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ABSTRACT 
 
Background 
The COVID-19 pandemic has led to over 820,000 deaths for almost 24 million confirmed cases 
worldwide, as of August 27th, 2020, per WHO report. Risk factors include pre-existing conditions 
such as cancer, cardiovascular disease, diabetes, obesity, and cancer. There are currently no 
effective treatments. Our objective was to complete a meta-analysis to identify comorbidity-
associated single nucleotide polymorphisms (SNPs), potentially conferring increased 
susceptibility to SARS-CoV-2 infection using a computational approach.  
 
Results 
SNP datasets were downloaded from publicly available GWAS catalog for 141 of 258 candidate 
COVID-19 comorbidities. Gene-level SNP analysis was performed to identify significant 
pathways by using MAGMA program. SNP annotation program was used to analyze MAGMA-
identified genes. COVID-19 comorbidities from six disease categories were found to have 
significant associated pathways, which were validated by Q-Q plots (p<0.05). The top 250 
human mRNA gene expressions for SNP-affected pathways, extracted from publicly accessible 
gene expression profiles, were evaluated for significant pathways. Protein-protein interactions of 
identified differentially expressed genes, visualized with STRING program, were significant 
(p<0.05). Gene interaction networks were found to be relevant to SARS and influenza 
pathogenesis. 
 
Conclusion 
Pathways potentially affected by or affecting SARS-CoV-2 infection were identified in underlying 
medical conditions likely to confer susceptibility and/or severity to COVID-19. Our findings have 
implications in COVID-19 treatment development. 
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INTRODUCTION 
 

COVID-19 pandemic became prominent in Wuhan, China in December of 2019 [1]. As of 

August 27th, 2020, there have been over 24 million confirmed COVID-19 cases affecting over 

200 countries [2].  This staggering number of cases includes more than 820,000 deaths, with 

the U.S. representing roughly one fourth of cases and deaths. WHO estimated the mortality rate 

of COVID-19 to be 3.4% in March 2020, which is significantly higher than reported average 

mortality rate of 0.1% for influenza [2]. 

 

COVID-19 is caused by severe acute respiratory syndrome coronavirus-2, SARS-CoV-2. 

This highly pathogenic coronavirus can cause severe respiratory illness and is highly 

contagious. The incubation period for SARS-CoV-2 can last up to 14 days with a median range 

of 4 to 5 days from exposure to onset of symptoms [3]. Transmission of the infection is due to 

inhalation of droplets and contact with contaminated surfaces. Symptoms include but are not 

limited to fever, cough, shortness of breath, fatigue, and body aches [4]. Current treatment for 

severe SARS-CoV-2 illness involves the management of complications associated with the 

disease and supportive care [1]. There is currently no treatment proven to be sufficiently 

effective for COVID-19 patients, although many drugs are being evaluated for effectiveness in 

reducing disease progression, severity, or mortality [5]. 

 

Multiple studies have shown that comorbidities influence severity, quality of life, or 1-year 

mortality, or altogether, in patients subject to viral infections [6, 7]. Risk factors for severity of 

SARS-CoV-2 infection include age 65 or above, and/or having a pre-existing condition [8, 9]. 

Thus, patients with pre-existing cardiovascular disease, diabetes, kidney dysfunction, obesity, 

and pulmonary diseases may have worse clinical outcomes when infected with SARS-CoV-2 

[10].  

 

Understanding pathways which could determine COVID-19 degree of susceptibility and severity 

is critical for drug development. Alternative drug combinations might act in synergy to 

complement future vaccination strategies, because no vaccination provides absolute protection 

[11]. Indeed, protection from vaccination against viral diseases may range from 9 to 90% and up 

to 60% of people vaccinated against influenza, for example, still fall ill due to the virus [12, 13]. 

In addition, vaccination is not systematically mandatory across countries. 
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Computational approaches may be utilized to identify candidate target molecules for the 

development of tailored drug treatments [14-16]. Insofar, drug targets can be predicted based 

on analysis of gene expression or genetic polymorphism profiles accessible through publicly 

available databases such as Gene Expression Omnibus (GEO) [17, 18]. Computational tools 

may (i) help elucidate or compare the mechanism(s) of action of drugs, (ii) assist in identification 

and characterization of interactions between a drug and its target, and (iii) provide a better 

understanding of mechanistic cellular reactions occurring at the molecular level in a drug 

response [19]. 

 

Computational approaches may also serve to investigate viral susceptibility and contribute to 

the development of vaccines [20-22]. For instance, machine learning has been used in the 

development of viral vaccines (e.g., influenza) and in the investigation of genetic adaptation of 

the virus to the host [23]. Indeed, the genetic variability of SARS-CoV-2 will likely impact vaccine 

development in future outbreaks. Additionally, an appropriate computational model that 

accounts for the complexities of molecular interactions in COVID-19 patients affected by 

comorbidities, would allow for a predictive and better assessment of viral mechanisms and 

patients’ response to drug or vaccine treatment. 

 

The aim of this study was to complete a meta-analysis to identify genes associated with 

comorbidities/underlying medical conditions, potentially conferring increased susceptibility to 

SARS-CoV-2 infection or leading to the manifestation of more severe viral symptoms. To this 

end, we conducted a generalized gene set analysis using single nucleotide polymorphisms 

(SNPs) data from genome-wide association studies (GWAS) of a comprehensive list of possible 

comorbidities using Multi-marker Analysis of GenoMic Annotation (MAGMA)[24]. This analysis 

was complemented with (i) the investigation of predicted effects from the significant SNPs 

identified by MAGMA and (ii) the determination of differential human gene expression, most 

likely relevant to the pathogenesis of the viral respiratory illnesses, severe acute respiratory 

syndrome (SARS) and influenza.  

 

 

METHODS 

 

Multi-marker Analysis of GenoMic Annotation (MAGMA) 
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GWAS catalog and gene mapping 

 

From an initial list of 258 mostly chronic diseases (data not shown), possibly representing 

comorbidities/underlying medical conditions associated with increased SARS-CoV-2 infectivity 

or disease severity, SNP datasets from the online GWAS catalog database [25] were identified 

using disease name, then downloaded and parsed. SNPs were mapped to genes using 

MAGMAv1.07b with the publicly available gene reference file NCBI37.3.gene.loc 

(https://ctg.cncr.nl/software/magma) [24].  

 

Determination of multiple SNPs significance  

 

The significance of SNPs (p-values) and derived sample sizes pertaining to genetic studies of 

comorbidities were extracted from the GWAS catalog datasets to compute correlations between 

neighboring genes and gene-level metrics via MAGMAv1.07b. To this end, the publicly available 

1000 Genomes datasets (https://ctg.cncr.nl/software/magma) were used as reference files, 

considering the ethnicities associated with the possible comorbidity tested (European, East 

Asian, African, South American) [24]. To perform the gene set SNP analysis in MAGMAv1.07b, 

the ‘ncol’ flag was set to the to the sample size column in the SNP p-value file where each 

sample size corresponds to a p-value for the GWAS study completed. The flag for “multi=snp-

wise” model was used to perform the ‘mean’ and ‘top1’ model analysis.  

 

Pathway analysis using Enrichment Map and MAGMAv1.07b programs 

 

Reactome analysis 

 

To conduct the pathway analysis, Reactome[26] human pathways were downloaded from 

Enrichment Map program [27] using Entrez gene IDs [28-30]. Computationally derived Gene 

Ontology (GO) biological terms and “No Data” were excluded. Based on the significant SNPs in 

comorbidity gene sets per MAGMAv1.07b analysis, significant Reactome gene ontology defined 

pathways were identified. The significant pathways also underwent a per-gene analysis with the 

MAGMAv1.07b model flag set to ‘alpha=0.05’ [24].  

 

Interaction networks 
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Visualization of protein-protein interaction networks was completed using STRINGv11.0 [31] 

program by testing different confidence levels to identify ontologies of biological significance for 

the significant pathways associated with comorbidities. 

 

Quality control 

 

Possible comorbidity significant associated gene sets/pathways were checked for quality control 

by generating Quantile-Quantile (Q-Q) plots using observed quantiles and residual Z-scores of 

genes within the gene set, based on the MAGMAv1.07b publicly available Rv3.6.2 script 

(posthoc_qc_107a.r) [32, 33].  

 

Prediction of SNP effects 

 

Ensembl’s Variant Effect Predictor program (VEP) [34] was used to analyze 

MAGMAv1.07b annotation files for each gene set associated with comorbidities [35]. 

MAGMAv1.07b annotation files were converted into VEP format using a bash script. All 

converted annotation files were uploaded into VEP online tool separately. VEP summary 

statistics and analysis tables were downloaded for the comorbidities’ associated genes 

and pathways found significant by MAGMAv1.07b. Corresponding tables were merged 

via Pythonv3.8.2 and SNPs containing a Sorting Intolerant from Tolerant (SIFT) score of 

0 and a Polymorphism Phenotyping2 (PolyPhen2) score of 1, were removed 

(Supplemental Data File 1). Human Genome Organization (HUGO) gene symbols were 

extracted from the table with remaining SIFT and PolyPhen2 scores. Duplicate HUGO 

gene symbols were removed using Rv4.0.2. The most recently updated Affymetrix HG-

U133A/B Human Genome Files [36, 37] containing annotated gene symbols and Entrez 

gene identifiers for all human genes were used to retrieve missing gene identification 

[38]. These tabular (.csv) files were merged and loaded into Rv4.0.2. Entrez gene IDs 

were matched to gene symbols from VEP analysis files to identify Affymetrix gene 

symbols. Genes and their corresponding Entrez ID’s were then matched to significant 

genes’ Entrez IDs found through combined MAGMAv1.07b - STRING analysis.  

 

Transcriptional gene expression analysis 
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GEO2R [39] was used to test the top 250 human mRNA gene expressions for each comorbidity 

based on available human data using NCBI GEO[39], by only including comorbidities that had 

significant pathways identified by MAGMAv1.07b and VEP STRING analyses. Human mRNA 

expression datasets comparing disease group to healthy controls since 2010 were searched. If 

no datasets were available post-2010 the latest dataset was downloaded using characteristics 

described for prior datasets. For diseases with no publicly available datasets comparing healthy 

controls to disease type, the newest, most relevant dataset was used. Tissue types used for 

analysis included: (i) peripheral blood mononuclear cells (PBMCs), (ii) cancer tissues, (iii) 

adipose tissue, (iv) pulmonary tissue, (v) post-mortem brain tissue, (vi) cardiovascular tissue, 

and (vii) blood stem cells.  

 

For each comorbidity, human mRNA gene expression data corresponding to average log-fold 

change (aLFC) were formatted for clustering of genes identified by MAGMAv1.07b and VEP 

and subsequently matched to STRING protein-protein interactions. Gene weights were added 

manually to account for duplicate genes in the dataset. Genes were mean centered and 

normalized. Hierarchical clustering was completed using a similarity metric of Manhattan city-

block distance for genes and arrays with average linkage via Cluster3.0v1.59. Clusters were 

visualized using heatmaps created using JavaTreeViewv1.1.6r4 [40]. Clustered groups of genes 

for MAGMAv1.07b and VEP genes were run separately through GeneCodisv4.0 online tool [41] 

for identification of possible biological processes or pathways involved in viral infection [42]. 

 

Gene involvement in influenza and/or SARS 

 

Significant genes (n=119) were investigated to determine their roles in relation to influenza 

and/or SARS respiratory viral infections. Genes were cross referenced using Pubmed [43] 

literature searches, DisGeNETv6 [44], Influenza Research Database[45] and conventional 

Google searches including HUGO gene symbol and either “influenza” or “SARS” [46, 47]. Risk 

of bias was assessed according to “Cochrane’s Handbook for Systematic Reviews of 

Interventions” [48]. Human tissue expression relevant to COVID-19 for genes with direct 

involvement was validated using Ensembl Expression Atlas [49, 50]. Genes not generally 

expressed in central nervous, cardiovascular, or pulmonary systems were removed from the 

dataset. Visualization of protein-protein interaction network of genes directly involved with 

influenza and SARS (caused by SARS-CoV-1) was completed using STRINGv11.0 using an 

interaction score of 0.400 [31]. 
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RESULTS 

 

The overall computational analytical design and associated primary results are presented in 

Figure 1. 

 

MAGMA analysis of multiple SNPs associated with candidate COVID-19 comorbidities 

 

To conduct generalized gene set analysis, we retrieved publicly available GWAS catalog 

datasets for 141 out of 258 COVID-19 possible comorbidities/underlying medical 

conditions. The 141 comorbidities were grouped into 8 categories by disease type based 

on organ most affected (Table S1). Following our MAGMA analysis (Figure 1: Flowchart 

section A), gene set and Reactome gene level analyses yielded 69 pathways 

representing 119 significant genes (p<0.05). These pathways were significant for 22 

COVID-19 comorbidities representing 6 disease categories, namely, cancer (n=9); 

cardiovascular (n=4); neurologic/mental (n=3); respiratory (n=2); skin/musculoskeletal 

(n=1); autoimmune/endocrine/metabolic (n=3). Reactome significant pathways and 

genes obtained through MAGMAv1.07b gene-level analysis from Enrichment Map are 

shown in Tables 1a and b.  

 

Using STRINGv11.0 program with the highest confidence interaction score (CIS) of 0.9, 

processing of the 119 genes yielded a protein-protein interaction network of 70 genes, which 

was found to be highly significant based on hypergeometric test with Benjamini-Hochberg 

correction (p=4.36x10-11) (Figure 2a). The top Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway, identified by using STRINGv11.0, corresponded to Epstein-Barr virus 

infection with a false discovery rate of 6.72x10-9. 

 

Verification of significant pathways using Q-Q plots showed a high association between genes 

and their relative gene ontology defined pathways, since all plots show a distribution of residual 

z-scores deviating from the diagonal early on. There were no Q-Q plots with any ambiguous 

feature. Significant genes had high levels of association with each pathway. Q-Q plots of more 

than five genes, representing the pathways ontologies “post-translational protein modification”, 
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“translocation of ZAP-70 to immunological synapse”, “metabolism” and “cell cycle” and 

associated possible COVID-19 comorbidities (including asthma), are described in  

Figure S1.  

 

VEP analysis of MAGMA-identified COVID-19 comorbidity-associated genes 

 

Annotation files were converted for 134 of the 141 comorbidities with GWAS catalog datasets 

available (Figure 1: Flowchart section B). Of 3704 HUGO gene symbols extracted from VEP, 

2996 corresponding Entrez gene IDs were identified using Affymetrix human genome 

annotation file. Of these gene IDs, 50 were matched with the 119 significant genes identified by 

MAGMAv1.07b for the 22 comorbidities with significant pathways (Table 2). Of the 50 genes, all 

were included in a protein-protein interaction network of 55 genes using a low CIS in 

STRINGv11.0 (Figure 2b). The top KEGG pathway identified using STRINGv11.0 was HTLV-1 

infection with a false discovery rate of 4.38x10-7 using hypergeometric test with Benjamini-

Hochberg correction.  

 

Transcriptional gene expression analysis of MAGMA- and VEP-identified genes 

  

GEO human mRNA expression datasets were retrieved for 19 of 22 comorbidities. A description 

of GEO datasets is presented in Table S2. Using 119 MAGMAv1.07b identified genes (Figure 

1: Flowchart section A), JavaTreeViewv1.1.6r4 clustered 4 of 9 cancer types in the heatmap 

(partial view in Figure 3a, full heatmap in Supplementary Image). Also, interstitial lung 

disease, multiple sclerosis, asthma, obesity, and heart failure were clustered (Figure 3a). VEP 

STRING matched genes (n=50) also clustered 4 of 9 cancer types and clustered interstitial lung 

disease, multiple sclerosis, asthma, obesity, and heart failure together (Figure 3b). In both 

heatmaps Nucleoporin 160 (NUP160), Nucleoporin 153 (NUP153), Fibroblast Growth Factor 

Receptor 2 (FGFR2), and Karyopherin Subunit Beta 1 (KPNB1) showed lower aLFC expression 

in 12, 10, 6, and 10 out of 19 comorbidities, respectively (Figures 3a and b). GeneCodisv4.0 

was able to confirm the four above mentioned genes, as well as others to be involved in lung or 

viral biological processes. 

 

The 119 genes analyzed for gene expression were also investigated for their possible role in 

influenza and SARS-Cov-1 infection, as these might be relevant to SARS-Cov-2 infection. We 

identified three genes with a primary role in influenza infection: FGFR2, KPNB1 and NUP153 
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[51-54]. We also identified three genes KPNB1, Signal Transducer and Activator of 

Transcription 3 (STAT3), and Interleukin 2 Receptor Subunit Alpha (IL2RA) shown to play a 

significant role in SARS [55-57]. Genes identified as being possibly directly associated with 

influenza and/or SARS are shown in Table S3. STRING protein-protein interaction network 

yielded 38/46 (82.6%) genes involved in influenza and 15/17 (88.2%) genes involved in SARS, 

using an interaction score of 0.4 (Figures 4a and b). No GWAS study was found for SARS-

CoV-1 infection to identify possible susceptibility genes within the 119 genes. Additionally, no 

studies were found to be at high risk for bias (Table S4). 

 

 

DISCUSSION 

 

This is the first study conducting generalized gene set analysis on a broad spectrum of possible 

COVID-19 comorbidities, with the prospect of identifying comorbidity-specific genes that could 

impact infection by SARS-Cov-2.  

 

Starting with a list of 258 diseases, our MAGMA pipeline was able to identify 69 significant 

Reactome pathways with a total of 119 significant genes corresponding to 22 comorbidities that 

might have implications in predicting the severity of SARS-CoV-2 infection (Figure 1, Table 1, 

Table S1). Of the 22 comorbidities, we were able to validate pathways associated with 

cardiovascular disease, diabetes, obesity, and pulmonary diseases. Cardiovascular diseases 

identified included heart failure, atherosclerosis, Kawasaki’s disease, and hypertension. 

Pulmonary diseases included asthma and interstitial lung disease. Cancer has been reported as 

a possible risk factor for COVID-19 [9]. We were able to identify nine cancers with GWAS data 

and significant associated pathways including acute myeloid leukemia, renal cell cancer, small 

cell lung cancer, and lung cancer. Furthermore, the known COVID-19 comorbidities, 

hypertension, obesity and diabetes had significant pathways and genes. 

 

While Q-Q plots indicated validity of our findings, caution for interpretation of Q-Q plots must be 

used as these plots are normally used for pathways containing many genes. To a certain 

degree, these allow us to convey a certain level of confidence that there is a true association 

between gene and pathway [33]. In our analysis, however, less genes identified allowed us to 

narrow possible gene targets and pathways. Indeed, certain genes identified in our study may 

have significant biological relevance to infection by SARS-COV-2. For instance, sialyl 
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transferase ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase 3 (ST6GALNAC3) was 

found significant in the post-translational protein modification pathway (Figure S1). Another 

sialyl transferase, ST6GALNAC1, has been previously investigated as a drug target against 

infection of smooth airways epithelial cells by influenza virus [58]. It remains, however, to be 

determined whether ST6GALNAC3, generally expressed at high levels in renal cell cancer[59], 

plays a significant role in COVID-19 pathogenesis. Interestingly, aLFC gene expression of 

ST6GALNAC3 was positive in our analysis for 8 of 19 comorbidities (including renal cell 

cancer), namely, in tumor, pulmonary, brain, adipose tissues and PBMCs (Figure 3a&b). 

 

STRINGv11.0 analysis produced significant enrichment for both MAGMAv1.07b genes and VEP 

matched genes containing SNPs that had characteristics of deleterious effects (Table 2). 

Therefore, we believe the interactions among genes from significant pathways from MAGMA 

and matched VEP genes are likely not due to chance and that these genes are biologically 

connected. Furthermore, STRINGv11.0 analyses identified top KEGG pathways including, 

Epstein-Barr virus pathway (MAGMA genes), and HTLV-1 pathway (VEP matched genes). 

STRING was able to cluster 70 genes into four functional groups among the 119 MAGMA 

significant genes: cell regulation and immune response, cell transport and nervous tissue 

function, protein homeostasis and gene expression, transcriptional regulation and RNA-

mediated silencing (Figure 2a). Additionally, NUP160, NUP153, and KPNB1 clustered tightly 

together in the cell transport and nervous tissue function group. 

 

STRINGv11.0 analysis of the 50 VEP matched genes with a lower confidence interval of 0.150 

was required to obtain sufficient network connections for interpretation. Although network 

analysis may be subjective and is dependent on established knowledge, it is important to note 

that the enriched protein-protein interaction p-value was statistically significant. For the VEP 

matched gene STRINGv11.0 analysis, there were four distinct biological groupings recognized 

within the mapped network based on the closeness of protein interactions (Figure 2b). Those 

groupings were (i) antigen specific immune response, (ii) cell division and molecule 

formation/development, (iii) cell growth, survival, proliferation, motility, and morphology, (iv) and 

voltage gated ion channel transmembrane proteins. Notably, one of the comorbidities with 

significant associated pathways, breast cancer, contained SNPs affecting Solute Carrier Family 

4 Member 7 (SLC4A7) and Solute Carrier Family 24 Member 3 (SLC24A3) genes. These genes 

are involved with sodium, calcium, and potassium ion transport and play a role in the malignant 

progression of breast cancer [60]. In addition, Euchromatic Histone Lysine Methyltransferase 2 
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(EHMT2) was mapped within close protein interactions. EHMT2 is involved with post-

translational histone modification and epigenetic transcriptional repression. The orthologous 

gene (G9A) in drosophila is related to viral infection and susceptibility [61]. EHMT2 has been 

associated with the asthma comorbidity [62]. These results could indicate that EHMT2 

deregulation possibly confers susceptibility to COVID-19.  

 

The heatmap of MAGMA and VEP matched STRINGv11.0 genes shows that in 6 out of 19 

comorbidities (Figure 1: Flowchart section C), FGFR2 had low aLFC (Figure 3a and b). 

Epithelial signaling by fibroblast growth factors is required for effective recovery from lung 

injuries resulting from influenza infection [51]. Our analysis coincides with previous findings 

linking induced inactivation of FGFR2 with increased mortality and influenza-induced lung injury 

[51]. KPNB1 (Figure 2a), NUP153, and NUP160 (Figures 2a and 2b) clustered in our heatmap 

analysis and were observed to have negative aLFC in majority (>50%) of possible comorbidities 

(Figure 3a and b). Downregulation of these factors under the condition of a 

comorbidity/underlying medical condition might impair cellular function in the presence of an 

active replicating virus. 

 

Indeed, it has been previously established that a lower concentration of KPNB1 (interacting with 

NUP153, Figure 2a) in epithelial colorectal adenocarcinoma cells results in diminished Signal 

Transducer and Activator of Transcription 1 (STAT1) nuclear translocation activity [55]. Such 

regulation is critical for STAT1-activated genes to determine the level of anti-viral response and 

disease severity in an infection by SARS-CoV-1 [55]. Furthermore, KPNB1 is involved in the 

early stage of influenza virus replication via nuclear trafficking, by way of, nuclear import of viral 

cDNA or viral/host proteins into the host chromosome [52, 53].  

 

Based on previous studies, the interaction between NUP153 and KPNB1 has been investigated 

in relation to nuclear transport [63]. The degradation of NUP153 in influenza virus A infected 

cells, such as Madin-Darby canine kidney II and human lung epithelial cells, results in an 

enlargement and widening of nuclear pores [54]. This disease process allows viral 

ribonucleoprotein complexes to be exported from the nucleus to the plasma membrane[54]. 

Additionally, NUP160 has been shown to work in conjunction with NUP153 to mediate nuclear 

import and export [64]. Therefore, degradation of one or both can prevent the import of signal 

transducers and activators of transcription, reducing effectiveness of the anti-viral interferon 
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response [65]. Our results support the interactions between these genes and viral respiratory 

diseases, such as influenza and SARS. 

 

NUP153 showed negative aLFC of three cancer types (tumor tissues), three cardiovascular 

diseases (PBMCs and cardiovascular tissue), two respiratory diseases (pulmonary tissues), and 

two autoimmune/endocrine/metabolic diseases (PBMCs and adipose tissue). NUP160 showed 

lower aLFC in four cancer types (tumor tissues), two cardiovascular disease (PBMCs and 

cardiovascular tissues), two respiratory diseases (pulmonary tissues), two autoimmune 

/endocrine/metabolic diseases (PBMCs and adipose tissue), one mental health disease (post-

mortem brain tissue), and one skin/musculoskeletal (PBMCs). KPNB1 showed low aLFC in four 

cancer types (tumor tissues), two respiratory diseases (pulmonary tissues), two mental health 

diseases (post-mortem brain tissue), one cardiovascular disease (PBMCs), and one 

autoimmune/endocrine/metabolic disease (adipose tissue).  

 

Moreover, FGFR2 showed lower aLFC in four cancer types (tumor tissue), one respiratory 

disease (pulmonary tissues), and one cardiovascular disease (PBMCs) (Figure 3a and b). 

Notably, the possible comorbidities, asthma and prostate cancer, were identified as having all 

four genes (i.e., FGFR2, KPNB1, NUP153, and NUP160) downregulated. Three of the four 

genes were downregulated in obesity (KPNB1, NUP153, NUP160), heart failure (FGFR2, 

KPNB1, NUP153), and interstitial lung disease (KPNB1, NUP153, NUP160) (Figure 3a). Only 

NUP153, and NUP160 were downregulated in hypertension and type 1 diabetes mellitus 

(Figure 3a and b).  

 

GeneCodis was able to identify FGFR2 as being involved in mesenchymal cell differentiation 

involved in lung development while NUP153 and NUP160 are involved in viral replication 

process and intracellular transport of viruses. STAT3 was identified as being involved in primary 

miRNA binding and viral process and has been observed to be downregulated in SARS-CoV-1 

infected Vero E6 kidney epithelial cells extracted from an African green monkey [56]. 

Additionally, IL2RA has been recently identified as significantly upregulated in the plasma of 

patients with severe COVID-19 [57] (Figures 2a and 2b). In our analysis, GeneCodis also 

identified Transporter 2, ATP binding Cassette Subfamily B Member (TAP2), Major 

Histocompatibility Complex, Class II, DR Beta 1 (HLA-DRB1), and Major Histocompatibility 

Complex, Class II, DQ Beta 1 (HLA-DQB1) as being involved in Epstein-Barr virus infection. 
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Further research is needed to confirm these genes (or associated regulations) as possible drug 

targets for SARS-CoV-2 infection. 

 

Limitations 

 

While there is no shortage of publicly available data, not all diseases have the same level of 

dedicated research. Therefore, not all possible comorbidities had publicly available SNP 

datasets from GWAS catalog or human mRNA gene expression datasets from NCBI’s GEO 

datasets database. This resulted in a large decrease from 258 possible comorbidities to 141.  

Additionally, we were only able to use 19 of 22 significant comorbidities for GEO2R analysis and 

heatmap visualization. Another caveat is that GEO2R mRNA expression datasets have been 

generated through different independent studies using different genomic platforms and analysis 

pipelines, so that optimal normalization of raw data cannot be implemented. Little is still known 

about COVID-19 pathogenesis, although research on the matter has increased greatly since the 

beginning of the pandemic.  

 

Conclusions 

 

Significant pathways were identified associated with comorbidities/underlying medical conditions 

conferring susceptibility and/or severity to SARS-CoV-2 infection, which have been reported in 

conjunction with decreased clinical outcomes. Our findings may have implications in 

development of COVID-19 therapies. 
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ABBREVIATIONS 

 

ADAMTS9: a disintegrin-like and metalloprotease with thrombospondin type 1 motif, 9; AHABE: 

adenocarcinoma human alveolar basal epithelial; aLFC: average log-fold change; A-MuLV: 

Abelson murine leukemia virus; C127: mouse fibroblast; CIS: confidence interaction score; 

COVID-19: coronavirus disease of 2019; CTL: cytotoxic T-lymphocyte; EHMT2: euchromatic 

histone lysine methyltransferase 2; FGFR2: fibroblast growth factor receptor 2; GEO: Gene 

Expression Omnibus; GIDEON: Global Infectious Disease and Epidemiology Network database; 

GO: Gene Ontology; GWAS: genome-wide association studies; HBE: human bronchial 

epithelial; HEK: human embryonic kidney; HLA-DRB1: major histocompatibility complex, class 

II, DR Beta 1; HLA-DRB5: major histocompatibility complex, class II, DR Beta 5; HLA-DQA2: 

major histocompatibility complex, class II, DQ Beta 1; HLA-DQB1: major histocompatibility 

complex, class II, DQ Beta 1; HTL: helper T-lymphocyte; HUGO: Human Genome Organization; 

IFI30: IFI30 lysosomal thiol reductase ; IL2RA: interleukin 2 receptor subunit alpha; KEGG: 

Kyoto Encyclopedia of Genes and Genomes; KPNB1: karyopherin subunit beta 1; MAGMA: 

Multi-marker Analysis of GenoMic Annotation; MDCK: madin-darby canine kidney; miRDB: 

microRNA Target Prediction Database; ND: No Data; NUP153: nucleoporin 153; NUP160: 

nucleoporin 160; PBMCs: peripheral blood mononuclear cells; PIK3R2: phosphoinositide-3-

kinase regulatory subunit 2; PM: primary macrophages; PPARGC1A: peroxisome proliferator-

activated receptor gamma coactivator 1 alpha; PolyPhen2: Polymorphism Phenotyping 2; Q-Q: 

quantile-quantile; SARS: severe acute respiratory syndrome; SARS-CoV-1: severe acute 

respiratory syndrome coronavirus-1; SARS-CoV-2: severe acute respiratory syndrome 

coronavirus-2; SIFT: Sorting Intolerant from Tolerant; SLC4A7: solute carrier family 4 member 

7; SLC24A3: solute carrier family 24 member 3; SNPs: single nucleotide polymorphisms; 

ST6GALNAC1: ST6-acetylgalactosaminide alpha-2,6-sialytransferase 1; ST6GALNAC3: ST6 N-

acetylgalactosaminide alpha-2,6-sialyltransferase 3; STAT1: signal transducer and activator 

transcription 1; STAT3: signal transducer and activator of transcription 3; TAP2: transporter 2, 

ATP binding cassette subfamily B member; VEP: Variant Effect Predictor; Vero: epithelial 

kidney cells derived from African green monkey (Chlorocebus spp.); WHO: World Health 

Organization; ZAP-70: zeta-chain associated protein kinase 70 
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TABLES 
Table 1. Reactome significant COVID-19 comorbidity-associated pathways and genes from EnrichmentMap program via MAGMAv1.07b 

a. Gene-level analysis of significant pathways 
 

 
 

Comorbiditya R-HSA pathway IDb Reactome pathwaysc p-value 
min; maxd 

p-value 
mediane 

Acute myeloid 
leukemiaf 

597592 Post-translational protein modification 1.2E-4 1.2E-4 

Asthmag 1222499; 75105;  
881907; 202433; 389948; 75876; 
202430 

Fatty acid metabolism; Fatty acyl-CoA biosynthesis and synthesis of very long-chain fatty 
acyl-CoAs; Gastrin-CREB signaling pathway via PKC and MAPK; Generation of second 
messenger molecules; PD-1 signaling; Translocation of ZAP-70 to immunological 
synapse 

2.72E-10; 
6.93E-6 

2.27E-7 

Atherosclerosish 112310; 181430; 425407; 112315; 
425366; 382551 

Neurotransmitter release cycle & Norepinephrine neurotransmitter release cycle; SLC-
mediated transmembrane transport; Transmission across chemical synapses; transport 
of bile salts and organic acids, metal ions and amine compounds, transport of small 
molecules 

6.32E-9; 
4.18E-4 

4.36E-6 

Bipolar disorderi 983231 Factors involved in megakaryocyte development and platelet production 1.8E-6 1.8E-6 
Breast cancerf 176814; 174048; 176409; 174143; 

179419; 174048; 113507; 5687128; 
176412; 176408; 453276; 425407; 
425393 

Activation of APC C and APC C: Cdc20 mediated degradation of mitotic proteins; Cyclin 
B; mitotic proteins; cell cycle proteins; cell cycle protein prior to satisfaction of cell cycle 
checkpoint; Phospho-APC C mediated degradation of Cyclin A; Phosphorylation and 
regulation of APC C between G1 S and early anaphase; E2F enabled inhibition of pre-
replication complex formation; MAPK MAPK4 signaling; Regulation of mitotic cell cycle; 
SLC-mediated transmembrane transport; Transport of inorganic cations anions and 
amino acids oligopeptides 

3.57E-11; 
3.32E-5 

1.34E-5 

Colorectal cancerf 8875878; 6806834; 9006934 MET promotes cell motility; Signaling by MET and receptor tyrosine kinases 1.52E-4; 
5.67E-4 

3.6E-4 

Heart failureh 382551 Transport of small molecules 4.77E-5 4.77E-5 

Hypertensionh 5576891; 397014; 6802957; 6802952 Cardiac conduction; Muscle contraction; Oncogenic MAPK signaling 1.67E-6; 
3.03E-4 

3.70E-5 

Hypothyroidismj 1430728 Metabolism 3.08E-4 3.08E-4 
Interstitial lung 
diseaseg 

168249 Innate immune system 6.06E-6 6.06E-6 

Kawasaki’s diseaseh 1280218; 983169; 168256 Adaptive immune system & immune system; Class I MHC mediated antigen processing & 
presentation 

8.02E-5; 
5.06E-4 

2.93E-4 

Lung cancerf 1483257 Phospholipid metabolism 1.06e-4 1.06E-4 
Multiple sclerosisk 1280215 Cytokine signaling in immune system 4.86E-5 4.86E-5 
Obesityj 422475; 204998; 73887; 1266738; 

416482; 9675108; 193648; 193704; 
194840; 194315 

Axon guidance; Cell death signaling via NRAGE, NRIF, and NADE; Death receptor 
signaling; Developmental biology; G alpha (12 13) signaling events; Nervous system 
development; NRAGE signals death through JNK; P75 NTR receptor-mediated signaling; 
Rho GTPase cycle; Signaling by Rho GTPases 

5.78E-7; 
1.42E-4 

6.44E-7 

Ovarian cancerf 1483257 Phospholipid metabolism 9.76E-7 9.76E-7 
Pancreatic cancerf 1226099 Signaling by FGFR in disease 2.4E-4 2.4E-4 
Prostate cancerf 556833; 1483255; 1660516 Metabolism of lipids, PI; Synthesis of PIPs at the early endosome membrane 1.78E-5; 

8.64E-5 
5.21E-5 

Renal cell cancerf 109582 Hemostasis 1.71E-3 1.71E-3 
Schizophreniai 2559583; 2559586 Cellular senescence; DNA damage telomere stress induced senescence 1.16E-6; 

2.07E-6 
1.61E-6 

Small cell lung 
cancerf 

8953897; 2262752 Cellular responses to external stimuli & stress 1.05E-3 1.05E-3 

Type 1 diabetes 
mellitusj 

4086398; 9607240; 5683057; 5673001; 
8878171 

ERK1 ERK2 pathway; FLT3 signaling, MAPK family signaling cascades; RAF MAP 
kinase cascade; Transcriptional regulation by RUNX1 

2.77E-4 2.77E-4 

Unipolar depressioni 1640170 Cell cycle 9.12E-5 9.12E-5 
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b. Gene-level analysis of significant genes 

 

Comorbiditya Entrez gene ID/sb Gene symbolc p-value min; maxd p-value 
mediane 

Acute myeloid 
leukemiaf 

3065; 256435; 51377; 6670; 5468; 57599; 56999; 
10891; 4306; 9972; 1780; 55958; 23287; 1075; 
84259; 50863; 4287; 123624; 641; 9491; 7109 

HDAC1; ST6GALNAC3; UCHL5; SP3; PPARG; WDR48; PPARGC1A; 
NR3C2; NUP153; KLHL9; AGTPBP1; CTSC; DCUN1D5; NTM; 
ATXN3; AGBL1; BLM; PSMF1; TRAPPC10 

1.53E-22; 3.00E-6 
 

1.70E-10 

Asthmag 55289; 2181; 79993; 47 ACOXL; ACSL3; ELOVL7; ACLY 6.26E-41; 4.00E-7 3.94E-24 
 2181; 79993; 47 ACSL3; ELOVL7; ACLY 1E-50; 6.41E-9 1.69E-10 
 2520; 5578; 6196 GAST; PRKCA; RPS6KA2 1E-50; 6.41E-9 3.21E-9 
 3122; 3127; 3117; 3119; 3120 HLA-DRA; HLA-DRB5; HLA-DQA1; HLA-DQB1; HLA-DQB2 1E-50; 6.41E-9 4.72E-24 
 2181; 79993 ACSL3; ELOVL7 1.72E-23; 5.85E-8 1E-8 
Atherosclerosish 6580; 6857 SLC22A1; SYT1 2E-43; 1E-9 5E-10 
 6580; 6564; 23446 SLC22A1; SLC15A1; SLC44A1 2E-43; 2.67E-6 7E-7 
 3773; 5577; 6580; 6857 KCNJ16; PRKAR2B; SLC22A1; SYT1 2E-43; 1E-9 1.2E-10 
 6580; 23446 SLC44A1; SLC22A1 2E-43; 2.67E-6 1.33E-6 
 6580; 23446; 23457; 5577; 5664 SLC44A1; SLC22A1; ABCB9; PRKAR2B; SLC15A1 2E-43; 2.67E-6 4E-7 
Bipolar disorderi 11311; 23046; 26153; 25970 VPS45; KIF21B; KIF26A; SH2B1 1E-24; 2E-6 1E-6 
Breast cancerf 64682; 983 ANAPC1; CDK1 1E-50; 3E-8 1.5E-8 
 983; 23112 CDK1; TNRC6B 1E-50; 9.99E-35 5E-35 
 64682; 983 ANAPC1; CDK1 1E-50; 2E-9 1E-9 
 23446; 57419; 9497 SLC44A1; SLC24A3; SLC4A7 9.58E-51; 9E-6 3E-45 
 57419; 9497 SLC24A3; SLC4A7 3E-45; 9E-6 4.5E-6 
Colorectal cancerf 3915; 64759 LAMC1; TNS3 6.36E-14; 2E-11 1E-11 
 3915; 8936; 64759 LAMC1; WASF1; TNS3 6.36E-14; 1E-6 2E-11 
Heart failureh 6570; 366 SLC18A1; AQP9 2E-44; 2E-35 1E-35 
Hypertensionh 57085; 27044 AGTRAP; SND1 4E-34; 5E-7 2.5E-7 
 3752; 776; 783; 4633 KCND3; CACNA1D; CACNB2; MYL2 1E-21; 7E-12 6.59E-16 
 3752; 766; 783 KCND3; CACNA1D; CACNB2 1E-21; 1.31E-15 1.08E-17 
 57085; 200734; 27044 AGTRAP; SPRED2; SND1 4E-34; 5E-7 2E-7 
Hypothyroidismj 1213; 26275; 2131; 960; 8898; 113; 5296 CLTC; HIBCH; EXT1; CD44; MTMR2; ADCY7; PIK3R2 3E-39; 3E-10 2E-17 
Interstitial lung 
diseaseg 

4583; 54472 MUC2; TOLLIP 7E-34; 4.45E-13 2.23E-13 

Kawasaki’s 
diseaseh 

55521; 6891; 208 TRIM36; TAP2; AKT2 5E-11; 2E-8 4E-10 

 55521; 6981 TRIM36; TAP2 5E-11; 2E-8 1E-8 
Lung Cancerf 374986; 79888; 22876 MIGA1; LPCAT1; INPP5F 8E-35; 9E-6 4E-7 
Multiple sclerosisk 942; 5602; 3575; 3123; 3119 CD86; MAPK10; IL7R; HLA-DRB1; HLA-DQB1 6.08E-24; 1E-11 5E-20 
Obesityj 25791; 5924 NGEF; RASGRF2 1E-50; 5E-6 2.5E-6 
 8648; 25791; 5915; 57698 NCOA1; NGEF; RARB; SHTN1 1E-50; 8E-6 2E-6 
 25791; 57698 NGEF; SHTN1 1E-50; 8E-6 4E-6 
 25791; 1062; 10788; 5924 NGET; CENPE; IQGAP2; RASGRF2 1E-50; 8E-6 2.5E-6 
Ovarian cancerf 114884; 22876 OSBPL10; INPP5F 8E-35; 2E-6 1E-6 
Pancreatic cancerf 2263; 6776; 6774 FGFR2; STAT5A; STAT3 1E-50; 7E-6 1E-6 
Prostate cancerf 22876; 55697 INPP5F; VAC14 8E-35; 2E-8 1E-8 
 2629; 22876; 55697;83394; 8714 GBA; INPP5F; VAC14; PITPNM3; ABCC3 1E-50; 2E-6 2E-8 
Renal cell cancerf 5581; 8793 PRKCE; TNFRSF10D 1.5E-25; 6E-9 3E-9 
Schizophreniai 8294; 8341; 3009 HIST1H4I; HIST1H2BN; HIST1HIB 5E-27; 2E-21  9E-27 
 192669; 8294; 8341; 3009; 10919 AGO3; HIST1H4I; HIST1H2BN; HIST1H1B; EHMT2 5E-27; 2E-6 3.51E-19 
Small cell lung 
cancerf 

10919; 55466 EHMT2; DNAJA4 5E-21; 5E-6 2.5E-6 

Type 1 diabetes 
mellitusj 

10213; 3559 PSMD14; IL2RA 3.71E-31; 4E-18 2E-18 

Unipolar 
depressioni 

64326; 5500; 8347; 8294; 8348; 23345; 8379; 
11064; 8945; 5702; 23279; 8655; 91750; 3837 

RFWD2; PPP1CB; HIST1H2BC; HIST1H4I; HIST1H2BO; SYNE1; 
MAD1L1; CNTRL; BTRC; PSMC3; NUP160; DYNLL1; LIN52; KPNB1 

4E-25; 7E-6 6.75E-11 
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Footnote:  

 

a. Gene-level analysis of significant pathways  
bReactome pathway unique identifier 
cReactome pathway name 

 

b. Gene-level analysis of significant genes 
bEntrez gene unique identifiers found to be significant in Reactome pathways are shown 
cGene symbol identified using DAVIDv6.8 (https://david.ncifcrf.gov/tools.jsp) from Entrez gene 

ID  

 

(a,b). aSARS-CoV-2 infection-related possible comorbidity name having significant pathways 

and genes analyzed using MAGMAv1.07b (n=22) 
dp-value minimum and maximum 
ep-value median 

Comorbidities include: fCancer (non-head and neck cancer) group (n=9), gRespiratory group 

(n=2), hCardiovascular/blood group (n=4), iNeurologic/mental group (n=3), jAutoimmune/ 

metabolic/ endocrine group (n=3), and kSkin/musculoskeletal group (n=1) 

 

*Note: Bolded gene symbols (n=50) represent matched genes from VEP analysis to significant 

genes found through MAGMAv1.07b analysis; Synonymous gene symbols include HLA-DRB1 

with HLA-DRB5; HLA-DQA1 with HLA-DQA2; ADAMTS9 with PPARGC1A; IFI30 with PIK3R2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 15, 2020. ; https://doi.org/10.1101/2020.09.14.20192609doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.14.20192609


27

Table 2. VEP genes and SNPs matched to significant MAGMAv1.07b COVID-19 comorbidity-associated genes  

Comorbiditya Entrez gene IDb Gene symbolc Variant ID (rs#)d Consequencee 

Acute myeloid leukemia 
2263; 5602; 55289; 
56999; 9972; 50863 

FGFR2; MAPK10; ACOXL; 
ADAMTS9; 
NUP153; NTM 

7090018, 2912759; 6838659; 4640633; 17524344; 
4849120; 4849121; 13395354; 9868005; 13095235; 
4371513; 4605539; 11714364; 9851598; 4716165; 
4716167; 10949435; 2274136; 9383307; 6906499; 
9350055; 9396787; 10949436; 1006066; 11753865; 
16879902; 12199222; 11222631; 11222631; 11222647; 
12278021; 7107326; 11222652; 11222653; 992564; 
12419920; 12575010; 4937627 

IV; NMD; NC-T 
DGV; NC-TV; 3prime; 
MS 

Asthma 

5581; 3575; 3117;3123; 
6891; 3118; 10919; 
56999 

PRKCE; IL7R; 
HLA-DQA1; HLA-DRB1; 
TAP2; HLA-DQA2; EHMT2; 
ADAMTS9; 

12622534; 281508; 7717955; 6881270; 
114798579; 146668528; 9272105; 3104369; 3104367; 
9272346; 9270911; 2760995; 7760841; 4713555; 
3997868; 
151027268; 3104369; 3104367; 9272346; 41267086; 
9866261 

IV; IV,NC-TV; DGV; 
UGV; IV,NMD; 
3prime; NC-EV 

Atherosclerosis 114884; 50863 OSBPL10; NTM 1902341; 11827555 IV; IV,NC-TV 

Bipolar disorder 

25791; 783; 25970; 
23345; 8379; 5578; 
23046 

NGEF; CACNB2; SH2B1; 
SYNE1; MAD1L1; PRKCA; 
KIF21B 

778353; 2592118; 7071123; 3888190; 1203233; 
17082664; 9371601; 7747960; 4523096; 4236274; 
10275045; 4332037; 12668848; 3931398; 4721295; 
1107592; 9895770; 2297909 

IV; IV,NC-TV; 
IV,NMD; DGV; UGV 

Breast cancer 9497; 57419; 23287 
SLC4A7; SLC24A3; 
AGTPBP1 4973768; 7619833; 113118767; 77674461 

3prime; DGV; IV,NC-
TV; IV; IV,NMD 

Colorectal cancer 
4633; 3915; 64759; 
57419; 2263 

MYL2; LAMC1; TNS3; 
SLC24A3; FGFR2 

17550549; 6678517; 4546885; 10911251; 3801081; 
113118767; 11200014 

IV; IV,NC-TV; DGV; 
IV,NMD 

Heart failure 64759 TNS3 192154334 IV; DGV 
Hypertension 776; 783; 84515 CACNA1D; CACNB2; MCM8 3774427; 12715461; 9814480; 12258967; 4815879 IV; IV,NC-TV; IV,NMD 

Hypothyroidism 113 ADCY7 78534766 
IV; DGV; MS,NMD; 
NC-EV; UGV 

Interstitial lung disease 54472 TOLLIP 5743894; 5743890 
IV; IV,NC-TV; UGV; 
IV,NMD 

Lung cancer 79888; 8648 LPCAT1; NCOA1 4406174; 62140840; 11902506; 6710503 IV; IV,NMD; IV,NC-TV 

Multiple sclerosis 
5296; 6774; 3575; 942; 
3117; 5602; 3118; 3559 

PIK3R2; STAT3; IL7R; CD86; 
HLA-DQA1; MAPK10; HLA-
DQA2; 
IL2RA 

11554159; 2293152; 6897932; 10063294; 6881706; 
2681424; 3104373; 2040406; 72665771; 3104373; 
2040406; 2104286; 3118470; 12722489 

DGV; IV; UGV; MS; 
NC-EV; IV,NMD; 
3prime; IV,NC-TV 

Obesity 
5296; 10437; 25970; 
5915 

PIK3R2; IFI30; SH2B1; 
RARB 11554159; 7498665; 1435703 

DGV; MS; NC-EV 
IV,NC-TV; UGV; 
IV,NC-TV; IV 

Ovarian cancer 114884 OSBPL10 28568660 IV; IV,NC-TV; DGV 
Pancreatic cancer 64759 TNS3 73328514 IV 

Prostate cancer 

55697; 64759; 
3752; 6580; 8379; 23112; 
2263 

VAC14; TNS3; KCND3; 
SLC22A1; MAD1L1; 
TNRC6B; FGFR2 

875858; 56232506; 2788612 
651164; 4646284; 527510716; 11704416; 9623117; 
58133635; 12628051; 4821941; 11200014 

IV; IV,NC-TV; 
IV,NMD; DGV; UGV 

Schizophrenia 25791 NGEF 778371; 778353; 2944591 DGV; IV; UGV 

Type 1 diabetes mellitus 3575; 3117; 3118; 3559 
IL7R; HLA-DQA1; HLA-
DQA2; IL2RA 

6897932; 9272346; 9272346 
61839660; 12722495; 706778; 10795791 

MS; IV; UGV; NC-EV; 
NMD; NC-TV 

Unipolar depression 

25791; 783; 3123; 
23345; 2131; 23279; 
8379; 23046 

NGEF; CACNB2; HLA-DRB1; 
SYNE1; EXT1; NUP160; 
MAD1L1; 
KIF21B; 

778353; 2799573; 7071123; 535777; 17082664; 9371601; 
17506336; 11039409; 12668848; 1107592; 11514731; 
2056477; 56072378; 3823624; 2297909 

IV; NMD; NC-TV; 
UGV; DGV 
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Footnote: 

 

Total of 54 gene IDs from STRINGv11.0 analysis (50 genes after synonyms processed) were 

matched with significant genes from 22 comorbidities with significant pathways identified by 

MAGMAv1.07b. 
aVariant effect predictor (VEP) analysis of significant MAGMAv1.07b comorbidities 
bEntrez gene unique identifiers found to be significant from STRINGv11.0 matched gene 

analysis 
cHuman Genome Organisation (HUGO) gene symbol identified using most recently updated 

Affymetrix HG-U133A/B Human Genome Files 

(http://www.affymetrix.com/Auth/analysis/downloads/na35/ivt/HG-U133A.na35.annot.csv.zip, 

http://www.affymetrix.com/Auth/analysis/downloads/na35/ivt/HG-U133B.na35.annot.csv.zip)  
dSingle nucleotide polymorphism (SNP) identifiers of upload variant numbers from 

MAGMAv1.07b and VEP analysis (rs number) 
eConsequence of SNP variants on sequence; IV – intron variant, NMD – nonsense-mediated 

decay transcript variant, NC-T – noncoding transcript, NC-TV – noncoding transcript variant, 

3prime – 3 prime untranslated region variant, DGV – downstream gene variant, UGV – 

upstream gene variant, NC-EV – noncoding exon variant, IV-NC – intron variant, non-coding 

transcript, MS – missense variant 

*Note: Comorbidities without significantly matched genes include mucocutaneous lymph node 

syndrome, renal cell cancer, and small cell lung cancer. 
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FIGURE LEGENDS 

 

Figure 1. Computational analytical design for determination of genes/pathways associated with 

comorbidities, possibly contributing to COVID-19 severity/infectivity 

 

Legend.  

 

Flowchart section A.  

A list of candidate comorbidities (n=258) possibly associated with increased severity/infectivity 

of COVID-19 were curated. SNPs associated with comorbidities with available GWAS 

catalogdata (n=141) were analyzed. Multi-marker Analysis of GenoMic Annotation (MAGMA) 

was performed. SNPs were annotated to genes using NCBI gene reference file 

(NCBI37.3.gene.loc). In MAGMAv1.07b, gene set/pathway analysis was performed for which 

each SNP that was identified, using the “multi-mean=snp-wise” model-generated results, taking 

into account ethnicities associated with a possible comorbidity. Gene-level analysis was 

completed using Reactome pathways retrieved from Enrichment Map program. STRINGv11.0 

protein-protein interaction program was used to visualize the network of 119 significant genes. 

Quantile-quantile (Q-Q) plots in Rv3.4.2 for 69 significant pathways were used for quality 

control. NCBI-gene expression omnibus (GEO) human mRNA differential expression datasets 

were downloaded via GEO2R for each comorbidity with associated genes/ pathways (n=19 of 

22). Human mRNA expression was visualized with a heatmap of the 119 significant genes using 

Cluster3.0v1.59 and JavaTreeViewv1.1.6r4. Tissue expression relevance to SARS and 

influenza was determined using DisGeNETv6 and Ensembl Expression Atlas databases. 

 

Flowchart section B. 

MAGMAv1.07b annotation files were converted for Ensembl Variant Effect Predictor (VEP) 

format (n=134 of the 141 GWAS datasets). Gene symbols (n=3704) were extracted for VEP 

analysis from 22 significant comorbidity-associated genes/pathways per MAGMAv1.07b 

analysis. Entrez gene IDs (n=2996) were matched to gene symbols using Affymetrix gene 

symbols annotation files (HG-U133A/B Human Genome Files). STRINGv1.0 protein-protein 

interaction program was used to visualize the network (n=50 genes). 

 

Flowchart section C. 

NCBI-Gene expression omnibus (GEO) human mRNA differential expression datasets were 

downloaded via GEO2R for each of the 22 comorbidities with associated genes/pathways (n=19 

of 22). VEP genes were matched to network genes and formatted for Cluster3.0v1.59. Human 

mRNA expression was visualized with a heatmap using average log-fold changes (aLFC) in 

JavaTreeViewv1.1.6r4 (i.e., 50 VEP identified genes matched to 119 MAGMA identified genes). 
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Figure 2. STRING protein-protein interaction network for significant COVID-19 comorbidity-
associated genes 

 

a. MAGMA significant genes (CIS=0.9) 

b. Matched MAGMA and VEP significant genes (CIS=0.15) 

 

Legend.  

 

a. Significant genes were identified via MAGMAv1.07b gene-level analysis 

(https://ctg.cncr.nl/software/magma) using Reactome human pathways (https://reactome.org) 

obtained from Enrichment Map (http://baderlab.org/Software/EnrichmentMap) for 22 COVID-19 

possible comorbidities with 119 significant genes. In STRINGv11.0 program, the confidence 

interaction score (CIS) was set to the maximum of 0.9, resulting in a network of 70 connected 

genes. Clustering by biological functions is represented by outlines. Green (…): cell regulation 

and immune response. Red (__): cell transport and nervous tissue function. Blue (--): protein 

homeostasis and gene expression. Orange (-..-): transcriptional regulation and RNA-mediated 

silencing. 

 

b. Significant genes (n=50) were identified for 22 COVID-19 possible comorbidities in both VEP 

SNP and MAGMAv1.07b gene-level analyses. CIS was set to low value of 0.150, which resulted 

in integration of all 50 genes in a network of 55 genes. Clustering by biological functions is 

outlined. Red (__): antigen specific immune response. Blue (--): cell division and molecule 

formation/development. Green (--.--): cell growth, survival, proliferation, motility, and 

morphology. Purple (…): voltage gated ion channel transmembrane proteins. 

  

Note: Three gene symbols had other synonymous gene symbols (HLA-DRB1 and HLA-DRB5, 

HLA-DQA1 and HLA-DQA2, PIK3R2 and IFI30), which were also entered into STRINGv11.0 

program for verification. 
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Figure 3. Human gene expression heatmap of MAGMA and VEP genes of COVID-19 associated 

comorbidities 

 

a. Heatmap of MAGMAv1.07b significant genes (partial view) 

b. Heatmap of VEP matched genes 

 

Legend.  

 

Heatmap from GEO2R human gene expression datasets using average log-fold changes 

(aLFC) from (a) 119 significant genes (p<0.05) identified via MAGMAv1.07b and (b) 50 genes 

matched to MAGMAv1.07b 120 significant genes from Ensembl Variant Effect Predictor (VEP) 

with 19 of 22 significant comorbidities identified via MAGMAv1.07b as arrays (a, b).  

 

Genes were filtered by removing those with less than 60% values present, mean centered and 

normalized. Hierarchical clustering was completed using weights for duplicate/synonymous 

genes with a similarity metric of city-block (Manhattan) distance for genes and arrays with 

average linkage through Cluster3.0v1.59 software. Heatmaps were created using 

JavaTreeViewv1.1.6r4. Yellow depicts positive aLFC, blue depicts negative aLFC, black depicts 

missing data and values of zero. 

 

 

Figure 4. STRING protein-protein interaction of COVID-19 comorbidity-associated genes with 

involvement in influenza and/or SARS 

 

a. Influenza (CIS=0.4) 

b. SARS (CIS=0.4) 

 

Legend.  

 

STRING protein-protein interactions of MAGMAv1.07b identified genes with direct involvement with (a) 

influenza (n=46) and/ or (b) SARS (n=17) are shown. Level of stringency in STRINGv11.0 program was 

set to a medium confidence interaction score (CIS) of 0.4 in both influenza and SARS related molecular 

networks (a, b), resulting in a cluster of 38/46 (82.6%) and 15/17 (88.2%) genes, respectively.  
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