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Abstract  

 

The dynamics of the COVID-19 epidemic vary due to local population density and policy 

measures. When making decisions, policy makers consider an estimate of the effective 

reproduction number ℛt which is the expected number of secondary infections by a single 

infected individual. We propose a simple method for estimating the time-varying infection rate 

and reproduction number ℛt using a sliding window approach applied to a Susceptible-

Infectious-Removed model. The infection rate is estimated using the reported cases for a seven-

day window to obtain continuous estimation of ℛt . We demonstrate that the proposed adaptive 

SIR (aSIR) model can quickly adapt to an increase in the number of tests and associated increase 

in the reported cases of infections. Our results also suggest that intensive testing may be one of 

the effective methods of reducing ℛt. The aSIR model was applied to data at the state and county 

levels. 

 

Introduction 

 

 We are in the middle of a global COVID-19 pandemic caused by the SARS-CoV-2 virus. 

As of September 2, 2020, over 6 million individuals in the United States have been reported 

positive for SARS-CoV-2. Modeling studies are key for understanding factors that drive the 

spread of the disease and for developing mitigation strategies. Early modeling efforts forecasted 

very large numbers of infected individuals which would overwhelm healthcare systems in many 

countries (Arenas et al., 2020; Ferguson et al., 2020; Mitjà et al., 2020). These forecasts served 

as a call to action for policy makers to introduce policy measures including social distancing, 

travel restrictions, and eventually lockdowns to avoid the predicted catastrophe (Adam, 2020; 

Anderson et al., 2020; Enserink & Kupferschmidt, 2020). The mitigating policy measures have 

been successful in changing the dynamics of the epidemic and “flattening the curve” so that 

fewer people needed to seek treatment at any given time and as such not overwhelm the 

healthcare system. 

 One of the most fundamental metrics that describes the epidemic’s dynamics is the 

reproduction number ℛt which is the expected number of secondary infections by a single 

infectious individual (Delamater et al., 2019). The idea that the course of an epidemic is 

determined by the rate of contact between susceptible and infectious individuals was proposed 

by William Hamer in 1906 (Hamer, 1906). Later, Kermack and McKendrick (Kermack & 

McKendrick, 1927) showed that epidemics stop not when there are no susceptible individuals 
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left, but rather when each infected individual can infect on average fewer than one more person. 

The reproduction number ℛt depends on three factors: 1) the likelihood of infection per contact, 

2) the period during which infectious individuals freely interact with those susceptible to contract 

the disease, and 3) rate of contact. The likelihood of infection per contact (factor 1) is determined 

by pathogen virulence and also by protective measures such as social distancing or wearing 

masks. Free interactions between infectious and susceptible individuals (factor 2) occur until the 

infectious individual is self-quarantined or hospitalized, either when the individual tests positive 

or symptoms become severe. Finally, the rate of contact (factor 3) is strongly affected by public 

health measures to mitigate risk (WHO, 2019), such as lockdowns during the COVID-19 

epidemic. Thus, the reproduction number is determined by the biological properties of the 

pathogen and multiple aspects of social behavior. When ℛt>1 the number of cases is expected to 

grow exponentially. The epidemic is contained when ℛt decreases and remains below 1. Real-

time estimation of ℛt  is critical for determining the effect of implemented mitigation measures 

and planning for the future. 

 We propose a method for the continuous estimation of infection rate and reproduction 

number ℛt that reflects the effects of mitigation measures as well as immunity acquired by those 

who recover from the disease. We estimate ℛt using a Susceptible-Infectious-Removed (SIR) 

model (Kermack & McKendrick, 1927) that describes the dynamics of population compartments 

as follows: individuals start as Susceptible, are infected with the virus and become Infectious, 

and then move to the Removed compartment once they are quarantined or hospitalized, recover, 

or die. The SIR model is one of the simplest epidemiological models that still captures the main 

properties of an epidemic (Anderson, 1991; Anderson & May, 1991) and it has been widely used 

in epidemic modeling studies. In the majority of SIR modeling studies, the model parameters 

were constant. An SIR model with constant parameters, however, cannot be applied to the 

COVID-19 epidemic because various mitigating measures were introduced as the epidemic 

progressed. The effect of policy changes on COVID-19 dynamics has been modeled using a 

combination of an SIR model and Bayesian inference (Dehning et al., 2020; Karnakov et al., 

2020). In these modeling studies, the infection spreading rate was assumed to be piece-wise 

linear between the three dates of policy changes. In another approach, continuous estimation of 

the reproduction number and the effect of mitigation measures were obtained based on estimates 

of the distribution of the serial interval between the symptom onset in the primary and secondary 

cases (Cori et al., 2013; Wallinga & Lipsitch, 2007; Wallinga & Teunis, 2004). The Bayesian 

inference methods as well as methods based on estimations of the serial interval include multiple 

parameters whose values are not estimated from the data. In contrast, we propose an adaptive 

SIR model (aSIR) in which only one parameter, the removal rate, is taken from the literature, 

while the second parameter, the infection rate, is continuously estimated from the data using a 

sliding window. A continuous estimate of the reproduction number ℛt is then calculated using 

the infection rate estimate. The SIR model is described as a system of differential equations, and 

the key idea in our proposed method is that the initial conditions for each window are taken as 

values estimated for the previous window. The only additional hyperparameter is the length of 
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the sliding window. The proposed method retains the conceptual and computational simplicity of 

SIR-type models and can be easily extended through the introduction of additional compartments 

supported by data. 

 

Data 

 

 The data on daily and cumulative confirmed cases between February 29, 2020 and 

September 2, 2020 were obtained from John Hopkins University (JHU) and the dates of 

interventions by states (e.g. state of emergency, stay-at-home order) were obtained from 

Wikipedia (Wikipedia, 2020). The JHU data were available at two levels of aggregation: county 

and state. JHU considers many sources for reporting these data; county level information is 

extracted from the website of the state’s departments of health (Johns Hopkins University, 2020) 

and state level data are extracted directly from the Centers for Disease Control website.  

 

Model 

 The SIR model is a system of ordinary differential equations: 

 

𝑑𝑆

𝑑𝑡
=  −𝛽

𝐼

𝑁
 𝑆  

𝑑𝐼

𝑑𝑡
=  𝛽 

𝐼

𝑁
𝑆 −  𝛾 𝐼                                                               (1) 

𝑑𝑅

𝑑𝑡
=  𝛾 𝐼 

 

Here, S is the number of susceptible individuals; I is the number of infectious individuals who 

freely interact with others and can transmit the infection; R is the number of individuals removed 

from the other two compartments because they are quarantined or hospitalized, recover and 

acquire immunity, or die. Several COVID-19 government data sources provide the daily number 

of newly confirmed cases as well as a cumulative number of confirmed cases. Careful 

consideration is required to determine if these numbers should be attributed to the I or R 

compartment. In the US, once an individual has been confirmed COVID-19 positive that person 

is expected to be either self-isolated or hospitalized. Therefore, we assigned the data on 

confirmed cases to the R compartment, and we fit the model on the cumulative number of 

confirmed cases. 

 The infection rate 𝛽 is  𝛽 = 𝑝 ∗ 𝑐 , where 𝑝 is the probability of infection during contact 

with an infectious individual, and 𝑐 is the average number of contacts per day. We have no data 

that would allow us to estimate 𝑝 and 𝑐 separately, so we directly estimate 𝛽 as is usually done 

when using SIR models. 

The removal rate 𝛾 determines the rate with which the infected are removed from I to the 

R compartment. In the context of the COVID-19 epidemic, 𝛾 is determined by the time it takes 

for severe symptoms to appear so the person gets tested and is self-quarantined or hospitalized. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 15, 2020. ; https://doi.org/10.1101/2020.09.13.20193896doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.13.20193896
http://creativecommons.org/licenses/by-nd/4.0/


 4 

Therefore, we will assume the duration of the infectious period as the average time it takes for 

the infected person to become isolated, not the overall time to recover. We assume that the 

person is infectious from the day they get infected before the symptoms appear (Arons et al., 

2020; Z. Hu et al., 2020; Tindale et al., 2020). The average time to develop symptoms has been 

reported as 5 to 6 days (Li et al., 2020; Linton et al., 2020; WHO, 2020). We assume the 

infectious period before developing severe symptoms is 6 days, so 𝛾 = 1/6. 

 

Time-variant Parameter Estimation 

 

The aSIR model contains two parameters, 𝛽 and 𝛾,  with 𝛾 = 1/6 taken from the 

literature and 𝛽 estimated using the reported data for each region of interest. The time-variant 

𝛽(𝑡) was estimated using a sliding window of  =7 days and step of s =1 day, with the estimated 

values for S and I from the previous window used as the initial conditions for the next window.  

The reproduction number was calculated as ℛ𝑡(𝑡) = (𝑡)/. 

1. For the first window, we determined the date when the number of confirmed cases began 

to increase exponentially. This is important because for many states or counties, very few 

confirmed cases were initially reported for a number of days or even weeks, which 

suggests that either the epidemic had not started or the true number of infected people 

was not known. It is not reasonable to apply a SIR model for this initial period. We took 

the onset of the epidemic as the first of the four consecutive days in which the number of 

reported confirmed cases rose in at least three days. The initial conditions for system (1) 

for window 0 were S0(0) = N, where N is the population in the region of interest, I0(0) = 

1, and R0(0) = 0. Infection rate i and S(t), I(t) for t  [0, − were estimated given the 

initial conditions and actual R.  

2. Slide the window by s=1 point. For the new i+1 window, take the initial conditions as the 

estimated values from the previous window Si+1(0) = Si(s), Ii+1(0)= Ii(s), and actual 

Ri+1(0)=R(s). Use actual values of R(t), estimate infection rate i+1 and Si+1(t), Ii+1(t). 

3. For each window, calculate ℛ𝑡.𝑖 =  𝛽𝑖/𝛾 , assign the ℛ𝑡.𝑖 to the last time point of the 

window. To get a smooth estimate of ℛ𝑡 we used a rolling average of 5 points.  

 

Results 

 

We fit the model for each state and county in the United States. The model performance 

was evaluated by calculating the quality of fit as the root mean squared error between the actual 

and fitted P data for all windows concatenated (wRMSE). The fit was excellent with wRMSE < 6 

across all states. We also calculated a 1-day forecast, 3-day forecast, and 7-day forecast of R 

after each window (Fig. 1A). The mean absolute prediction error (MAPE) for the forecasts is 

given in Table 1. The 1-day forecast error did not exceed 2.6% across all states while the 7-day 

forecast error was large and reached 16.2% for the state of New York. In particular, the 7-day 
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forecast strongly overestimated the number of cases when the reproduction number was high and 

changing fast (Fig. 1). 

 The estimated time course of ℛ𝑡 for the state of New York and for Nassau county, one of 

the most affected in the beginning of COVID-19 epidemic, are shown in Figure 1. The estimated 

daily number of infectious individuals rapidly increased and then gradually declined after the 

lockdown was introduced on March 22, 2020 (Fig. 1A). The estimated reproduction number also 

declined after the lockdown began (Fig. 1B). The time course of ℛ𝑡 shows weekly seasonality 

which likely reflects the effect of social interactions and possibly the effect of fluctuations in 

case reporting on weekdays vs. weekends. For New York state and Nassau county, ℛ𝑡 exhibited 

an initial increase which may reflect the fact that the epidemic in the New York region was 

continuously seeded by travelers arriving to JFK airport until a ban on international travel was 

introduced on March 12, 2020. It may also reflect the fact that not all severe cases were initially 

recognized and reported as COVID-19. In Florida, ℛ𝑡 decreased close to 1 by mid-April but then 

began increasing at the end of May (Fig. 1B). In June 2020, Florida authorities introduced more 

stringent measures to control the epidemic which is reflected in decreasing ℛ𝑡 in the second half 

of July 2020. The opening of multiple states since June 2020 has been accompanied by ℛ𝑡 rising 

above 1 (not shown here), and close monitoring of reproductive number is needed to contain 

another wave of the epidemic.   

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 15, 2020. ; https://doi.org/10.1101/2020.09.13.20193896doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.13.20193896
http://creativecommons.org/licenses/by-nd/4.0/


 6 

 

State: New York 

 

State: New York , County: Nassau 

 

State: Florida 

 

Figure 1. A) Estimated Infectious and forecasted Removed. B) Estimated reproduction 

number ℛ𝑡. The shaded region indicates the dates of the lockdown. While the 1-day and 3-day 

forecasts are accurate, the 7-day forecast exhibits large errors when ℛ𝑡>1 and is changing fast. 

B) A) 
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 We also compared aSIR with the model by Cori and colleagues (Cori et al., 2013) 

implemented as R package EpiEstim and a model implemented by Kevin Systrom and Thomas 

Vladeck available from a popular and influential COVID-19 data tracking website rt.live (Fig. 

2). In EpiEstim, we assumed equal probability of infection within the infectious period of 6 days, 

the ℛ𝑡 estimate was smoothed with a 7-point rolling average window, same as in aSIR. While all 

three models show similar estimates when ℛ𝑡 is close to 1, their estimates differ considerably in 

in the beginning of the epidemic. In particular, the rt.live model returned  lower max ℛ𝑡 than the 

other two models, and estimated that ℛ𝑡 already decreased to 1 by the time the lockdown was 

announced in NY state on March 22, 2020 (Fig. 2, shaded region). The EpiEstim and the aSIR 

models estimated similar peak values of ℛ𝑡, and both models estimated that ℛ𝑡 dereased close to 

1 in the first week of April, 2020. Although both models show a rapidly decreasing ℛ𝑡 in March, 

the aSIR model shows a lagged change. We are not aware of ground truth data however to 

determine which model produces a more accurate estimate. 

 

State: New York 

 

Figure 2. Comparison of models that generate 

continuous ℛ𝑡 estimates. The three ℛ𝑡  estimates 

differ widely in the beginning of the epidemic. In 

particular, the ℛ𝑡 estimated by rt.live model 

decreased to 1 by the lockdown onset on March 

22 (shaded region). 

 

Next, we investigated the effect of an abrupt increase in testing on the ℛ𝑡 estimate (Fig. 

3). We assumed a step-wise 50% increase in testing that persisted after April 12 (Fig. 3, left 

panel). Both aSIR and EpiEstim models exhibited a spike in ℛ𝑡. It can also be argued that if 

testing increases then infectious individuals may be detected and quarantined sooner, resulting in 

a shorter infectious period and larger removal rate 𝛾, in turn lowering ℛ𝑡. We did not model a 

possible increase in 𝛾. Instead, we assumed that the underlying dynamics of the epidemic did not 
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change, and within 2 weeks both models returned to the ℛ𝑡 time course estimated without the 

testing increase. 

State: New York 

 

Figure 3. The effect of a step-wise 50% increase in testing (left panel, dashed line). The 1-day 

forecast by the aSIR model adapts within a week. For ℛ𝑡 estimate, both EpiEstim and our 

aSIR models produced a spike followed by a decrease (right panel, dashed lines) before 

returning to the unperturbed ℛ𝑡 time course (solid lines). 

 

Discussion 

 

We have developed a simple approach to adaptively estimate time-varying parameters of 

the SIR model using reported data on the number of confirmed cases. This approach adds to the 

already large literature on COVID-19 modeling in two ways. First, we estimate the parameters of 

the SIR model using a sliding window of a limited duration, 7 days, to account for fast changes 

in transmissibility and contact patterns in response to changes in social behavior and government 

mitigation measures. The window duration is a hyperparameter that can be changed as needed, 

the trade-off being the accuracy of the parameter estimates versus rapid reaction to changes in 

the underlying epidemic. Because the proposed model is so simple, a number of scenarios can be 

explored as needed.  

 Second, we attribute the data on reported cases to the Removed compartment rather than 

Infectious. This modeling decision is based on the realities of the COVID-19 epidemic in the US 

where confirmed positive individuals are supposed to self-isolate or are hospitalized. Although 

these individuals remain infectious and can infect other family members or caretakers even when 

self-isolated or hospitalized, they are not freely interacting with the susceptible population as 

would be required to attribute them to the I compartment. It has been proposed to add a new X 

compartment in the SIR model to model symptomatic quarantined infectious individuals (Maier 

& Brockmann, 2020). We have no data to independently estimate this additional parameter of 

quarantine rate, however. For the same reason, we did not use the Susceptible-Exposed-Infected-

Removed (SEIR) model because we are not aware of reliable data about the duration of the 
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exposed period during which an infected person is not yet infectious. Moreover, it has been 

found that the SIR model performed better than an SEIR model in representing the information 

contained in the confirmed-case data on COVID-19 (Roda et al., 2020). 

 The reported numbers of positive cases represent a fraction of infected individuals 

because of the limited availability of testing in March and April of 2020 with the result that only 

those who developed severe symptoms were tested. Up to 80% of the infected individuals may 

be asymptomatic or develop mild symptoms (Wu & McGoogan, 2020) and were not tested, so 

for that period our model applies only to the small sub-population who developed severe 

symptoms. This sub-population, however, is of particular interest because it represents those 

most at risk, and the reproduction number estimated from this limited data can be used to guide 

policy decisions aimed at protecting the most vulnerable population (Lourenco et al., 2020). At 

the same time, as the numbers of the tested individuals increase, the short sliding window 

approach makes our model adaptable to an ever-larger proportion of the population (Fig. 3). 

 Across all US states, the maximal ℛ𝑡 values of were estimated for New York (4.4) and 

Michigan (4.5) (Table 1) which is close to the mean value of 4.34 estimated for Italy (Wangping 

et al., 2020) but higher than that obtained by a stochastic transmission model (Abbott et al., 

2020; Kucharski et al., 2020). The wide range of maximal values of ℛ𝑡 from 2.0 to 4.5 (Table 1) 

likely reflects the differences in contact rates due to population density (H. Hu et al., 2013; Sy et 

al., 2020). Increased social distancing is required to contain the spread of the epidemic (Prem et 

al., 2020), with more stringent mitigation measures, including lockdown, considered necessary to 

decrease the contact rate in high-density states and counties. Another measure to lower ℛ𝑡 is to 

increase the removal rate 𝛾 by intensive testing and quarantine of individuals tested positive. 

This targeted intervention would strongly decrease the interaction between the infectious and 

susceptible individuals and keep ℛ𝑡 <1 until a vaccine becomes available. Our model will allow 

researchers as well as policy makers to monitor the reproduction number in different 

geographical regions of the US, better understand the effect of government policies on the 

dynamics of the epidemic, and develop further mitigation strategies as we continue to battle 

COVID-19 (Friedman et al., 2020; Inglesby, 2020). 
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Table 1. Reproduction numbers ℛ𝑡 and forecast accuracy for 50 states. 

State 𝓡𝒕 

Max 

MAPE 

1-Day 

Forecast 

MAPE 

3-Day 

Forecast 

MAPE 

7-Day 

Forecast 

Alabama 2.9 1.5% 4.2% 10.0% 

Alaska 2.8 1.6% 3.7% 11.3% 

Arizona 3.3 1.3% 2.9% 10.1% 

Arkansas 2.8 1.5% 4.0% 12.6% 

California 2.5 1.7% 2.9% 6.3% 

Colorado 2.6 1.1% 2.9% 7.3% 

Connecticut 4.1 2.0% 3.1% 9.3% 

Delaware 2.4 1.7% 2.9% 7.9% 

District of Columbia 2.1 0.8% 1.8% 4.4% 

Florida 3.6 2.0% 4.4% 9.3% 

Georgia 3.0 1.8% 3.7% 7.4% 

Hawaii 2.7 2.0% 3.6% 9.7% 

Idaho 3.4 2.4% 4.8% 13.6% 

Illinois 4.0 1.3% 2.5% 8.5% 

Indiana 3.8 1.4% 4.0% 10.4% 

Iowa 2.8 1.8% 3.6% 8.0% 

Kansas 3.0 1.6% 3.5% 8.6% 

Kentucky 3.0 2.6% 4.9% 11.2% 

Louisiana 3.7 1.8% 4.0% 12.1% 

Maine 2.0 1.2% 2.8% 6.7% 

Maryland 3.3 1.2% 2.8% 6.2% 

Massachusetts 3.4 1.3% 3.6% 9.7% 

Michigan 4.5 1.6% 3.5% 12.8% 

Minnesota 2.7 1.3% 2.9% 8.0% 

Mississippi 2.9 1.2% 3.0% 9.3% 

Missouri 3.6 1.8% 3.3% 11.4% 

Montana 3.3 1.6% 3.7% 11.9% 

Nebraska 2.5 2.0% 4.1% 9.7% 

Nevada 2.9 2.3% 3.8% 10.0% 

New Hampshire 2.3 1.7% 3.3% 8.5% 

New Jersey 4.1 1.5% 2.3% 7.8% 

New Mexico 2.3 2.2% 3.4% 7.3% 

New York 4.4 1.5% 4.2% 16.2% 

North Carolina 3.2 1.3% 2.4% 7.2% 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 15, 2020. ; https://doi.org/10.1101/2020.09.13.20193896doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.13.20193896
http://creativecommons.org/licenses/by-nd/4.0/


 11 

North Dakota 2.4 1.8% 4.8% 12.6% 

Ohio 3.3 1.2% 3.4% 9.8% 

Oklahoma 3.1 1.4% 3.5% 10.2% 

Oregon 2.5 1.3% 2.8% 6.6% 

Pennsylvania 3.2 1.7% 2.9% 6.3% 

Rhode Island 2.4 1.5% 3.1% 6.8% 

South Carolina 3.5 2.1% 4.3% 10.6% 

South Dakota 2.1 1.3% 3.2% 8.7% 

Tennessee 3.5 2.2% 4.8% 12.5% 

Texas 3.6 2.0% 3.9% 9.3% 

Utah 3.2 1.4% 3.1% 8.3% 

Vermont 2.9 0.8% 2.4% 7.7% 

Virginia 2.5 1.1% 2.1% 5.1% 

Washington 3.0 2.0% 4.8% 8.6% 

West Virginia 3.5 1.6% 3.9% 14.0% 

Wisconsin 3.6 1.5% 3.2% 10.0% 

Wyoming 2.9 1.9% 4.7% 14.2% 
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