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Abstract

Chest computed tomography (CT) based analysis and diagnosis of the Coronavirus Disease 2019 (COVID-19) plays a
key role in combating the outbreak of the pandemic that has rapidly spread worldwide. To date, the disease has infected
more than 18 million people with over 690k deaths reported. Reverse transcription polymerase chain reaction (RT-
PCR) is the current gold standard for clinical diagnosis but may produce false positives; thus, chest CT based diagnosis
is considered more viable. However, accurate screening is challenging due to difficulty in annotation efforts of infected
areas, curation of large datasets, and the slight discrepancies between COVID-19 and other viral pneumonia. In this
study, we propose an attention-based end-to-end weakly supervised framework for the rapid diagnosis of COVID-19
and bacterial pneumonia based on multiple instance learning (MIL). We further incorporate unsupervised contrastive
learning for improved accuracy with attention applied both in spatial and latent contexts, herein we propose Dual
Attention Contrastive based MIL (DA-CMIL). DA-CMIL takes as input a several patient CT slices (considered as a
bag of instances) and outputs a single label. Attention based pooling is applied to implicitly select key slices in latent
space, and spatial attention learns slice spatial context for interpretable diagnosis. A contrastive loss is applied at the
instance level to encode similarity in features from the same patient against pooled patient features. Empirical results
show our algorithm achieves an overall accuracy of 98.6% and an AUC of 98.4%. Moreover, ablation studies show
the benefit of contrastive learning with MIL.
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1. Introduction

The coronavirus disease 2019 (COVID-19), first recog-
nized in Wuhan, China has spread to a global scale in-
fecting millions and causing death to hundreds of thou-
sands. As of August, 2020 infections surpassed 18 mil-
lion, with reported deaths reaching over 690,000 globally.
Caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), COVID-19 is highly contagious with
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increasing infections each day. Despite having a relatively
lower fatality rate Mahase (2020) than SARS and Middle
East Respiratory Syndrome (MERS), COVID-19 has al-
ready caused more deaths. Consequently, there is an ur-
gent need for rapid diagnosis to improve prevention while
an effective vaccine is being developed.

Reverse transcription polymerase chain reaction (RT-
PCR) is the current gold standard for COVID-19 diagno-
sis based on viral nucleic acid (VNA) Zu et al. (2020).
However, low sensitivity, high number of false positives
and lengthy test to diagnosis times pose a challenge for
early identification and treatment of patients Ai et al.
(2020). Moreover, potential patients left unattended in-
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crease the risk of spreading the infection. As an easy
non invasive imaging alternative, chest computed tomog-
raphy (CT) is viable for fast diagnosis Ai et al. (2020). It
can detect key imaging characteristics manifested in in-
fected areas such as ground glass opacity (GGO), multi-
focal patchy consolidation and/or bilateral patchy shad-
ows Wang et al. (2020a). However, image characteris-
tics between COVID-19 and other pneumonia types may
possess similarities, making accurate diagnosis challeng-
ing. Also, automated screening sensitivity is limited and
not on par with radiologist level performance Wang et al.
(2020b). Therefore, there is an urgent need to improve
and/or develop robust screening methods based on chest
CT.

On the other hand, deep learning LeCun et al. (2015)
based solutions have shown success in medical image
analysis Litjens et al. (2017) due to the ability to ex-
tract rich features from clinical datasets, and include a
wide range of application areas such as organ segmen-
tation Ronneberger et al. (2015) and disease diagno-
sis, etc. Deep learning has been employed for the di-
agnosis of COVID-19 in chest CT Song et al. (2020);
Gozes et al. (2020a,b) and community acquired pneumo-
nia (CAP) Kermany et al. (2018). For example, Ouyang
et al. (2020) proposed a 3D convolutional neural net-
work (CNN) with online attention refinement to diagnose
COVID-19 from CAP and introduced a sampling strategy
to mitigate the imbalanced distribution of infected regions
between COVID-19 and CAP. Song et al. (2020) pro-
posed DeepPneumonia for localization and detection of
COVID-19 pneumonia; attention was also applied to de-
tect key regions with impressive results on a large cohort.
Despite showing promising performance, most methods
are supervised and require considerable labeling efforts.
Notably, even without annotated examples of infection ar-
eas, some works use existing deep learning models Shan
et al. (2020) to extract infection regions and/or manually
select slices in CT that show key characteristics. How-
ever, taking into consideration that during the pandemic
experts have had limited time to perform labeling of CT
volumes for supervised methods, unsupervised or weakly
supervised learning methods that do not heavily rely on
extensive data pre-processing and/or strong prior knowl-
edge are a preferred option for accurate diagnosis.

Recently, several works focused on accurate diagno-
sis under weak supervision have been proposed. Notably,

we consider approaches that use (a) patch-based Jin et al.
(2020); Shi et al. (2020b) (b) slice-based Gozes et al.
(2020b,a); Hu et al. (2020), and (c) 3D CT-based Han
et al. (2020); Zheng et al. (2020) methods for diagnos-
tic decisions. The first often uses prior segmented in-
fection regions as input to train classifiers in a two-stage
setup. The second performs slice-wise inference directly,
whereas 3D based methods use the entire 3D CT scans
as input with 3D convolutional neural networks (CNN).
For the patch and slice-based approaches to be effective,
infected regions must be well selected for training. Also,
3D CNN models are inherently slow during inference due
to bigger model size and may lack interpretability.

In this work, we propose a novel end-to-end attention-
based weakly supervised framework using multiple in-
stance learning (MIL) Carbonneau et al. (2018) and self-
supervised contrastive learning Chen et al. (2020a) of fea-
tures towards accurate diagnosis of COVID-19 from bac-
terial pneumonia. We refer to this framework as DA-
CMIL. The goal of DA-CMIL is to assign patients a sin-
gle category label i.e. (COVID-19 or bacterial pneuno-
mia) given as input a CT volume of multiple 2D slices.
In general, each patient CT scan is considered as a bag
of instances that may be positive or negative. Moreover,
it would be beneficial to identify which slices/instances
contribute to the final patient diagnosis with the poten-
tial to localize infected regions. Herein, we propose
a permutation-invariant attention based MIL pooling of
slices to obtain a single representative feature for patients.
In addition, spatial attention is jointly applied to learn spa-
tial features key for infection area discovery. We incorpo-
rate contrastive learning at the instance level to encourage
instance features from the same patient to be semantically
similar to the patient level aggregated features in an un-
supervised manner. To achieve this, an unsupervised con-
trastive loss is employed alongside patient category labels
for the supervised loss during training.

Existing works using MIL applied in different domains
often decouple instance and bag level learning into a two-
step procedure i.e. first learn instance level encoders, then
learn aggregation models for inference using trained en-
coders with MIL pooling Hashimoto et al. (2020); Hou
et al. (2016). However, due to ambiguity of the instance
labels and noise, learning a robust encoder can be chal-
lenging. Herein, the proposed framework aims to ad-
dress the aforementioned challenges via end-to-end learn-
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ing; instance selection is implicity achieved via atten-
tion based pooling of CT slices with model optimization
focused only on accurate patient labels. Moreover, by
jointly using supervised and constrastive loss, our model
can avoid overfitting when trained on smaller datasets
and improve feature robustness at the instance level with-
out sacrificing accuracy. We empirically show the bene-
fit of DA-CMIL on a recently collected dataset, with in-
terpretable results and competitive performance against
state-of-the-art methods.

The main contributions of this study include:

• We propose a novel end-to-end model for weakly su-
pervised classification of COVID-19 from bacterial
pneumonia.

• We show that joint contrastive learning of instance
features and patient level features in the MIL setting
is viable. A novel setting of learning instance level
features without inferring labels.

• Towards interpretability, we show that dual attention,
in particular spatial attention can be used to assess
and visualize model decisions.

• We empirically show that DA-CMIL is robust to dif-
ferent CT sizes when instance (i.e. slice/patch) count
varies via ablation studies.

The rest of the article is arranged as follows. In Section
2, we review recent works related to computer aided di-
agnosis with artificial intelligence for COVID-19 and rel-
evant methodologies under weak supervision. We intro-
duce the relavant background and details regarding DA-
CMIL in Section 3. In Section 4, we provide descriptions
on experimental settings and datasets employed. Experi-
mental results are discussed in Sections 5 & 6. We con-
clude this study in Section 7.

2. Related Works

This section presents related works in terms of COVID-
19 screening, methods for weak supervision and self-
supervised learning.

2.1. Deep Learning for COVID-19 diagnosis
The success of deep learning based techniques applied

to medical image analysis has shown promising results
for several application areas such as segmentation and
disease detection. Several pioneering methods Shi et al.
(2020a); Gozes et al. (2020a); Xie et al. (2020); Jin et al.
(2020) have been proposed for the analysis of COVID-
19 in both X-ray and CT images. COVID-19 lesion seg-
mentation Gozes et al. (2020a); Xie et al. (2020), auto-
mated screening Jin et al. (2020); Song et al. (2020); Han
et al. (2020) and severity assessment Huang et al. (2020)
have been key areas of research. Notably, a recent re-
view Shi et al. (2020a) shows that screening is predom-
inant and continues to receive much interest. Moreover,
given that chest CT best shows key image characteristics
for COVID-19 diagnosis, CT is preferred over X-ray de-
spite it being a low cost solution. Ng et al. (2020) recently
claimed that consolidative and/or ground glass opacities
(GGO) on CT are often undetectable in chest radiography
and highlighted the pros and cons of each imaging modal-
ity.

Accordingly, Oh et al. (2020) recently proposed a
patch-based CNN for COVID-19 diagnosis applied to
chest radiography with limited datasets. They show that
statistically significant differences in patch-wise inten-
sity distributions can serve as biomarkers for diagnosis
of COVID-19; with existing correlations to current radio-
logical findings of chest X-ray. Alom et al. (2020) intro-
duced a multi-task deep model that jointly considers chest
CT and X-ray for diagnosis. They showed impressive re-
sults in both modalities for both detection and localization
of infected regions. Song et al. (2020) developed DeepP-
neumonia, a deep learning system with rapid diagnosis to
aide clinicians. Mei et al. (2020) used deep learning to in-
tegrate chest CT findings with clinical information such as
laboratory tests and exposure history to rapidly diagnose
COVID-19 patients. From a technical standpoint, most
methods require pre-segmented lesions prior to training,
and/or include multi-stages in the frameworks. Moreover,
patch-based methods may suffer from noisy samples in
scans, often requiring careful manual selection of slices
for efficiency.

2.2. Weak Supervision and Multiple Instance Learning
MIL is a form of weakly supervised learning where la-

bels/categories are provided only for a bag of instances
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i.e. training instances arranged in sets and the labels of
instances contained in the bags are unknown Carbonneau
et al. (2018). In this study, we consider a patient CT scan
as a bag with unlabeled slices (instances), having only
the diagnostic label for training. In general, existing al-
gorithms can be categorized as instance-level Hou et al.
(2016), bag-level Hashimoto et al. (2020), embedding-
based, and joint methods that combine several approaches
such as attention mechanisms Hashimoto et al. (2020);
Ilse et al. (2018); Han et al. (2020). In literature, MIL has
been applied to several domains including object detec-
tion Zhang et al. (2016a), image classification Yao et al.
(2019); Hou et al. (2016); Zhang et al. (2016a), and object
tracking Hu et al. (2017).

Also, several works have been applied in the medical
imaging domain Zheng et al. (2020); Hu et al. (2020);
Han et al. (2020); Wang et al. (2020c); Campanella et al.
(2019). Hashimoto et al. (2020) recently introduced a
novel CNN for the classification of malignant lymphoma
in histopathology slides. Notably, they combined domain
adaptation and multi-scale approaches with MIL for im-
proved performance. Ilse et al. (2018) proposed attention-
based pooling for MIL in an end-to-end framework; im-
pressive results are shown across different domain prob-
lems including cancer region detection in histopathol-
ogy. Weakly supervised detection of COVID-19 infec-
tion regions in chest CT is presented by Hu et al. (2020)
with multi-scale learning applied for localization. More
recently, Wang et al. (2020c) proposed (DeCoVNet), a
method applied to 3D CT volumes using 3D CNNs with
weak labels. DeCoVNet takes as input a CT volume and
its lung mask for COVID-19 classification. Han et al.
(2020) proposed AD3DMIL, a 3D MIL method with at-
tention for COVID-19 screening with a deep instance gen-
eration module based on 3D latent features inspired by the
pioneering work of Feng and Zhou (2017).

2.3. Self Supervised Learning
Self Supervised Learning (SSL) is a form of unsuper-

vised learning where the data provides the supervision,
and the network is trained to solve auxiliary tasks with a
proxy loss. This is highly beneficial, especially in medi-
cal imaging where supervision is limited and the existing
difficulty of curating annotations. Auxiliary tasks include
context prediction Oord et al. (2018), automatic coloriza-
tion Zhang et al. (2016b), and image inpainting Pathak

et al. (2016). Most recently, Chen et al. (2020a) intro-
duced a simple framework for contrastive learning (Sim-
CLR) that uses extensive data-augmentation for defining
predictive tasks, which achieves comparable performance
to state-of-the-art supervised methods. For medical imag-
ing tasks, He et al. (2020) recently proposed (Self-Trans)
a method that combines contrastive self-training with
transfer learning for COVID-19 diagnosis. Notably, the
authors focus on establishing robust strategies for trans-
fer learning with limited data, and/or when using external
datasets for COVID-19 Chest CT analysis.

Inspired by recent works both for MIL and SSL,
we propose to synergistically integrate contrastive self-
supervision with MIL in an end-to-end framework. No-
tably, though previous works such as AD3DMIL Han
et al. (2020) have shown impressive results; the model is
based on 3D CNN and considerably has a larger model
size. Also, Self-Trans He et al. (2020) follows a two-
step approach by first pre-training the network via self-
supervision using Chen et al. (2020b); then performs
fine-tuning or transfer learning, joint self supervised train-
ing with transfer learning is underexplored. Thus, we
aim to extend the current scope of the literature regard-
ing COVID-19 via a novel formulation of MIL and self-
supervised contrastive learning.

3. Methods

This sections presents the necessary notations and over-
all objectives of the task of COVID-19 diagnosis, in-
cluding details of the relative modules of the proposed
method.

3.1. Preliminaries

We consider a chest CT dataset D = {S 1, ..., S n} where
the model receives a set of m labeled example scans
{(S i,Yi)}mi=1 drawn from the joint distribution defined by
S × Y. S i is a patient CT scan with instances (i.e. 2D
CT slices or patches) and Y is the label set of patient-
level labels, wherein Y is {0, 1} for binary classification
of COVID-19 and other. Also, S i is considered as a bag
of instances with S i = {s1, s2, ..., sN} where N denotes the
total number of instances in the bag. It can be assumed
that each instance sn has a label yn ∈ {0, 1}, however not
all instances may be negative or positive. Moreover, not
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Figure 1: Overview of the proposed framework. For a given patient CT scan, we sample k instances during training to create a bag as input and
feed them through the backbone Fθ to obtain feature maps. Modules Aθ,S and Aθ,I learn spatial and instance attention, then perform permutation
invariant pooling via Aθ,I on feature maps to obtain a single bag representation. Prior to pooling, attention-weighted instance features from Aθ,I are
employed for unsupervised contrastive learning as well as patient level learning to obtain final predictions and update the model.

Figure 2: Illustration of contrastive learning applied to the MIL setting during model training.

all slices in a scan may show infection regions vital for
diagnosis, as others may be noisy artifacts not useful for
learning.

Accordingly, MIL must satisfy the following con-
straints: if a bag S i is negative, then it can be assumed
that all corresponding instances should be negative. In

the case of positive bags, at least one instance is assumed
to be positive. Formally, it follows that

Y =

0, iff
∑

n yn = 0,
1, otherwise.

(1)

In this work, this assumption may not hold given that
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both sets of bags (COVID-19 and other pneumonia) con-
sidered contain both negative and positive instances (le-
sions). Thus, we consider a relaxed version of this con-
straint wherein an attention mechanism is applied to im-
plicitly weight instances and learn their labels.

3.2. Proposed Approach

We developed a CNN model for patient CT scan level
diagnosis between COVID-19 and other pneumonia in a
single end-to-end framework. Herein, a dual-attention
multi-instance learning deep model with unsupervised
contrastive learning (DA-CMIL) is proposed. As pre-
sented in Figure 1, our method takes a CT scan with un-
labeled instances as input and learns key semantic repre-
sentations. It further uses an attention-based pooling to
transform patient instances into a single bag representa-
tion for final prediction (see Section 3.3). Unsupervised
contrastive learning is employed to encourage instances in
a bag to be semantically similar to the bag representation
during training (see Section 3.4).

In the proposed framework, a backbone CNN model Fθ
is implemented as a feature extractor to transform i-th in-
stance from a CT bag into a low dimension embedding
gi j = Fθ(si j) with spatial dimensions of shape C ×H ×W,
where C, H and W are channel size, height and width,
respectively. Then, a spatial attention module Aθ,S is em-
ployed to learn spatial representative features in the in-
stances and output spatial attention maps 1 × H∗ × W∗

with C = 1; used to weight all instances to obtain a sin-
gle spatial pooled feature φi j = Aθ,S (gi j), with φ ∈ RD,
where D is the feature dimension size. To aggregate the
instance features φn for each CT scan, we implement a
second moduleAθ,I that performs attention-based permu-
tation invariant pooling to obtain a single bag representa-
tion zi j = Aθ,I(φi j), with z ∈ RD having the same dimen-
sion for consistency. Following, zn is passed to the patient
level classifierHB to obtain predictions for the entire bag
ŷ = HB(zi), where ŷ is the probability of a CT scan be-
ing labeled as COVID-19 or other pneumonia. Formally,
we employ the bag loss LB(ŷ, yi) using cross-entropy. It
follows that

LB = −
∑

yi log ŷ. (2)

3.3. Dual Attention based Learning

In recent works Hashimoto et al. (2020); Ilse et al.
(2018); Han et al. (2020) attention has shown to be vi-
tal for learning robust features, especially under the MIL
setting. In particular, attention-based poolingIlse et al.
(2018) is preferred over existing pooling methods such as
max or mean, since they are not differentiable/applicable
for end-to-end model updates. In this work, we imple-
ment both spatial (Aθ,S ) and latent embedding (Aθ,I) based
attention pooling via the respective modules. In the spa-
tial module, given the input gi j ∈ RC×H×W , we employ two
convolutional layers each followed by hyperbolic tangent
(tanh) and sigmoid (sigm) non-linearities, respectively.
Feature maps are passed to each module successively,
then to the final convolutional layer with single channel
output representing the presence of infection. Notably, we
perform element-wise multiplication between the output
of each branch of the convolutional layers before passing
to the final layer to obtain spatial scores φi j ∈ R1×H×W .
It is worth noting that we simply implement gated spatial
attentionDauphin et al. (2017) instead of the commonly
applied global average pooling (GAP) on the final back-
bone features gn.

In order to aggregate the features φn, we employ at-
tention based pooling proposed by Ilse et alIlse et al.
(2018) in the instance attention module Aθ,I . Formally,
we consider the same architecture applied for gated spa-
tial attention, except all convolutional layers are replaced
with fully connected layers since attention is applied to in-
stance embeddings. We denote H = {φ1, φ2, φ3, . . . , φN},
with hi ∈ HN as a bag with N instance features. Then,
attention based pooling MIL with gating mechanism is
defined as

z =

N∑
n=1

anhn, (3)

with,

an =
exp{wT (tanh(VhT

n ) � sigm(UhT
n ))}∑N

j=1 exp{wT (tanh(VhT
j ) � sigm(UhT

j ))}
, (4)

where w ∈ RN×1, V ∈ RN×D, and U ∈ RN×D are trainable
parameters. tanh(·) and sigm(·) are element wise non-
linearities, with � representing element-wise multiplica-
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tion. From a technical standpoint, attention based pool-
ing allows different weights to be assigned to instances
alleviating the need for explicit instance selection. More-
over, the final bag representation will be more informa-
tive. The synergistic combination of spatial and attention
based pooling allows for improved training towards learn-
ing robust and interpretable features.

3.4. Contrastive MIL

Inspired by recently proposed self-supervised learning
methodsChen et al. (2020a,b), we integrate unsupervised
contrastive loss with the proposed MIL method for im-
proved learning of instance level features. Formally, our
model learns representations that maximize the agreement
between instance features and aggregated bag features of
the same patient via a contrastive lossChen et al. (2020a)
in the latent space. Figure 2 shows the overall concept of
the applied technique.

According to the previously proposed self-supervised
framework that uses contrastive loss, stochastic data aug-
mentation is applied on 2D data samples to create two cor-
related views of the same example Chen et al. (2020b,a).
Augmentations include random cropping, color distor-
tions and random Gaussian bluring. Moreover, the con-
trastive loss is proposed to define contrastive predictive
tasks on unlabeled samples, wherein positive and nega-
tive pairs are identified for given samples. To incorporate
this idea, stochastic data augmentation is omitted in our
study since contrastive loss is applied in the latent space.
In addition, for any given patient CT scan; we infer that
each slice can be considered as pseudo augmentation of
the overall patient characteristics. Thus, we consider that
the stochastic augmentation is implicitly applied (i.e. dif-
ferent views of the same patient).

Let z′ be the latent instance level feature of patient, and
z the global patient-level aggregated feature obtained via
the proposed modules. Then, following l2 normalization
of z′ and z features, a contrastive loss can be defined as

LF = −log
exp(sim(z′i , z j)/τ)∑2N

k=1 Q[k,i]exp(sim(z′i , zk)/τ)
, (5)

where Q[k,i] ∈ {0, 1} is an indicator function that evalu-
ates to 1 iff k , i and τ denotes a temperature parameter.
sim(·, ·) is a similarity function i.e. cosine similarity. The

Algorithm 1 DA-CMIL Algorithm
1: input: parameters θF , θA,S, θA,I, θH , weight λ, epoch

T , temperature τ
2: Initialize parameters θF , θA,S, θA,I, θH
3: for t = 1, 2, . . . ,T do
4: preprocess CT scans Sn and create bags with j

slices
5: obtain features: gi j = Fθ(si j)
6: spatial pooling: φi j = Aθ,S (gi j)
7: obtain attention weights an with Eq. (4) using
Aθ,I(φi j)

8: combine instance features to get z with Eq. (3)
9: obtain bag predictions: ŷ = HB(zi)

10: collect z and z′: bag and instance features
11: normalize z and z′ with l2 norm.
12: compute cost in Eq. (6): λLB(ŷ, yi) + (1 −

λ)LF(z′, z, τ)
13: update parameters θF , θA,S, θA,I, θH
14: endfor
15: output: θF , θA,S, θA,I, θH

loss is computed across all patient slice features and re-
spective global features, herein considered as augmenta-
tions per mini-batch. The final loss function of the entire
framework is defined as:

L = λLB + (1 − λ)LF , (6)

where λ is a parameter to weight the contribution of bag
and constrastive losses, respectively. The detailed algo-
rithm is presented in Algorithm 1.

4. Experiments

We evaluate the proposed method on a recently
collected dataset and compare diagnostic performance
against existing methods similar to ours. We present de-
tails on evaluation settings and any pre-processing ap-
plied.

4.1. Datasets

In this study, we collected a chest CT dataset comprised
of 173 samples at Yeungnam University Medical Center
(YUMC), in Daegu, South Korea. The dataset includes
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Figure 3: Pre-processed CT examples. (Red-section) COVID-19 CT
slice and patch samples. (Green-section) bacterial pneumonia samples.

75 CT examples for patients with COVID-19, and 98 ex-
amples from patients with bacterial pneumonia collected
between February and April, 2020. The study was ap-
proved by the Institutional Review Board (IRB) of Yeung-
nam University Hospital. COVID-19 patients were con-
firmed by RT-PCR assay of nasal and pharyngeal swab
samples.

Further, we designed variants of YUMC CT dataset to
fairly assess the performance of our method and others
such as 3D based approaches. Namely, based on the orig-
inal YUMC CT data using CT slices per patient, we pro-
cessed a patch-based version of the dataset. In the MIL
framework, 2D CT slice or patches can be used as in-
stances, thus we evaluate our method on both cases. In
addition, a 3D CT volume dataset is also processed for
training/testing 3D based methods under fully-supervised
settings.

For pre-processing, lung regions were segmented for
all CT examples. To achieve this, we employed a
ResNeSt Zhang et al. (2020a) model for segmenta-
tion training and inference. The model was trained
on two public datasets i.e. non-small cell lung cancer
(NSCLC) Aerts et al. (2014) and COVID-19 lung infec-
tion dataset Jun et al. (2020). Herein, a total of 50,756
lung slices were used for training and evaluated on 1,222
independent slices. Figure 3 shows examples of CT slices
and patches employed.

4.2. Experimental Settings
Accordingly, all the datasets were split into training,

validation and testing by patient IDs with ratios 0.5, 0.1,
and 0.4, respectively. The same split was used across all
the dataset variants with all versions using only cropped
lung regions. CT examples were 512×512, 128×128 and
256 × 256 × 256 in size for the slices, patches and 3D CT
volume sets, respectively. Each CT slice was resized from
512×512 to 256×256 and patch slices were resized to 256
from 128. In particular, the slices set consisted of approx-
imately 14,000 slices, whereas the patch version yielded
64,000 patches that mainly showed ≥ 30% of lung tis-
sue. In the case of 3D CT volumes, all slices belonging
to a patient were used to construct a volume with near-
est neighbor sampling applied to obtain the desired input
sizes.

The proposed model was implemented in Pytorch. A
ResNet-34He et al. (2016) finetuned from imageNet pre-
trained weights was used as the feature extraction module
Fθ(·), with a single fully connected (FC) layer employed
as the bag classifierHB(·). The dimension of the features
was fixed to 512; this includes the feature maps obtained
fromFθ(·) which had 512×8×8, with C = 512. Following
spatial pooling, features were reshaped back to 512.

During training, data augmentation consisting of ran-
dom transformations such as flipping were applied for
both 2D and 3D based methods. All models were trained
for 30 epochs except 3D based methods with an initial
learning rate of 1ε − 4 for θF , and 1ε − 3 for the other
modules with Adam optimization and a batch size of 8.
On the other hand, 3D CNN based methods used a batch
size of 4, learning rate of 1ε − 4 and were trained for 60
epochs.

For the proposed method, a bag was constructed with
k instances during training following step 4 of our algo-
rithm, though for inference all available instances per pa-
tient were used to obtain the final prediction. We also
evaluated the efficacy of our method based on varying k
during training via ablation studies. For stable training,
the learning rate was annealed by a factor of 0.1 at epochs
10, 15 and 25, respectively. We empirically set the loss
hyper-parameters λ and τ to 0.5 and 1.0, respectively.

4.3. Comparison Methods
To evaluate the efficacy of the proposed method, we

compared against recent MIL based methods i.e. Deep-

8

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.09.14.20194654doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.14.20194654


Table 1: Evaluation of the proposed methods on YUMC dataset including results of using DA-CMIL with/without contrastive loss LF .
Method Accuracy AUC F1 Specificity Sensitivity
DeCoVNet Wang et al. (2020c) 0.831 0.825 0.8 0.875 0.774
MIL Campanella et al. (2019) 0.803 0.796 0.767 0.85 0.742
DeepAttentionMIL Ilse et al. (2018) 0.859 0.875 0.861 0.75 1
JointMIL Chikontwe et al. (2020) 0.901 0.909 0.896 0.85 0.968
Zhang3DCNN Zhang et al. (2020b) 0.93 0.938 0.925 0.875 1
DA-CMIL (w/o LF) 0.93 0.934 0.923 0.9 0.968
DA-CMIL (w/ LF) 0.986 0.984 0.984 0.975 1

Table 2: Evaluation of the proposed methods on YUMC patch dataset.
Method Accuracy AUC F1 Specificity Sensitivity
MIL Campanella et al. (2019) 0.845 0.852 0.836 0.8 0.903
DeepAttentionMIL Ilse et al. (2018) 0.845 0.859 0.845 0.75 0.968
JointMIL Chikontwe et al. (2020) 0.845 0.837 0.814 0.9 0.774
DA-CMIL (w/o LF ) 0.93 0.934 0.923 0.9 0.968
DA-CMIL (w/ LF) 0.958 0.955 0.951 0.975 0.935

AttentionMIL Ilse et al. (2018), ClassicMIL Campanella
et al. (2019) and JointMILChikontwe et al. (2020). Also,
recent 3D based methods DeCovNetWang et al. (2020c)
and Zhang3DCNNZhang et al. (2020b) were included for
comparison. For a fair evaluation, the same backbone fea-
ture extractor is used in all methods except for the 3D
methods as we used the publicly available implementa-
tions.

In particular, ClassicMIL follows the traditional as-
sumption of the MIL setting and focuses on instance level
learning wherein only the top instance per bag is consid-
ered for the final patient level prediction. DeepAttention-
MIL uses attention-based pooling for bag level learning.
In constrast, JointMIL combines both instance and bag
level learning with bag feature clustering during training.
Lastly, DeCoVNet and Zhang3DCNN both use all avail-
able CT slices in a constructed volume under the fully
supervised setting. The later methods serve as an upper-
bound over the weakly supervised methods evaluated in
this study.

5. Results

We present both quantitative and qualitative results of
the proposed methods. Also, ablation studies on the effect

of bag size and the weighting parameter λ are presented.

5.1. Quantitative Results

Diagnostic performance was evaluated on YUMC CT
slice, patch and CT volume based datasets using accuracy,
area under the curve (AUC), f1-score, specificity and sen-
sitivity, respectively. Tables 1 and 2 show the performance
of the evaluated methods on the datasets.

In Table 1, DA-CMIL with contrastive lossLF achieves
the best overall performance of 98.6% accuracy and an
AUC of 98.4%. Notably, even when LF was not ap-
plied during training, our method still reports 93%(+2.9)
and 93.4%(+2.5) in terms of accuracy and AUC over the
best weakly supervised method JointMIL. MIL reports
the lowest performance among all methods, which is ex-
pected since it only considers the top instance among mul-
tiple 2D slices in bag for inference. Interestingly, our
method outperformed both Zhang3DCNN and DeCoV-
Net which are fully supervised methods even without LF

used in the training stage. Though both DA-CMIL and
DeepAttentionMIL employ attention based pooling, the
proposed method shows improved performance via dual-
attention pooling, validating the architectural design.

To further validate the proposed method, we applied
DA-CMIL to randomly cropped patches of the CT sam-
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Figure 4: The Receiver operating characteristic(ROC) curves of compared methods on the YUMC CT slices and patch datasets.

Figure 5: Confusion matrices of compared methods on YUMC CT Slices dataset. CP represent Pneumonia and NCP implies COVID-19, respec-
tively.

ples. As shown in Table 2, performance was consistently
better than the compared methods. All weakly super-
vised method showed similar accuracy with considerable
margins observed for sensitivity. DeepAttentionMIL re-
ported the best sensitivity at 96.8% with accuracy consis-
tent with other methods. However, DA-CMIL showed an
improvement of +11.3% in accuracy over the best com-
pared method with an equally larger margin without LF

employed. The effect of using attention and contrastive
loss was more pronounced in the case of patches as not
applying LF showed reduced performance (-2.8%).

Figure 4 shows the receiver operating characteris-
tic(ROC) curves of the compared methods on different
datasets. Overall, the proposed method shows a high TPR
and lower FPR across all settings. This is further evi-

denced in the summaries of the confusion matrices of the
comparison methods as presented in Figures 5 and 6. This
indicates DA-CMIL can be viable option for accurate and
robust screening of COVID-19.

5.2. Effect of the bag size

To assess the effect of bag size during training on the
proposed method, we performed an ablation study where
the bag was constructed by varying k i.e. each bag con-
sisted of k max instances (slices/patches). As shown in
Table 3 and Figure 7, as the bag size increases DA-CMIL
performance improves. The best result was achieved
when k = 32 with a considerable margin across all met-
rics. We limited evaluation to k = 32 due to computa-
tional limitations. Moreover, it worth noting that con-
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Table 3: Evaluation of varying bag sizes with the proposed method on YUMC CT slices dataset.
Method Accuracy AUC F1 Specificity Sensitivity
DA-CMIL (w/ k = 8 ) 0.93 0.934 0.923 0.9 0.968
DA-CMIL (w/ k = 16) 0.944 0.939 0.933 0.975 0.903
DA-CMIL (w/ k = 24 ) 0.944 0.943 0.935 0.95 0.935
DA-CMIL (w/ k = 32) 0.986 0.988 0.984 0.975 1

Figure 6: Confusion matrices of compared methods on YUMC CT patch
dataset.

trastive methods benefit from large batch sizes; as evi-
denced from the reported results, our findings are consis-
tent with existing observations based on self-supervised
methods applied to general vision datasets. However, as
k is increased the relative batch size based on bags should
be reduced to compensate for training time and memory
requirements. In general, results show that our method is
not limited/affected by the number of instances available
per CT scan and can benefit from using more instances for
training, though during the inference stage all instances
are used.

5.3. Effect of the weight parameter λ
DA-CMIL uses contrastive feature learning of multiple

instances with a weighting parameter λ to balance the ef-
fect of the losses. When λ = 1.0, LF(·) has no effect on

Figure 7: ROC curves of DA-CMIL on YUMC CT Slide dataset when k
is varied during training.

Table 4: Evaluation on varying λ in the cost function L on the YUMC
Dataset.

λ=0.1 λ=0.5 λ=0.9 λ=1.0
Accuracy 0.972 0.986 0.986 0.932

learning and showed a lower performance of 93% com-
pared to not using LF(·) i.e. when λ < 1.0. Though simi-
lar performance was noted across different values of λ, the
most significant is when contrastive loss was not applied
entirely as presented in Table 4.

5.4. Qualitative Results

In Figure 8, qualitative results are presented based on
spatial attention maps and attention scores, respectively.
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Figure 8: Qualitative examples of DA-CMIL spatial attention maps with attention scores on CT samples from a single patient with COVID-19. The
top row shows the attention value of each slice with the spatial maps normalized to focus on the lung regions only.

This demonstrates that DA-CMIL is able to find key slices
related to infected areas with coarse maps. Interestingly,
low attention scores were observed for slices such as noisy
slices/artifacts with no infected areas further indicating
the utility of our method. Moreover, attention maps fo-
cus on key areas such as ground-glass opacities and con-
solidations, both consistent with clinical findings. This
can be highly beneficial in clinical evaluation since our
method avoids post-hoc analysis based on class activation
maps (CAM).

6. Discussion

Though RT-PCR is the gold standard for COVID-19
diagnosis, it is still hindered by lengthy test times, as
it can take days to obtain the results. Accordingly, CT
has been considered as a reasonable alternative for cur-
rent testing methods as it can produce results within min-
utes. We showed a novel approach to the application deep
CNNs for COVID-19 diagnosis under weak supervision

with clinical implications. It is important to have a fully
automated and interpretable method in actual settings for
rapid evaluation. Moreover, given the subtleties that ex-
ist between COVID-19 and other pneumonia in terms of
imaging characteristics that field experts find hard to dif-
ferentiate, accurate diagnosis is highly relevant.

Our method was evaluated on recently curated dataset
wherein only patient diagnostic labels are available with-
out lesion infected regions of interest as is common in
existing methods. To further validate our approach, we
qualitatively showed the regions that are focused on by
our model via coarse attention maps alongside attention
scores. Our method achieved an AUC of 98.4%, accu-
racy of 98.6% and a true positive rate (TPR) of 96.8%.
In addition, attention maps obtained highlight key infec-
tion areas in the majority of samples with attention scores
corresponding to key slices.

We also empirically showed the benefit of using an un-
supervised contrastive loss to complement the supervised
learning of patient labels and may serve as a base for more
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complex methods. Moreover, the proposed method sur-
passed 3D based methods by large margins. We infer
this may be due to the limited size of the dataset em-
ployed as most recent methods applied to 3D CT vol-
umes report using large cohorts in literature. In addition,
since DeCoVNet was trained from scratch and has an cus-
tom deep architecture, performance was subpar. Though
ZhangCNN’s performance was considerably better than
the later, it still did not achieve comparable performance
even when the model was trained for more epochs. It is
also worth noting that models trained with extensive aug-
mentation did not achieve any considerable improvements
across the evaluation metrics, since COVID-19 and bac-
terial pneumonia present similar characteristics.

There exist a few limitations with regard to the pro-
posed method. Though attention maps could show in-
terpretability and explainability for COVID-19 diagnosis,
there exist some failure cases where the attention map do
not correctly indicate an infected region as shown in Fig-
ure 5. Second, we found that extensive data augmentation
such as color jittering lead to reduced performance and
was largely negligible compared to the benefit of using
a contrastive loss which showed consistent improvements
across all evaluation settings. This motivates us to con-
sider using more complex attention modes for better di-
agnostic interpretability as well as explore unsupervised
pre-training using the proposed method both in 2D or 3D
as future directions.

7. Conclusion

In this study, we developed a 2D CNN framework with
dual attention modules and contrastive feature learning
under the multiple instance learning (MIL) framework to
distinguish COVID-19 and a bacterial sub-type of pneu-
monia in chest CTs. We verified performance on both CT
patch and slice based versions of the datasets and report
results comparable to state-of-the-art methods. In addi-
tion, ablation experiments show the benefit of using large
bag sizes during training and the effect of weighting losses
correctly for stable learning. Through this study, we hope
to add valuable contribution to the current literature on
weakly supervised methods for COVID-19 screening.
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