EAS in loci associated with  

parameters (Table 1, Figure 2):  monocyte count (rs3732378, allele=A [0.941 vs. 0.029], p=1.64×10-

67; rs55881864, allele=T [0.912 vs. 0.001], p=7.29×10-13); immature reticulocyte fraction (rs6014986, 

allele=A [0.911 vs. 0.016], p=3.05×10-43; rs603620, allele=A [0.948 vs. 0.003], p=1.55×10-27,); 

eosinophil percentage (rs34495, allele=T [0.916 vs. 0.043], p=1.14×10-15; rs200725444, allele=A 

[0.927 vs. 0.024], p=8.60×10-14); reticulocyte percentage (rs321600, allele=A [0.997 vs. 0.133], 

p=1.54×10-30); neutrophil count (rs571497, allele=A [0.943 vs 0.001], p=2.58×10-23); platelet 

distribution width (rs1875103, allele=T [0.999 vs. 0], p=4.43×10-12); platelet crit (rs9932254, 

allele=C [0.925 vs. 0.025], p=8.55×10-11); red blood cell (erythrocyte) distribution width 

(rs55959450, allele=C [0.947 vs. 0.003], p=1.84×10-9). Similarly to the other ancestry comparisons, 

several UKB-EAS differentiated loci are associated with anthropometric traits: arm impedance 

(rs1881131, allele=A [0.943 vs. 0.002], p=3.34×10-16); whole body water mass (allele=T [0.998 vs. 
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0.086], p=1.56×10-12); standing height (rs2861745, allele=G [0.876 vs. 0], p=8.19×10-11; rs42525, 

allele=C [0.877 vs. 0.024], p=1.90×10-10; rs625670, allele=A [0.998 vs. 0],  p=4.29×10-8); Heel 

Broadband ultrasound attenuation (rs200033476, allele=C [0.917 vs. 0.002], p=4.01×10-9)). Finally, 

additional variants showing allele frequency differences were related to: palmar fascial fibromatosis 

(rs651985, allele=G [0.903 vs. 0], p=2.29×10-42; rs55971426l, allele=G [0.887 vs. 0.018] p=1.60×10-

10); spherical power (rs56207218, allele=C [0.896 vs. 0.009], p=1.23×10-9); systolic blood pressure, 

automated reading (rs55815739, allele=A [0.923 vs. 0.003], p=2.23×10-8;).  

Comparing UKB and EAS LD structures, we observed that certain index variants tag different 

functional SNPs depending on the population considered (Supplementary File 11; Supplementary 

File 12-FigureS12.1-3). Conversely, rs571497 and rs56207218, associated with Neutrophil count and 

Spherical power respectively, are in LD (R2>0.5) with functional elements in both populations 

(Supplementary File 11; Supplementary File 12-FigureS12.4-5). 

 

UK Biobank British participants vs. 1KG South Asians 

Similarly, to what observed in the other ancestry comparisons, allele frequency differences between 

UKB and SAS were observed in variants associated with anthropometric traits and hematologic 

parameters. These included immature reticulocyte fraction (rs34690548, allele=CA [0.904 vs. 0.025], 

p=2.85×10-320); standing height (rs74945666, allele=T [0.909 vs. 0.061], p=1.48×10-17); eosinophil 

percentage (rs200725444, allele=A [0.927 vs. 0.030], p=8.60×10-14); Heel Broadband ultrasound 

attenuation (rs200033476, allele=C [0.917 vs. 0.013], p=4.01×10-9); (Figure 2; Table 1). The UKB-

SAS differentiated loci did not show evidence of regulatory function or tagging of regulatory SNPs 

in any of the two populations (Supplementary File 13). 

 

Cross-ancestry association analysis in non-European UK Biobank participants 

Considering Pan-UK Biobank data related to non-European populations, we tested whether the 

differentiated variants and their functional tagged SNPs were associated with their related phenotypic 
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traits in AFR, AMR, EAS and, CSA participants from UKB. Due to the dramatic difference in sample 

size between UKB participants of European descent (N=361,194) and UKB participants of non-

European descent (980<N<8,876),  only two variants differentiated between UKB and AFR were 

nominally replicated in UKB-AFR participants with respect to their related conditions (rs171042, 

mean platelet volume; rs374361, red blood cell distribution width) (Supplementary File 14). 

 

Discussion 

To provide a more comprehensive understanding of the genetics of complex traits across worldwide 

populations, we assessed loci associated with complex traits UKB participants of European descent 

that present allele frequency differences in other human groups worldwide populations leveraging  

1KG reference data (Rees et al. 2020). As expected, there was no significant difference in the allele 

frequency of index variants between UKB cohort and 1KG GBR population, confirming that both 

samples are presentative of the genetic structure of the British population. Conversely, certain loci 

associated with complex traits in UKB participants of European descent showed allele frequency 

differences significantly different from what expected by chance when compared with non-British 

European populations (EURnoGBR) and with AFR, AMR, EAS, and SAS ancestries. Comparing the 

LD structure across these human groups, we observed that differentiated loci can tag differently 

regulatory elements, changing the functional meaning of genome-wide significant variants observed 

in UKB participants of European descent when analyzed in the context of other ancestral groups.  

 

 

Considering the traits related to differentiated loci, we observed significant overrepresentation for 

anthropometric traits and hematologic parameters across multiple ancestry comparisons (5.39×10-

7<p<2.75×10-79; Figure 2). These phenotypic categories are well-known to be differentiated across 

human populations due to evolutionary pressures and human demographic history (Guo et al. 2018). 

Several studies investigated the underlying mechanisms that shaped the genetic architecture of 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.13.20193656doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.13.20193656


15 
 

anthropometric measures among human populations (Berg et al. 2019; Guo et al. 2018; Park et al. 

2016; Polimanti et al. 2016; Turchin et al. 2012; Wood et al. 2014). In particular,  gradients were 

observed polygenic height scores within European populations (north to south) and across Eurasia 

(east to west) (Berg et al. 2019; Turchin et al. 2012). Several hypotheses have been made regarding 

the presence of evolutionary pressures shaping the genetic architecture of height and other 

anthropometric traits (Guo et al. 2018). However, Sohail et al. (2019) demonstrated that the signature 

of polygenic adaptation on height is overestimated due to GWAS uncorrected stratification. 

Comparing results obtained from UKB and GIANT (Genetic Investigation of ANthropometric Traits) 

consortium, population-level differences in genetic height showed robust evidence only at highly 

significant SNPs while less significant P values were affected by residual population stratification. 

The findings provided by Sohail et al. (2019) indicate that previous analyses cannot distinguish the 

proportion of the population differences of genetic height due to evolutionary pressures vs. population 

stratification biases. In our analyses, we considered genome-wide significant variants (p<5×10-8) 

identified from UKB participants of European descent. In line with the study of Sohail et al. (2019), 

we expect that the variants investigated in the present study are less affected by population 

stratification. Accordingly, the observation that loci differentiated between UKB and 1KG reference 

populations (data independent from UKB) are enriched for anthropometric traits may support the 

involvement of evolutionary pressure and population demographic history in shaping the genetic 

architecture of anthropometric traits. 

 

 

The second strong enrichment for loci differentiated between UKB and worldwide populations is 

related to hematologic parameters including traits related to red blood cell (RBC), white blood cell 

(WBC), and platelet. Similarly to anthropometric traits, several studies assessed genetic variation of 

hematologic phenotypes traits across human populations, observing strong differences in their 

geographic distribution (Beutler and West 2005; Chambers et al. 2009; Chen et al. 2020; Eicher et al. 
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2016; Ganesh et al. 2009; Hodonsky et al. 2017; Kamatani et al. 2010; Rappoport et al. 2019; Schick 

et al. 2016). This inter-population genetic variability is probably linked to the evolutionary pressures 

of infectious diseases (Astle et al. 2016; Dominguez-Andres and Netea 2019; Polimanti et al. 2016; 

Raffield et al. 2018). Risk alleles associated with RBC traits show high frequencies in African 

malaria-prone regions where there is a high prevalence of anemia and microcytosis (Barrera-Reyes 

and Tejero 2019; Dominguez-Andres and Netea 2019; Raffield et al. 2018). WBC and platelet-

associated loci appear also differentiated across human populations (Chen et al. 2020; Eicher et al. 

2016; Rappoport et al. 2019; Schick et al. 2016). Examples of this are i) the Duffy/DARC null variant 

in AFR individuals that is associated with low WBC and neutrophil counts and confers a selective 

advantage against malaria (Rappoport et al. 2019); ii) GATA2 genetic variation that reflects 

differences in eosinophil and basophil counts in Japanese population and monocyte and basophil 

counts in Europeans (Okada and Kamatani 2012), and iii) the presence of population-specific risk 

could partially account for the high platelet counts observed in Hispanic/Latinos (lower respect to 

other human population) (Schick et al. 2016).   

 

Finally, differentiated loci that showed genome-wide significant associations in UKB participants of 

European descent were not replicated in non-European UKB participants (i.e., AFR, AMR, EAS, and 

CSA) independently from their tagging of functional elements across populations. Due to the 

dramatic change in sample size (N=361,194 vs. 980<N<8,876), this lack of replication is likely due 

to the strong reduction of statistical power in the non-European association analyses. Unfortunately, 

this is in line with the well-known issue related to the lack of non-European genome-wide data (Sirugo 

et al. 2019). As mentioned previously, many factors influence how causal variants are captured by 

tagging SNPs identified in a single population (Rees et al. 2020; Sirugo et al. 2019). We showed that 

loci associated with complex traits and differentiated across human populations can show different 

cross-ancestry LD tagging properties that can affect the functional meaning of the variant tested in 

the context of the ancestry group investigated. Thus, a large amount of genetic data of diverse 
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populations are needed to provide a more comprehensive understanding of the molecular mechanisms 

at the basis of complex diseases. 

 

In conclusion, this study provided novel evidence regarding the predisposition to complex traits in 

the context of human genetic variation. We observed that loci differentiated are enriched for traits 

that may be shaped by human evolutionary history (i.e., anthropometric traits and hematologic 

parameters). Additionally, we showed how the LD structure of human populations can affect the 

functional meaning of loci known to be associated with a specific ancestry group. Finally, although 

our data contribute to increasing our knowledge regarding cross-ancestry genetic predisposition to 

complex traits, they also clearly indicate that there is an urgent need for greater population diversity 

in genome-wide studies. 
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Figure 1: Allele frequency distribution of 15,327 indipendent risk alleles in all populations. 

AFR=Africa; AMR=Americas; EAS=East Asia, EUR=Europe; EUR_noGBR=Europe without GBR 

population; GBR= British in England and Scotland; SAS=South Asia; UKB=UK Biobank 

individuals. 
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Figure 2: Results of χ2 test related to significant phenotypic enrichment domains observed in each 

comparison (UKB vs. AFR; UKB vs. AMR; UKB vs. EAS; UKB vs. EURnoGBR; UKB vs. SAS). 

AFR=Africa; AMR=Americas; EAS=East Asia, EUR=Europe; EUR_noGBR=Europe without GBR 

population; GBR= British in England and Scotland; SAS=South Asia; UKB=UK Biobank 

individuals. 
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Table 1: Index variants identified in all tested groups. For each comparison, variants id (RS_ID), allele frequencies in both tested populations, phenotypic traits 
code derived from UK Biobank (code UKB), p value and, traits description and, number of phenotypes associated (derived from SNPs that are il LD with index 
variants) are reported. 

 

 

 RS_ID Allele 
(A1) 

freq (A1) 
UKB Freq (A1)  Percentile code UKB p_value Phenotype N 

U
K

B
 v

s. 
E

U
R

no
G

B
R

 rs34690548 CA 0.904 0.028 1 30280_irnt 2.848E-320 Immature reticulocyte fraction 1 
rs74945666 T 0.909 0.030 0.001 50_irnt 1.48E-17 Standing height 1 
rs200725444 A 0.927 0.047 0.001 30210_irnt 8.60E-14 Eosinophill percentage 2 
rs201088941 TA 0.922 0.029 0.001 30080_irnt 6.72E-10 Platelet count 1 
rs200033476 C 0.917 0.018 0.001 3144_irnt 4.01E-09 Heel Broadband ultrasound attenuation direct entry 1 

U
K

B
 v

s. 
A

F
R

 

rs3749748 T 0.944 0.017 1 23108_irnt 1.7516E-123 Impedance of leg (left) 2 
rs651985 G 0.903 0.044 1 M13_DUPUTRYEN 2.29E-42 Palmar fascial fibromatosis [Dupuytren] 2 
rs604723 T 0.899 0.008 0.001 4080_irnt 6.73E-40 Systolic blood pressure, automated reading 4 
rs157573 A 0.876 0.015 1 50_irnt 8.06E-33 Standing height 5 
rs451367 T 0.950 0.014 1 30120_irnt 1.08E-27 Lymphocyte count 1 
rs603620 A 0.948 0.019 1 30280_irnt 1.55E-27 Immature reticulocyte fraction 5 
rs456798 T 0.059 0.917 1 30190_irnt 3.70E-22 Monocyte percentage 5 
rs171042 T 0.951 0.019 1 30100_irnt 3.97E-18 Mean platelet (thrombocyte) volume 1 

rs1881131 A 0.942 0.031 1 23110_irnt 3.34E-16 Impedance of arm (left) 5 
rs374361 T 0.900 0.012 1 30070_irnt 3.03E-15 Red blood cell (erythrocyte) distribution width 1 
rs556562 A 0.943 0.084 0.005 30080_irnt 4.84E-15 Platelet count 5 

rs200725444 A 0.927 0.007 0.001 30210_irnt 8.60E-14 Eosinophill percentage 1 
rs35497246 C 0.058 0.893 0.001 50_irnt 2.53E-13 Standing height 1 
rs55881864 T 0.912 0.006 0.004 30130_irnt 7.29E-13 Monocyte count 1 
rs3748022 T 0.894 0.018 1 30120_irnt 9.19E-13 Lymphocyte count 3 
rs475591 T 0.998 0.110 1 23102_irnt 1.56E-12 Whole body water mass 8 

rs1812378 T 0.931 0.031 0.002 50_irnt 4.23E-12 Standing height 1 
rs55971426 G 0.887 0.007 1 5158_irnt 1.60E-10 6mm asymmetry index (right) 2 

rs42525 C 0.877 0.021 0.001 50_irnt 1.90E-10 Standing height 1 
rs55959450 C 0.947 0.013 0.003 30070_irnt 1.84E-09 Red blood cell (erythrocyte) distribution width 2 
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rs200033476 C 0.917 0.046 1 3144_irnt 4.01E-09 Heel Broadband ultrasound attenuation, direct entry 1 
rs55815739 A 0.929 0.018 1 4080_irnt 2.23E-08 Systolic blood pressure, automated reading 2 

rs625465 G 0.932 0.082 0.001 30190_irnt 2.27E-08 Monocyte percentage 1 
rs57236847 G 0.891 0.037 1 30240_irnt 2.53E-08 Reticulocyte percentage 1 

rs625670 A 0.998 0.002 1 50_irnt 4.29E-08 Standing height 1 

U
K

B
 v

s. 
A

M
R

 

rs34690548 CA 0.904 0.052 1 30280_irnt 2.85E-320 Immature reticulocyte fraction 1 
rs321600 A 0.997 0.122 1 30240_irnt 1.54E-30 Reticulocyte percentage 2 
rs451367 T 0.950 0.091 1 30120_irnt 1.08E-27 Lymphocyte count 1 
rs571497 A 0.943 0.109 0.003 30140_irnt 2.58E-23 Neutrophill count 1 
rs171042 T 0.951 0.127 1 30100_irnt 3.97E-18 Mean platelet (thrombocyte) volume 1 

rs200725444 A 0.927 0.055 0.001 30210_irnt 8.60E-14 Eosinophill percentage 1 
rs1812378 T 0.931 0.089 0.008 50_irnt 4.23E-12 Standing height 1 
rs1875103 T 0.999 0.075 1 30110_irnt 4.43E-12 Platelet distribution width 2 
rs4544340 T 0.950 0.086 0.001 30140_irnt 1.86E-10 Neutrophill count 1 

rs55959450 C 0.947 0.073 0.004 30070_irnt 1.84E-09 Red blood cell (erythrocyte) distribution width 1 
rs200033476 C 0.917 0.011 0.001 3144_irnt 4.01E-09 Heel Broadband ultrasound attenuation, direct entry 1 
rs55815739 A 0.929 0.102 1 4080_irnt 2.23E-08 Systolic blood pressure, automated reading 2 

U
K

B
 v

s. 
E

A
S 

rs3732378 A 0.941 0.029 0.001 30130_irnt 1.64E-67 Monocyte count 2 
rs6014986 A 0.911 0.017 0.001 30280_irnt 3.05E-43 Immature reticulocyte fraction 6 
rs651985 G 0.903 0 0.001 M13_DUPUTRYEN 2.29E-42 Palmar fascial fibromatosis [Dupuytren] 2 
rs321600 A 0.997 0.133 1 30240_irnt 1.54E-30 Reticulocyte percentage 2 
rs603620 A 0.948 0.003 1 30280_irnt 1.55E-27 Immature reticulocyte fraction 5 
rs571497 A 0.943 0.001 1 30140_irnt 2.58E-23 Neutrophill count 1 

rs1881131 A 0.942 0.002 1 23110_irnt 3.34E-16 Impedance of arm (left) 5 
rs34495 T 0.916 0.043 1 30210_irnt 1.14E-15 Eosinophill percentage 1 

rs200725444 A 0.927 0.024 1 30210_irnt 8.60E-14 Eosinophill percentage 1 
rs55881864 T 0.912 0.001 0.004 30130_irnt 7.29E-13 Monocyte count 1 

rs475591 T 0.998 0.086 1 23102_irnt 1.56E-12 Whole body water mass 8 
rs1875103 T 0.999 0 1 30110_irnt 4.43E-12 Platelet distribution width 2 
rs2861745 G 0.876 0 0.004 50_irnt 8.19E-11 Standing height 4 
rs9932254 C 0.925 0.025 1 30090_irnt 8.55E-11 Platelet crit 1 

rs55971426 G 0.887 0.018 0.002 5158_irnt 1.60E-10 6mm asymmetry index (right) 2 
rs42525 C 0.877 0.024 0.002 50_irnt 1.90E-10 Standing height 1 
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rs56207218 C 0.896 0.008 0.001 5085_irnt 1.23E-09 Spherical power (left) 1 
rs55959450 C 0.947 0.003 0.002 30070_irnt 1.84E-09 Red blood cell (erythrocyte) distribution width 1 
rs200033476 C 0.917 0.002 0.001 3144_irnt 4.01E-09 Heel Broadband ultrasound attenuation, direct entry 1 
rs55815739 A 0.929 0.003 1 4080_irnt 2.23E-08 Systolic blood pressure, automated reading 2 

rs625670 A 0.998 0 0.001 50_irnt 4.29E-08 Standing height 1 

U
K

B
 v

s. 
SA

S 

rs74945666 T 0.909 0.061 0.001 50_irnt 1.48E-17 Standing height 1 
rs200725444 A 0.927 0.030 1 30210_irnt 8.60E-14 Eosinophill percentage 1 
rs200033476 C 0.917 0.013 1 3144_irnt 4.01E-09 Heel Broadband ultrasound attenuation, direct entry 1 
rs34690548 CA 0.904 0.024 1 30280_irnt 2.84800E-320 Immature reticulocyte fraction 1 
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