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Abstract 

The systematic identification of host genetic risk factors is essential for the understanding and 

treatment of COVID-19. By performing a meta-analysis of two independent genome-wide 

association (GWAS) summary datasets (N = 680,128), a novel locus at 21q22.11 was identified to be 

associated with COVID-19 infection (rs9976829 in IFNAR2 and upstream of IL10RB, OR = 1.16, 95% 

CI = 1.09 - 1.23, P = 2.57×10-6). The rs9976829 represents a strong splicing quantitative trait locus 

(sQTL) for both IFNAR2 and IL10RB genes, especially in lung tissue (P = 1.8×10-24). Gene-based 

association analysis also found IFNAR2 was significantly associated with COVID-19 infection (P = 

2.58×10-7). Integrative genomics analysis of combining GWAS with eQTL data showed the 

expression variations of IFNAR2 and IL10RB have prominent effects on COVID-19 in various types 

of tissues, especially in lung tissue. The majority of IFNAR2-expressing cells were dendritic cells 

(40%) and plasmacytoid dendritic cells (38.5%), and IL10RB-expressing cells were mainly 

nonclassical monocytes (29.6%). IFNAR2 and IL10RB are targeted by several interferons-related 

drugs. Together, our results uncover 21q22.11 as a novel susceptibility locus for COVID-19, in 

which individuals with G alleles of rs9976829 have a higher probability of COVID-19 susceptibility 

than those with non-G alleles.  

 

1. Introduction 

Coronavirus disease 2019 (COVID-19) has rapidly evolved into a global pandemic [1]. The 

health and economy systems of most nations worldwide are suffering from severe disruptions [2]. As 

of July 13th, 2020, there were more than 12.9 million confirmed patients worldwide with more than 
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550,000 deaths [3]. The clinical manifestations of COVID-19 range from asymptomatic to severe 

respiratory failure [4]. Early studies on COVID-19 infection have concentrated on epidemiology [5], 

clinical characteristics [6], and genomic features of virus [7]. Understanding host genetic factors 

contributing to COVID-19 susceptibility is essential for the precise management in the community. 

Recently, a growing number of researchers have concentrated on the involvement of host genetic 

factors in COVID-19. Through performing a genome-wide association study (GWAS) with 1,610 

severe COVID-19 patients and 2,205 controls, Ellinghaus et al. [8] reported two important gene 

clusters of 3p21.31 and 9q34.2 as genetic susceptibility loci for severe COVID-19, and confirmed a 

potential involvement of the ABO blood-group system. From a population perspective, the 

COVID-19 Host Genetic Consortium launched the “COVID-19 Host Genetics Initiative” to collect 

data from the genetics community to uncover the genetic determinants of COVID-19 susceptibility, 

severity, and outcomes [2]. However, identification of more host genetic risk factors is limited by the 

sample size of a single study. 

Here, we performed a meta-analysis by combining two independent GWAS summary statistics 

with a large-scale sample size to identify novel genes for COVID-19 susceptibility. The systematic 

bioinformatics analyses were performed, including MAGMA gene-based association analysis, 

S-PrediXcan and S-MultiXcan analysis, Sherlock-based inference analysis, gene-property analysis, 

single-cell RNA analysis, and functional enrichment analysis. We uncover the genes and pathways 

convey risk of COVID-19 infection and give a clue of the potential effective drugs for treating 

COVID-19. 
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2. Results 

2.1. SNP-level association analysis reveals a novel susceptible locus 21q22.11 for COVID-19  

By conducting a meta-analysis of GWAS summary data from Ellinghaus et al. [8] (COVID_I: 

1,610 COVID-19 patients and 2,205 controls) and the COVID-19 Host Genetic Consortium [2] 

(ANA5: 1,678 COVID-19 patients and 674,635 controls), we confirmed two reported loci of 3p21.31 

and 9q34.2 to be associated with COVID-19 infection (rs11385942 in SLC6A20, P = 2.87×10-16, and 

rs8176719 in ABO, P = 4×10-7; Figure 1, Table 1, and Supplemental Figures S1-S2). The reported 

rs657152 in ABO, which is high linkage disequilibrium with rs8176719, remains suggestively 

significant (P = 5.53×10-6). Notably, we identified a novel locus at 21q22.11 to be associated with 

COVID-19 infection (rs9976829 in IFNAR2-IL10RB, OR = 1.16, 95% CI = 1.09 - 1.23, P = 

2.57×10-6; Table 1 and Figure 1). The rs9976829 represents a splicing quantitative trait locus (sQTL) 

for both IFNAR2 and IL10RB genes across multiple tissues with the strongest significance in the lung 

tissue (P = 1.8×10-24; Supplemental Figure S3).  

 

2.2. Gene-based association analysis identifies nine risk genes for COVID-19 

We performed a MAGMA gene-based association analysis by using the meta-GWAS results and 

found that nine genes in three loci of 3p21.31 (LZTFL1, XCR1, CCR9, FYCO1, SLC6A20, and 

CXCR6), 9q21.32 (HNRNPK and RMI1), and 21q22.11 (IFNAR2) were significantly associated with 

COVID-19 infection (FDR < 0.05; Figure 2 and Table 2). As expected, the gene of ABO showed a 

nominally significant association with COVID-19 (P = 6.55×10-4) consistent with the previous report 

[8]. Of note, IFNAR2 (P = 2.58×10-7), HNRNPK (P = 1.46×10-5), and RMI1 (P = 1.86×10-5) were 
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identified for the first time to be associated with COVID-19 infection. There were other 30 genes 

showing suggestive associations with COVID-19 (P < 1 × 10-3, Supplemental Table S1). Meanwhile, 

we performed two MAGMA gene-based association analyses for COVID_I GWAS summary data 

from Ellinghaus et al. [8] and the COVID-19 Host Genetic Consortium (ANA5) [2], respectively. We 

found that these nine identified genes showed significant or suggestive associations with COVID-19 

in both COVID-I and ANA5 datasets (Table 2), indicating that our meta-analysis based on larger 

samples enhance the statistical power to uncover risk genes for COVID-19.  

 

2.3. Cytokine-related pathways enriched by risk genes for COVID-19 

As mentioned above, there were 41 genes showing significant or suggestive associations with 

COVID-19 (P < 1 × 10-3, Supplemental Table S1). We performed a pathway enrichment analysis of 

these 41 identified genes for COVID-19 susceptibility (Methods), and found they were significantly 

enriched in two pathways of cytokine-cytokine receptor interaction (FDR = 0.009) and chemokine 

signaling pathway (FDR = 0.009) (Figure 3a). Additionally, there were seven pathways showing 

suggestive associations (P < 0.05; Supplemental Table S2), including Kaposi sarcoma-associated 

herpesvirus infection (P = 0.0086), human cytomegalovirus infection (P = 0.014), and human 

papilloma virus infection (P = 0.027). Meanwhile, we conducted a GO enrichment analysis and 

found 3 GO-terms were significantly overrepresented (FDR < 0.05; Figure 3b and Supplemental 

Table S3). That is, cytokine receptor activity (FDR = 1.01 × 10-5), cytokine binding (FDR = 0.022), 

and peptide receptor activity (FDR = 0.027). Previous studies demonstrated that soluble cytokines 

activate an anti-viral and anti-proliferate state by inducing the expression of many 
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interferon-stimulated genes to prevent viral replication [9]. Network-based enrichment analysis 

showed that these 41 genes are at least partially biologically connected (P = 0.013, Supplemental 

Figure S8). These results suggest cytokine-related pathways or functional terms may play important 

roles in the process of COVID-19 infection.  

 

2.4. Expression of IFNAR2 and IL10RB associated with COVID-19 across multiple tissues  

To highlight the functional association of these 11 identified genes with COVID-19, we 

conducted two independent integrative genomics analyses by incorporating meta-GWAS summary 

data with eQTL data across 49 GTEx tissues. Using S-PrediXcan analysis, we found that the 

expression variations of these 11 genes have prominent effects on COVID-19 in various types of 

tissues (Supplemental Table S5). Consistently, Sherlock-based integrative genomics analysis showed 

seven genes including IFNAR2 and IL10RB whose genetically regulated expression were 

significantly associated with COVID-19 across multiple tissues (Supplemental Table S6). For 

example, the IFNAR2 gene was associated with COVID-19 across six tissues including lung (P = 

2.44 × 10-4). The IL10RB gene showed associations with COVID-19 across 24 tissues with the most 

significant tissue of cells-transformed fibroblasts (P = 2.80 × 10-5).   

We further used S-MultiXcan to meta-analyze the tissue-specific associations from S-PrediXcan 

across 49 GTEx tissues, and found these 11 genes whose expression were significantly associated 

with COVID-19, which support our results from the MAGMA analysis (Figure 3c and Supplemental 

Table S7). Additionally, our in silico permutation analysis also showed that genes identified from 

MAGMA analysis had a significantly higher overlap with S-MultiXcan-identified genes than random 
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events (P < 1 × 10-5; Figure 3d). 

 

2.5. IFNAR2 and IL10RB specially expressed in immunity associated cell types in lung tissue 

To examine the links between tissue-specific gene expression profiles and COVID-19 gene 

associations, we conducted a MAGMA gene-property analysis in 53 specific tissue types and 30 

general tissue types. We found that the association signals were enriched in lung, thyroid, and 

esophagus tissue in 30 general tissue types (Supplemental Figure S4a). In the analysis of 53 specific 

tissues, COVID-19 gene associations were also enriched in lung, cultured fibroblasts, and thyroid 

(Supplemental Figure S4b). These results suggest that these identified genes for COVID-19 may 

have important functions in lung tissue.  

Using 50 cell populations across four compartments (epithelial, endothelial, stromal, and 

immune) of lung tissue, we identified the primarily expressed cells of these 11 risk genes associated 

with COVID-19 (Figure 4, Supplemental Table S4, and Supplemental Figure S5). The HNRNPK 

gene was widely expressed in various cell types across all four compartments (Supplemental Figure 

S6). However, the majority of IFNAR2-expressing cells were dendritic cells (40%) and plasmacytoid 

dendritic cells (38.5%) (Figure 4). The IFNAR2 was also expressed within lipofibroblast (20%), 

ciliated (19.1%) and nonclassical monocyte (18.5%), albeit at diminished abundance compared with 

dendritic cells; IL10RB was primarily expressed within nonclassical monocyte (29.6%). 

Plasmacytoid dendritic cells produce large amounts of type I interferons-proteins that are important 

for immunity to viruses [10]. Our data indicated that IFNAR2 and IL10RB could play regulatory roles 

in the pulmonary immune response.  
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2.6. Potential drugs targeted with IFNAR2 and IL10RB 

By performing a drug-gene interaction analysis and literature mining, we found that seven of 11 

COVID-19-associated genes (63.6%) were enriched in five potential “druggable” gene categories 

(Supplemental Table S8 and Supplemental Figure S7). The gene of CCR9 is targeted by two 

FDA-approved drugs including hydroxyurea and hydralazine (Supplemental Table S9). There are 

nine FDA-approved drugs showing agonist-receptor interactions with IFNAR2 (Supplemental Table 

S9), including interferon alfa-2a, interferon alfacon-1, and interferon beta-1a, which could be useful 

alone or in combination with other antiviral drugs for treating SARS-CoV infection [11]. Loutfy et al. 

[12] reported that interferon alfacon-1 plus corticosteroids showed association with improved oxygen 

saturation and more rapid resolution of radiographic lung opacities than systemic corticosteroid alone 

in severe acute respiratory syndrome (SARS). Treatment with interferon has shown preliminary 

benefits for patients with COVID-19 [13] and is being evaluated by numerous ongoing clinical trials. 

The IFN-beta treatment could effectively block SARS-CoV-2 replication [14]. The IL10RB gene is 

targeted by peginterferon lambda-1a (Supplemental Table S9), which has been designed to treat mild 

COVID-19 in a clinical trial (identifier: NCT04331899). These results suggest that interferons 

associated with IFNAR2 and IL10RB exert potential effects on the treatment of COVID-19.  

 

3. Discussion 

 Using a meta-analytic method to combine two existing GWAS summary datasets with a 

large-scale sample size, we validated two reported genetic loci on chromosome 3p21.31 and 9q34.2 
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to be significantly associated with COVID-19 infection, and found a novel locus at a chromosome 

21q22.11 gene cluster conveying susceptibility of COVID-19.  

On chromosome 21q22.11, the peak association signal covered two genes of IFNAR2 and 

IL10RB, which have biological functions that probably related to COVID-19. IFNAR2 encodes a 

type I membrane protein, which forms one of the two chains of a receptor for interferons alpha and 

beta. The deficiency of IFNAR2 supports an essential role for interferons alpha and beta in human 

antiviral immunity [15]. Notably, dysregulation of type I interferon response has been observed in 

COVID-19 patients [16]. Impaired type I interferon activity in the blood could be a hallmark of severe 

COVID-19 [17]. Furthermore, IFNAR2 is required for anti-influenza immunity and related to the risk 

of post-influenza bacterial superinfections [18]. As for IL10RB, its encoded protein belongs to the 

cytokine receptor family and is an accessory chain essential for the active interleukin 10 receptor 

complex. Variants in IFNAR2 and IL10RB gene were associated with the susceptibility to hepatitis B 

virus (HBV) infection [19]. Most recently, the interferon pathway is identified to be targeted by the 

COVID-19 viral protein of Nsp13 [20].  

 Functional enrichment analysis showed that cytokine-related pathways including cytokine 

receptor activity, cytokine-cytokine receptor interaction, and chemokine signaling pathway were 

significantly enriched by genes associated with COVID-19. Seven risk genes of IFNAR2, IL10RB, 

XCR1, CXCR6, CCR9, CCR1, and GNG12 have implicated in these pathways. There were four genes 

encoding chemokine receptors, including the X-C motif chemokine receptor 1 (XCR1), the C-X-C 

motif chemokine receptor 6 (CXCR6), the CC motif chemokine receptor 9 (CCR9), and the CC 

motif chemokine receptor 1 (CCR1). Vaccine molecules targeting XCR1 on cross-presenting 

dendritic cells enhance a protective CD8+ T-cell responses against influenza virus [21]. CXCR6 
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modulates the localization of lung tissue-resident memory CD8+ T-cells throughout the sustained 

immune response to respiratory pathogens, including influenza viruses [22]. Both CCR9 and CCR1 

also have related functions on immune response to respiratory influenza infection [23]. Varied 

manifestations in COVID-19 infection may result from different host genetic factors, which are 

probably related to immune response [24]. Through inducing the expression of many 

interferon-stimulated genes, soluble cytokines have anti-viral, anti-proliferate, and 

immunomodulatory effects on obstructing viral replication [9]. Together, cytokine-related pathways 

potentially play important roles in the pathogenesis of COVID-19 infection, and more relevant 

studies should be performed to explore the underlying biological mechanisms. 

With regard to the novel gene of HNRNPK, it belongs to the subfamily of ubiquitously expressed 

heterogeneous nuclear ribonucleoproteins (hnRNP), of which proteins have important roles in cell 

cycle progression. HNRNPK acts as a central hub in the replication cycle of multiple viruses 

including HCV [25]. An interaction of HNRNPK and HNRNPA2B1 with hepatitis E virus (HEV) 

promoters has important roles in HEV replication [26]. Two cellular RNA binding proteins of 

hnRNPK and NS1-BP have important roles in regulating influenza A virus RNA splicing [27]. As for 

the RMI1 gene, its protein is an essential component of the RMI complex, which has a crucial role in 

DNA repair and maintaining genome stability [28]. Since there existed important functions of these 

identified genes, molecular studies are warrant to illustrate the functional consequences of detected 

association signals.  

The power of our study is limited by the difference in study design between the two datasets we 

analyzed: the COVID-19 Host Genetic Consortium included patients with mild or severe COVID-19 

but the Ellinghaus et al. [8] study only included severe COVID-19. Because most of the COVID-19 
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infected individuals are asymptomatic, population-based controls used in the original studies may 

contain a substantial proportion of asymptomatic patients, which further reduced the power of our 

meta-analysis. Due to data from the two included GWASs were based on summary statistics, the 

population stratification was not assessed in the current meta-analysis. For the Ellinghaus et al. [8] 

study, to examine for population stratification within and across Italian and Spanish panels, a 

principal component analysis (PCA) was performed by using the FlashPCA [29]. Covariates from 10 

PCA were conducted to control for potential population stratification (COVID_I). As for the ANA5 

GWAS summary data from the COVID-19 Host Genetic Consortium constructed by 10 contributing 

studies, the strategy of population stratification is unknown.  

 

4. Conclusions 

In summary, our findings uncover 21q22.11 as a novel risk locus for COVID-19 susceptibility 

and implicate the potential role of interferons targeting IFNAR2 and IL10RB in the treatment of 

COVID-19. Individuals with the G alleles of rs9976829 have a 16% greater chance of COVID-19 

infection compared with these carrying no such allele. The efficacy and the safety of interferon 

products are still being evaluated by numerous ongoing clinical trials, which may be strengthened by 

subgrouping the patients according to their genotypes of the IFNAR2 and the IL10RB loci. Further 

studies are needed to delineate current findings and understand the underlying pathophysiology of 

COVID-19.  

 

5. Methods 
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GWAS summary data from Ellinghaus et al. (Dataset #1) 

 For this GWAS recently reported by Ellinghaus et al. [8], there were 1,980 patients with severe 

COVID-19 enrolled from seven hospitals in the Italian and Spanish epicenters of the SARS-CoV-2 

pandemic in the Europe. A total of 2,381 control participants were enrolled from Italy and Spain. 

After stringent quality control and excluding population outliers, 1,610 patients with COVID-19 with 

respiratory failure (835 Italian and 775 Spanish COVID-19 cases) and 2,205 control participants 

(1,255 Italian and 950 Spanish controls) were included in the final GWAS. In total, 8,965,091 

high-quality SNPs (post imputation R2
≥ 0.6 and minor allele frequency (MAF) ≥ 1%) were included 

in the Italian cohort and 9,140,716 high-quality SNPs in the Spanish cohort. The GWAS summary 

statistics (COVID_I) are publicly available in the website (www.c19-genetics.eu). For more detailed 

information, please refer to the original article [8]. 

 

GWAS summary data from the COVID-19 Host Genetic Consortium (Dataset #2) 

 This GWAS summary statistics of the publicly available COVID-19 HGI GWAS meta-analyses 

round 2 (ANA5, susceptibility [affected vs. population]) was downloaded from the official website 

of the COVID-19 Host Genetic Consortium [2] (www.covid19hg.org/results; analysis named 

“20200508-results-ANA5_ALL_inv_var_meta”; file named 

“COVID19_HGI_ANA5_20200513.txt.gz”; release date of May 15 2020). There were 1,678 

COVID-19 patients and 674,635 control participants from 10 contributing studies. For the GWAS 

summary statistics, there were a total of 34,010,457 genetic variants included with a MAF threshold 

of 0.0001 and an imputation score filter of 0.6. For more detailed information, please refer to the 
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original article [2].  

 

Meta-analysis of GWAS summary data 

By using the meta-analysis tool of METAL [30], a fixed-effects meta-analysis was performed to 

identify risk genes for COVID-19 across two GWAS summary datasets (Dataset #1: COVID_I 

GWAS summary statistics, and Dataset #2: ANA5 GWAS summary statistics). After removing 

low-quality and non-matched SNPs, there were 8,424,883 high-quality SNPs with a MAF ≥ 1% and 

imputation R2
≥ 0.6 that were common to both datasets with the use of effect-size estimates (BETA) 

and their standard errors (SE) for the meta-analysis. With regard to the genome-wide meta-analysis, 

we adopted the widely-used threshold of 5×10-8 for combined P values to determine statistical 

significance. As reported in Ellinghaus et al. [8], we used the combined P value and combined effect 

(E) with its SE generated by the METAL to compute the odds ratio (OR) and its 95% confidence 

interval (CI): 1) OR = exp (E); 2) the upper confidence limit (OR_95 U) = exp (E + 1.96*SE); 3) the 

lower confidence limit (OR_95L) = exp (E - 1.96*SE). The qqman package in R platform was used 

to generate Manhattan plot and quantile-quantile (QQ) plot. The web-access tool of LocusZoom [31] 

was used to visualize regional association plots (http://locuszoom.sph.umich.edu/). 

 

Gene-based association analysis  

 We conducted a gene-based association analysis of our meta-GWAS summary data for 

COVID-19 by using the Multi-marker Analysis of GenoMic Annotation (MAGMA) [32], which 
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utilizes a multiple regression method to identify multi-marker aggregated effects that account for 

SNP P values and linkage disequilibrium (LD) between SNPs. The analyzed SNP set of each gene 

was based on whether the SNP located in the gene body region or within extended +/- 20 kb 

downstream or upstream of the gene. The LDs among SNPs were calculated based on the 1,000 

Genomes Phases 3 European Panel [33]. The Benjamini-Hochberg false discovery rate (FDR) method 

was used to correct the association results for multiple testing. The P value threshold of 1.86 ×10-5 

was applied. 

 

Functional enrichment analysis 

 To annotate the molecular functions and biological pathways of these COVID-19-associated 

genes (Supplemental Table S2), we performed a functional enrichment analysis by using the 

WebGestalt tool [34] based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and 

gene ontology (GO) terms. Using the overrepresentation analysis, the WebGestalt could identify 

functional association between COVID-19-associated genes and KEGG pathways. Furthermore, GO 

enrichment analysis was performed by using 3 categories of GO terms: biological process, cellular 

component, and molecular function. The redundancies of GO-terms were removed. The 

hypergenometric test was applied to assess the statistical significance. P values were corrected for 

multiple testing using the FDR, and a P value threshold of 2.9 ×10-4 was applied. 

  

Gene-property analysis  
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 We performed a MAGMA gene-property analysis [32], which is implemented in FUMA [35]. The 

gene expression data from 83 tissues GTEx RNA-seq data (version 8) were used to parse the gene 

expression profiles. Expression values (TPM) were log2 transformed and average expression values 

were adopted per tissue. The gene-property analysis was conducted for 53 specific tissue types and 

30 general tissue types, respectively. Bonferroni correction for multiple testing was used for the 

examined tissue types.  

 

Single-cell RNA-seq analysis for lung tissue 

We performed single-cell data analysis from normal lung tissue sequenced by using Smart-Seq2. 

This data set is a part of the Human Lung Atlas [36], consisting of 50 cell populations across 4 

compartments (epithelial, endothelial, stromal, and immune) of lung tissue. All 9,404 cells with 

distinct cellular identities were download from the Human Lung Atlas. Cells from 3 donors with 

FACS-sorted strategy were available at the Synapse (accession numbers: syn22168639, 

syn22168625, and syn22168622).  

 

S-PrediXcan and S-MultiXcan analysis 

We applied S-PrediXcan [37] to integrate expression quantitative trait loci (eQTL) data with 

genetic associations from GWAS summary statistics to identify genes, which genetically predicted 

expression levels are associated with COVID-19. S-PrediXcan firstly estimates gene expression 

weights by training a linear prediction model (MASHR model) in samples with both SNP genotype 
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and gene expression data. These estimated weights are processed with beta values and standard 

errors from meta-GWAS summary data on COVID-19 to predict gene expression from GWAS 

summary statistics, while combining the variance and co-variance of SNPs from an LD reference 

panel based on the 1000 Genomes Project Phase 3 genotypes [33]. The eQTL data for 49 tissues from 

the GTEx Project (version 8) were used in the current analysis. S-PrediXcan was performed for each 

of 49 tissues for a total of 659,158 gene-tissue pairs. To increase power to identify genes whose 

expression is similarly differentially regulated across tissues, we meta-analyzed the S-PrediXcan 

results with the use of the S-MultiXcan method [38], which employs multivariate regression to 

integrate evidence across 49 GTEx tissues with a total of 22,327 genes. Significant associations were 

determined by using Bonferroni correction.   

 

Sherlock-based integrative genomics analysis 

 To further validate these identified host genes for COVID-19, we also applied an independent 

approach of Sherlock-based integrative genomics analysis based on a Bayesian inference algorithm 

[39]. The Sherlock-based integrative analysis incorporates genetic information from meta-GWAS 

summary statistics on COVID-19 with eQTL data across 49 tissues from the GTEx Project (version 7) 

to prioritize important risk genes. It should be noted that Sherlock employs different algorithm and 

strategies to perform the statistical inference compared with S-PrediXcan. Briefly, Sherlock first 

searches expression-associated SNPs (named as eSNPs) across different GTEx tissues. Then, 

Sherlock estimates the possible association of eSNPs with COVID-19 using our meta-GWAS 

summary data. Sherlock computes individual Logarithm of the Bayes Factor (LBF) for each SNP 
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pair, and the sum of these constitutes the final LBF score for each gene. There are three potential 

scenarios: 1) if an eSNP in a given gene showed a significant association with COVID-19, a positive 

score would be assigned; 2) if an eSNP in a given gene showed a non-significant association with 

COVID-19, a negative score would be assigned; 3) no score was assigned if an SNP was not eSNP 

but showed a significant association with COVID-19. The Sherlock applied the simulation analysis 

to compute the p value of the Bayes factor for each gene, as reference of a method of 

Bayes/non-Bayes compromise [40]. We used the Bonferroni correction method to correct the 

significance for multiple testing. Due to we tested the Sherlock analysis in 49 GTEx tissues, there 

existed different thresholds across tissues. For example, the P value threshold was 6.64 ×10-6 

(0.05/7,529) for lung tissue. 

 

In silico permutation analysis 

 To determine whether there exist a higher overlapped rate of genes identified from MAGMA 

analysis (Gene set #1: N = 1,005, P < 0.05) with genes from S-MultiXcan analysis (Gene set #2: N = 

1,141, P < 0.05) than that from random selections, we conducted a computer-based permutation 

analysis of 100,000 times of random selections [41]. First, we counted the overlapped genes between 

Gen sets #1 and #2 (N observation). Secondly, we used all tested genes from S-MultiXcan analysis as 

background genes (N background = 22,326 genes). Then, through randomly selecting the same number of 

genes as Gene set #2 from background genes to compare with Gene set #1 for 100,000 times, we 

counted the number of overlapped genes in each time (N random). In the third step, we summed the 

counts of N observation ≤ N random and divided by 100,000 to calculate empirically permuted P value. P < 
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0.05 is considered to be significant.  

 

Drug-gene interaction analysis 

We submitted these 11 COVID-19-associated genes into the widely-used Drug Gene Interaction 

Database (DGIdb v.3.0.2; http://www.dgidb.org/) to identify drug-gene interactions with Food and 

Drug Administration (FDA)-approved pharmaceutical compounds as well as antineoplastic and 

immunotherapies drugs depended on 20 databases with 51 known interaction types, and search 10 

databases to find genes with potential drug abilities.  

 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the author. 
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Figure Legend 

Figure 1. Meta-analysis of GWAS summary data highlighting susceptibility loci for COVID-19. 

a) Manhattan plot of the meta-analysis GWAS summary statistics highlighting three susceptibility 

loci for COVID-19. The Manhattan plot is shown of the meta-GWAS summary statistics of 

meta-analyzing the COVID_I GWAS data (controlled for potential population stratification) with 

ANA5 GWAS data. The red horizontal line marks the genome-wide significance threshold of a P 

value less than 5 × 10-8. b) Quantile-quantile (QQ) plot of the meta-analysis GWAS summary 

statistics. All 8,424,883 high-quality SNPs with a MAF ≥ 1% and imputation R2 
≥ 0.6 were used for 
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plotting. In QQ plot the 2.5th and 97.5th centiles of the distribution under random sampling and the 

null hypothesis form the 95% concentration band. The genomic inflation factor lambda (λ) is 1.0075. 

c) Regional association plot for 21q22.11 locus of meta-GWAS summary statistics. Regional 

association plot is shown for 21q22.11 locus of the meta-GWAS summary statistics of 

meta-analyzing the COVID_I GWAS data (controlled for potential population stratification) with 

ANA5 GWAS data. The purple diamond marks the most strongly associated SNP of rs9976829 with 

COVID-19. The color illustrates LD information with rs9976829, as shown in the color legend. 

 

Figure 2. Circus plot showed the results of gene-based association analysis. Note: The inner ring 

shows the 22 autosomal human chromosomes (Chr1-22) and X chromosome (Chr23). A circular 

symbol in the outer ring represents a gene. Color indicates the statistical significance of genes (red 

marks genes significantly associated with COVID-19 with FDR < 0.05, yellow indicates genes with 

1.86×10-5 < P ≤ 1×10-3, green marks genes with 1×10-3 < P ≤ 0.05, and gray represents genes with P > 

0.05).  

 

Figure 3. Functional enrichment analysis of genes associated with COVID-19. a) Pathway 

enrichment analysis identified 9 significant or suggestive KEGG pathways enriched by 

COVID-19-associated genes. b) GO enrichment analysis identified 10 significant or suggestive 

GO-terms enriched by COVID-19-associated genes. a) - b) The green bar represents a suggestive 

enrichment (P < 0.05), and the orange bar represents a significant enrichment (FDR < 0.05). c) 

Scatter plot show the consistency of 11 risk genes identified from both MAGMA and S-MultiXcan 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.09.16.20195685doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.16.20195685
http://creativecommons.org/licenses/by-nc-nd/4.0/


analysis. The vertical and horizontal dotted lines represent -log10 (P = 0.05). d) In silico permutation 

analysis of 100,000 times of random selections. This permutation analysis was used to compare the 

overlapped genes between MAGMA and S-MultiXcan (see Methods). The empirical P value is less 

than 1×10-5. 

 

Figure 4. Expression of IFNAR2 and IL10RB among 50 cellular populations from lung tissue. 

This plot is based on a data set as a part of the Human Lung Atlas, consisting of 50 cell populations 

across 4 compartments (epithelial, endothelial, stromal, and immune) of lung tissue (x axis). y axis 

represents the expression level with log transformed count.   
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Table 1. Susceptibility loci associated with COVID-19 identified by meta-analysis of GWAS summary data 

SNP CHR Position Loci ALT REF 
COVID_I ANA5 Meta-analysis 

OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value 

rs11385942 3 45876459 3p21.31 GA G 1.77  1.49-2.11 1.15×10-10 1.50  1.29-1.74 1.10×10-7 1.61  1.43-1.80 2.87×10-16 

rs8176719 9 136132908 9q34.2 TC T 1.32  1.19-1.46 9.93×10-8 1.10  1.01-1.19 2.10×10-2 1.17  1.10-1.25 4.76×10-7 

rs657152 9 136139265 9q34.2 A C 1.33 1.20-1.47 4.95×10-8 1.07  0.99-1.15 7.86×10-2 1.15  1.08-1.21 5.53×10-6 

rs9976829 21 34614834 21q22.11 G A 1.18  1.07-1.32 1.77×10-3 1.15 1.06-1.24 3.58×10-4 1.16  1.09-1.23 2.57×10-6 

Note: CHR = chromosome, OR = odds ratio, 95% CI = 95% confidence interval, ALT = Altered allele, REF = Reference allele, COVID_I = 

COVID_I GWAS summary statistics (Dataset #1), ANA5 = ANA5 GWAS summary statistics (Dataset #2). The meta-analysis data were based 

on the combination of COVID_I GWAS summary data (controlled for potential population stratification) with ANA5 GWAS summary data.  
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Table 2. Significant genes associated with Covid-19 identified by MAGMA gene-based association analysis 

Gene CHR 
Start 

position 

Stop 

position 
Loci 

MAGMA on COVID_I  MAGMA on ANA5  MAGMA on meta-analysis data 

Z score P-value Z score P-value Z score P-value FDR 

LZTFL1 3 45844808 45977216 3p21.31 5.71  5.61×10-9 4.51  3.29×10-6 7.05  8.83×10-13 1.69×10-8 

XCR1 3 46042291 46088979 3p21.31 4.82  7.13×10-7 4.14  1.71×10-5 6.03  8.41×10-10 8.03×10-6 

CCR9 3 45907996 45964667 3p21.31 4.81  7.70×10-7 3.61  1.54×10-4 5.96  1.28×10-9 8.14×10-6 

FYCO1 3 45939391 46057316 3p21.31 4.28  9.55×10-6 3.32  4.49×10-4 5.50  1.95×10-8 9.31×10-5 

SLC6A20 3 45776941 45858039 3p21.31 4.05  2.60×10-5 2.72  3.26×10-3 5.11  1.58×10-7 6.03×10-4 

IFNAR2 21 34582231 34656831 21q22.11 3.53  2.10×10-4 3.50  2.31×10-4 5.02  2.58×10-7 7.58×10-4 
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CXCR6 3 45964973 46009845 3p21.31 3.85  5.99×10-5 3.13  8.83×10-4 5.01  2.78×10-7 7.58×10-4 

HNRNPK 9 86562998 86615692 9q21.32 2.02  2.16×10-2 3.18  7.42×10-4 4.18  1.46×10-5 3.48×10-2 

RMI1 9 86575321 86638989 9q21.32 2.09  1.84×10-2 3.15  8.29×10-4 4.12  1.86×10-5 3.94×10-2 

ABO 9 136110563 136170630 9q34.2 4.85  6.28×10-7 0.10  0.46 3.21  6.55×10-4 0.43 

Note: CHR = chromosome, FDR = False discovery rate, COVID_I = COVID_I GWAS summary statistics (Dataset #1), ANA5 = ANA5 GWAS 

summary statistics (Dataset #2). The meta-analysis data were based on the combination of COVID_I GWAS summary data (controlled for 

potential population stratification) with ANA5 GWAS summary data.  
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Figure 1. 
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Figure 3. 
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Figure 4. 
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